Problem 1 (10 points total, 5 points each).
(i) Let V be a finite dimensional real vector space. Give a definition of what it means for a linear transformation $T: V \rightarrow V$ to be diagonalizable. ANS: See textbook.
(ii) Give an example of a non-diagonalizable real matrix. Justify your answer.ANS: $\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$. Notice $\lambda=1$ is eigenvalue with multiplicity 2 but $\operatorname{Nul}\left(\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]\right)=\operatorname{span}\left[\begin{array}{l}1 \\ 0\end{array}\right]$ implies $\operatorname{dim} E_{1}=$ $1<2$ so the matrix isn't diagonalizable.

Problem 2 (22 points, 2 points if left completely blank). Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be defined by $T(a, b)=$ $(2 a+b, a-3 b)$ and let $\alpha=\{(1,1),(1,2)\}$. Find $[T]_{\alpha}^{\alpha}$. Show your work. (Hint: You may find it helpful to use the fact that $\left.\left[\begin{array}{ll}1 & 1 \\ 1 & 2\end{array}\right]^{-1}=\left[\begin{array}{cc}2 & -1 \\ -1 & 1\end{array}\right]\right)$.ANS: $T(a, b)=(2 a+b, a-3 b) \Longrightarrow[T]_{E}^{E}=\left[\begin{array}{cc}2 & 1 \\ 1 & -3\end{array}\right]$ where $E=\left\{e_{1}, e_{2}\right\}$. Then $[T]_{\alpha}^{\alpha}=[I]_{E}^{\alpha}[T]_{E}^{E}[I]_{\alpha}^{E}=\left([I]_{\alpha}^{E}\right)^{-1}[T]_{E}^{E}[I]_{\alpha}^{E}=\left[\begin{array}{cc}2 & -1 \\ -1 & 1\end{array}\right]\left[\begin{array}{cc}2 & 1 \\ 1 & -3\end{array}\right]\left[\begin{array}{ll}1 & 1 \\ 1 & 2\end{array}\right]=$ $\left[\begin{array}{cc}3 & 5 \\ -1 & -4\end{array}\right]\left[\begin{array}{ll}1 & 1 \\ 1 & 2\end{array}\right]=\left[\begin{array}{cc}8 & 13 \\ -5 & -9\end{array}\right]$.
Problem 3 (20 points total, 2 points if left completely blank). For this question we consider the vector space $V=M_{2 \times 2}(\mathbb{R})$ with the usual notion of addition and scalar multiplication.
(i) (2 points). Write down any basis for V. No explanation is needed.

ANS: $\alpha=\left\{\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]\right\}$.
(ii) (18 points). Using the basis you wrote down in part (i) what is the matrix representation of the transpose mapping $T: V \rightarrow V$ given by $T(A)=A^{T}$? ANS: $[T]_{\alpha}^{\alpha}=\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$

Problem 4 (30 points total, 3 points if left completely blank). This question has 3 parts. Let Q be an invertible $n \times n$ real matrix. Define $T: M_{n \times n}(\mathbb{R}) \rightarrow M_{n \times n}(\mathbb{R})$ via $T(X)=Q^{-1} X Q$.
(i) (15 points, 2 points if left completely blank). Prove that T linear and is an isomorphism. ANS: $T(a X+b Y)=Q^{-1}(a X+b Y) Q=a Q^{-1} X Q+b Q^{-1} Y Q=a T(X)+b T(Y)$ holds for all $a, b \in \mathbb{R}, X, Y \in M_{n \times n}(\mathbb{R})$ so T is linear. Notice that if $T(X)=0$ then $Q^{-1} X Q=0 \Longrightarrow$ $X Q=0 \Longrightarrow X=0$ since Q is invertible. Thus $\operatorname{ker} T=\{0\}$ so T is injective. Since domain and codomain have the same dimension injectivity implies bijectivity so T is an isomorphism.
(ii) (10 points, 1 point if left completely blank). If possible, find any eigenvalue and associated eigenvector of T. If this is not possible, explain why not. ANS: Obviously $T(I)=Q^{-1} Q=I$ so $\lambda=1$ is an eigenvalue with an eigenvector of I.
(iii) (5 points). If $n=1$ is T diagonalizable? Explain why or why not. ANS: Yes, by the previous question we know that $\lambda=1$ is always an eigenvalue so when $n=1$ we have $M_{1 \times 1}(\mathbb{R})=E_{1}$ proving T is diagonalizable.

Problem 5. (18 points total, 3 points for each correct answer, -2 points for each incorrect answer and 0 points for blank answers for a minimum of 0 points or a maximum of 18 points.) For the following questions, answer using the word "True" or the word "False". You don't need to justify your answer to receive full credit. There's no partial credit.

Note: In all of the following questions, V denotes a real vector space.
(i) True/False: Let $T: V \rightarrow V$ be linear with 0 as an eigenvalue. Then $E_{0}=\operatorname{ker} T$. ANS: True, by definition.
(ii) True/False: If $T: \mathbb{R}^{223} \rightarrow \mathbb{R}^{224}$ and T is linear, then T is not surjective. ANS: True, since domain has a smaller dimension than codomain we cannot have surjectivity.
(iii) True/False: Let $T: V \rightarrow V$. If T^{224} is invertible, then T is invertible. ANS: True, since $0 \neq \operatorname{det}\left(T^{224}\right)=(\operatorname{det} T)^{224} \Longrightarrow \operatorname{det} T \neq 0$.
(iv) True/False: $S: P_{2}(\mathbb{R}) \rightarrow P_{2}(\mathbb{R})$ defined by $S(p(x))=p(x+1)$ is an isomorphism. ANS: True, since only need to check injectivity. But if $a(x+1)^{2}+b(x+1)+c=0 \Longrightarrow a=$ $2 a+b=c+b+a=0 \Longrightarrow a=b=c=0$ so $S(p)=0 \Longrightarrow p=0$ and S is injective.
(v) True/False: Finite dimensional isomorphic vector spaces must have the same dimension. ANS: True, see Proposition 2.6.7
(vi) True/False: Let α, β denote bases for finite dimensional V and let $I: V \rightarrow V$ denote the identity transformation. Then $[I]_{\alpha}^{\beta}$ is the identity matrix in $M_{\operatorname{dim} V \times \operatorname{dim} V}(\mathbb{R})$. ANS: False, we saw a counterexample is Problem 2.

