MAT224 Proof Clinics

To help prepare you for the upcoming midterm we will be holding proof clinics. There will be sessions at the following times:

Date	Time	Location
Saturday, Feb. 2	$1: 00 \mathrm{pm}-3: 00 \mathrm{pm}$	BA 1220
Sunday, Feb. 3	$1: 00 \mathrm{pm}-3: 00 \mathrm{pm}$	BA 1220
Monday, Feb. 4	11:00 am $-1: 00 \mathrm{pm}$	UC 140
Tuesday, Feb. 5	10:00 am $-12: 00 \mathrm{pm}$	MP 137

These sessions are your chances to get personal feedback from a TA on writing proofs so we strongly recommend you attend! We have prepared a list of exercises, five of which are given below. The rest of the exercises will be given during these sessions to simulate a test environment and gauge your ability to construct a proof on the spot. To make the most of these sessions we highly recommend showing up with written proofs for the exercises below.

1. Let V be a real vector space with zero vector $\mathbf{0} \in V$.
(a) Show that for all $c \in \mathbb{R}$ we have $c \cdot \mathbf{0}=\mathbf{0}$.
(b) Show that if $c \in \mathbb{R}$ and $v \in V$ are such that $c v=\mathbf{0}$ then $c=0$ or $v=\mathbf{0}$.
2. Suppose V is a vector space with subspaces $W_{1}, W_{2} \subseteq V$. Show that $W_{1} \cup W_{2}$ is a subspace of V if and only if $W_{1} \subseteq W_{2}$ or $W_{2} \subseteq W_{1}$.
3. Suppose V is a vector space and $v_{1}, v_{2}, v_{3} \in V$ are such that $v_{1}+v_{2}+v_{3}=0$. Show that $\operatorname{span}\left\{v_{1}, v_{2}\right\}=$ $\operatorname{span}\left\{v_{2}, v_{3}\right\}$.
4. Let V be a vector space with subspaces $W_{1}, W_{2}, W_{3} \subseteq V$.
(a) Prove that $\left(W_{1} \cap W_{2}\right)+W_{3} \subseteq\left(W_{1}+W_{3}\right) \cap\left(W_{2}+W_{3}\right)$.
(b) Provide an example illustrating that this is not always an equality.
5. Suppose V and W are finite-dimensional vector spaces. We can define a new vector space from V and W, called the direct product of V and W, as

$$
V \times W=\{(v, w): v \in V, w \in W\}
$$

Given $\left(v_{1}, w_{1}\right),\left(v_{2}, w_{2}\right) \in V \times W$ and $c \in \mathbb{R}$ addition is defined as $\left(v_{1}, w_{1}\right)+\left(v_{2}, w_{2}\right)=\left(v_{1}+v_{2}, w_{1}+w_{2}\right)$ and scalar multiplication as $c\left(v_{1}, w_{1}\right)=\left(c v_{1}, c w_{1}\right)$.
(a) Verify that $V \times W$ is indeed a vector space.
(b) If $\mathbf{0}_{V} \in V$ and $\mathbf{0}_{W} \in W$ are the zero vectors of V and W respectively then what is the zero vector of $V \times W$? Prove your claim.
(c) What is $\operatorname{dim} V \times W$ in terms of $\operatorname{dim} V$ and $\operatorname{dim} W$? Prove your claim.

