Let V be a finite dimensional real inner product space and suppose that $T: V \rightarrow V$ is a symmetric linear operator with only 2 eigenvalues, $\lambda_{1}, \lambda_{2} \in \mathbb{R}, \lambda_{1} \neq \lambda_{2}$. Prove that $p(T)=0$ where $p(\lambda) \doteq\left(\lambda-\lambda_{1}\right)\left(\lambda-\lambda_{2}\right)$. Give a counterexample to this statement for when the operator is not symmetric.

