We've seen the formula that for W_{1}, W_{2} finite-dimensional subspaces of a vector space V, we have that

$$
\operatorname{dim}\left(W_{1}+W_{2}\right)=\operatorname{dim} W_{1}+\operatorname{dim} W_{2}-\operatorname{dim}\left(W_{1} \cap W_{2}\right)
$$

Recall the famed principle of inclusion-exclusion for finite sets, A, B. It states that $\#(A \cup B)=$ $\# A+\# B-\#(A \cap B)$. Of course, the principle of inclusion-exclusion generalizes to account for multifold intersections. It's general form takes the very scary looking form

$$
\#\left(\cap_{i=1}^{n} A_{i}\right)=\sum_{k=1}^{n}(-1)^{k+1}\left\{\sum_{1 \leq i_{1}<i_{2}<\cdots i_{k} \leq n} \#\left(\cap_{j=1}^{k} A_{i_{j}}\right)\right\}
$$

If we specify to $n=3$ we get the principle of inclusion-exclusion for three sets which takes the form

$$
\#(A \cup B \cup C)=\# A+\# B+\# C-\#(A \cap B)-\#(A \cap C)-\#(B \cap C)+\#(A \cap B \cap C)
$$

So, one might then ask whether it is true or not that the following

$$
\begin{aligned}
& \operatorname{dim}\left(W_{1}+W_{2}+W_{3}\right)=\operatorname{dim}\left(W_{1}\right)+\operatorname{dim}\left(W_{2}\right)+\operatorname{dim}\left(W_{3}\right) \\
&-\operatorname{dim}\left(W_{1} \cap W_{2}\right)-\operatorname{dim}\left(W_{1} \cap W_{3}\right)-\operatorname{dim}\left(W_{2} \cap W_{3}\right)+\operatorname{dim}\left(W_{1} \cap W_{2} \cap W_{3}\right)
\end{aligned}
$$

holds for all finite-dimensional subspaces W_{1}, W_{2}, W_{3} of a real vector space V ? Your job is to prove the boxed formula or find a counterexample.

