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We break the course up into roughly three pieces, though not sequentially, which we then review in brief,
without providing examples. These are roughly as follows:

Integration:
• Integration has two aspects: finding areas under curves and finding antiderivatives.
• These two aspects are related by the two fundamental theorems of calculus.
• The first fundamental theorem of calculus allows us to find areas, and other quantities represented by

definite integrals, by finding antiderivatives.
• Substitution and integration by parts are techniques which can be used to find antiderivatives.
• Definite integrals (which are limits of Riemann sums) can be applied to many problems beyond just

that of finding the area under a curve: among others, finding velocities and positions, finding volumes,
and arc length.
•We can extend the definition of the definite integral to unbounded regions, either vertically (integrating

functions which go to infinity) or horizontally (integrating functions on infinite regions).

Differential equations:
• Differential equations allow us to apply integrals to more complicated situations, where rates of change

depend on the quantity changing.
• Some differential equations can be solved explicitly by separation of variables. In cases where we

cannot solve explicitly we can use Euler’s method.
• Plotting slope fields is a way of getting qualitative information about the behaviour of solutions to

differential equations.
• The SIR model is a particular system of differential equations which can be used to model disease

outbreaks.
Sequences, series, and Taylor series:

• Sequences and series can be used to find approximations to numbers and functions, and also to model
limiting behaviours.
• A sequence gives rise to a series through an auxiliary sequence of partial sums.
• Convergence of a series can often be determined by one of the divergence test, the integral test, and

the ratio test, which only require us to know the sequence of terms, not the sequence of partial sums.
• Taylor polynomials give approximations to functions at a point, and for most of the functions we deal

with, Taylor series give the functions exactly.

Integration

General introduction
Consider a function f(x) defined on an interval [a, b]. Suppose for the moment that f(x) ≥ 0 on [a, b],

and that we wish to calculate the area between the graph of y = f(x) and the x-axis over the interval [a, b].
For a general function f there is no obvious way to do this using only the geometric formulæfor area with
which we are familiar. We may however find an approximation to the area by subdividing the interval [a, b]
into subintervals [xk, xk+1], approximating f on each subinterval by its value at some particular point in
each subinterval, and finding the total area of the resulting rectangles. In particular, if we use subintervals
of equal lengths, and require the point in each subinterval at which we evaluate the function f to be either
the left or right endpoint of the interval, then we obtain respectively the left sum

n−1∑
k=0

f(xk)∆x

and the right sum
n∑

k=1

f(xk)∆x,

where in both cases ∆x = b−a
n and xk = a+ k∆x. Here n is the number of subintervals we are using; note

that each sum contains exactly n terms.
If a function f is always decreasing on [a, b], then the left sum will be an overestimate to the area under

the graph of y = f(x) over that interval, while the right sum will be an underestimate; and if f is always
increasing than the opposite is true (the left sum will be an underestimate while the right sum will be an
overestimate). For a general function f , however, either or both may be an overestimate or an underestimate.
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As mentioned, the sums above give only approximations to the area under the graph of f . It seems
reasonable, though, that if we were able to somehow take a limit as n → ∞,1 meaning that we take more
and more subintervals (which are therefore smaller and smaller), the sums will approach the exact value of
the area. For functions which are continuous on [a, b], such limits exist for both the left and right sums, and
are moreover equal. We denote this common limit by∫ b

a

f(x) dx.

(Here the quantity dx cannot be left out. One can think of it as representing intuitively an infinitesimal
change in x, in the which case f(x) dx represents the area of an infinitesimal rectangle of height f(x) and
width dx, and the integral represents the sum of the areas of all of these infinitesimal rectangles – of which
there are, of course, infinitely many.)

Now this limit is almost impossible to compute for any specific function f , which makes it seem that
perhaps we have just replaced one impossible problem (finding an area) with another (finding a limit). This
would be the case were it not for the fundamental theorem of calculus, which can be stated as follows:

If f is continuous on [a, b], and F is a function on [a, b] which satisfies F ′ = f there, then∫ b

a

f(x) dx = F (b)− F (a).

We can make sense of this result by consulting the foregoing definition of the definite integral. Let us consider

a left sum approximation to
∫ b

a
f(x) dx under the hypotheses in the above theorem. This will be of the form

n−1∑
k=0

f(xk)∆x =

n−1∑
k=0

F ′(xk)∆x.

But now F ′(xk) is the rate of change of f at xk = a + k b−a
n , while ∆x = b−a

n , so that, at least for n large,
we have approximately

F ′(xk)∆x ≈ f(xk + ∆x)− f(xk) = F (xk+1)− F (xk);

this is just the tangent-line approximation to F at xk. If we assume that this approximation is good enough
that we can substitute it into the sum above, then we have

n−1∑
k=0

F ′(xk)∆x ≈
n−1∑
k=0

[F (xk+1)− F (xk)]

= [F (x1)− F (x0)] + [F (x2)− F (x1)] + · · ·+ [F (xn)− F (xn−1)]

= F (xn)− F (x0) = F (b)− F (a).

In other words, we have
n−1∑
k=0

f(xk)∆x ≈ F (b)− F (a),

and this approximation will become exact in the limit as n→∞.2

1In order to dispel possible misconceptions, we note that the above limit is not an example of an infinite
series since the individual terms in the sum depend themselves on n (in an infinite sum, for example, a0 is
always a0 no matter which partial sum we are looking at, but for the right sum above the first term will be
f(a+ b−a

n ), which depends on n).
2In other words, while the definition of

∫ b

a
f(x) dx by itself more or less does just replace one hard problem

by another one, it does lead to another much easier method of solution through the fundamental theorem of
calculus.
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In other words, we have now turned the problem of finding areas into the problem of finding antideriva-
tives.

Now since the derivative of a constant is always 03, a function does not have a unique antiderivative.
Any two antiderivatives of a given function will however only differ by a constant. We use the notation∫
f(x) dx for the set of all antiderivatives of the function f ; in other words, if F ′ = f , then we write∫

f(x) dx = F (x) + C,

where C represents an arbitrary constant. In other words, we may think of an expression like
∫
f(x) dx is

that it represents the antiderivative of f with respect to x in the same way that df
dx represents the derivative

of f with respect to x.
This allows us to compute areas under the graphs of many simple functions just by inverting what we

know about derivatives. For example, we get the following antidifferentiation rules, which we phrase in terms
of indefinite integrals: ∫

xn dx =
1

n+ 1
xn+1 + C, n 6= −1∫

1

x
dx = ln |x|+ C∫

cosx dx = sinx+ C∫
sinx dx = − cosx+ C∫
ex dx = ex + C∫
ax dx =

1

ln a
ax + C, a > 0, a 6= 1

We can obtain antiderivatives of more general functions by inverting our differentiation rules. Thus, for
example, ∫

f(x) + g(x) dx =

∫
f(x) dx+

∫
g(x) dx∫

cf(x) dx = c

∫
f(x), c constant

(Note carefully that this last rule is most definitely NOT true when c is not a constant!) We may also invert
the chain and product rules: this gives rise to two integration techniques which we discuss separately since
they are more complicated than the foregoing. These are substitution and integration by parts.

Substitution
Recall the chain rule:

d

dx
F (g(x)) = F ′(g(x))g′(x).

This gives the corresponding integration rule∫
F ′(g(x))g′(x) dx = F (g(x)) + C.

Now it often happens that one needs to do more than simply apply this rule once; perhaps one has to apply
it twice, or apply it and then another rule. Thus we typically rephrase it as a simplification rule, as follows:∫

f(g(x))g′(x) dx =

∫
f(u) du{

u = g(x)

du = g′(x) dx

3This is something eminently worthy of committing to memory and never forgetting!
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What does this mean?4 By what we said above,
∫
f(u) du represents the (set consisting of every) antideriva-

tive of f with respect to u; in other words, if we differentiate
∫
f(u) du with respect to u, we shall get f(u).

Now if we differentiate it instead with respect to x, we obtain by the chain rule

d

dx

∫
f(u) du =

d

du

∫
f(u) du · du

dx

= f(u)
du

dx
= f(g(x))g′(x),

exactly the function whose antiderivative we sought. This is the sense in which the above equation is true.
The equation is true since it allows us to replace one integral by a manifestly simpler one.

In any practical problem the key to applying substitution is to find a function g such that the original
integrand can be written in the form f(g(x))g′(x) for some f . Usually what trips us up is the necessity to
include the factor g′(x).

Integration by parts
The formula for integration by parts is fortunately rather easier to grasp. Recall the product rule:

d

dx
(f(x)g(x)) = f ′(x)g(x) + g′(x)f(x).

If we invert this, we obtain the integration rule∫
f ′(x)g(x) + g′(x)f(x) dx = f(x)g(x) + C.

Now most of the time our integrand does not come to us nicely written out in the form f ′(x)g(x)+g′(x)f(x),
so the above formula cannot be used exactly as written. The method of integration by parts consists in moving
one part of the integral on the left-hand side above to the right-hand side, namely∫

f ′(x)g(x) dx = f(x)g(x)−
∫
g′(x)f(x) dx;

we may drop the C since it is included in the indefinite integral on the right-hand side.
This method is useful precisely because it often happens that g′(x)f(x) is more amenable to integration

than was f ′(x)g(x). In applying this method, then, we seek to write our original integrand as a product
of two functions, one of which (corresponding to f ′(x)) is something whose antiderivative we know (or can
find), and which is such that g′(x)f(x) is more easily integrated than f ′(x)g(x).

Applications of definite integrals
Perhaps the simplest situation where definite integrals can be applied to other than the problem of

finding areas is in finding quantities given their rates of change. Thus, consider an object moving along a
line, and suppose that we are given the velocity v(t) as a function of time and want to know the position as
a function of time. If we let x(t) denote the position as a function of time, then we have by the fundamental
theorem of calculus, since x′(t) = v(t) by definition,∫ t

0

v(s) ds = x(t)− x(0);

thus if we are given x(0) we can compute x(t) for all t simply by integrating v. (Note that, as in the second
fundamental theorem of calculus, we must use a variable other than t inside the integral; here we use s.)

4It is the opinion of the current author that the ‘deep meaning’ of the above formula is quite difficult to write
out in any explicit way. Integration being an inverse process, and substitution being a method of integration,
there is something about the process of substitution which is necessarily rather backwards. (One is reminded
of crab fugues at this point.) Facility with the method, as with so much else in calculus (and in life), comes
with practice. What follows probably cannot hope to be any better than a rather awkward mixture of proof
and explanation.
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Similarly, we can obtain v(t) if we are given the acceleration a(t) = v′(t) and the initial velocity v(0). (If we
are given instead v(t0) for some t0 we can proceed in exactly the same fashion, but take the lower limit of
our integral to be t0 instead of 0.)

More interesting applications come from geometry. Specifically, we may use integrals to find volumes of
three-dimensional regions and arclengths of curves.

Let us consider volumes first. Suppose that we are given a three-dimensional solid extending along some
axis, say from a to b along the x-axis (though it could be the y-axis), and that we are told that, for every x
in [a, b], the cross-section of the solid in a plane perpendicular to the x-axis has area A(x). Then the volume
of the solid is equal to ∫ b

a

A(x) dx.

We can see why this makes sense as follows. Remember that we started out approximating the area under
the graph of f by approximating f by constant values on subintervals. We can do something similar here: let
us split [a, b] up into n subintervals of equal width [xk, xk+1], k = 0, . . . , n− 1, just as we did for areas, and
then approximate the cross-section of the solid on each of these subintervals by the cross-section at xk (say).
Then the volume of the piece corresponding to [xk, xk+1] will be A(xk)∆x, and we obtain the following as
an approximation to the total volume:

n−1∑
k=0

A(xk)∆x.

In the limit as n→∞, it is reasonable that the above approximation should become exact, and the limit of
the above sum is by definition the definite integral above.

There is a specific case of the foregoing worth noting. Suppose that we are told that the region arises
by taking a two-dimensional region in the xy plane and rotating it around the x-axis. Let us consider two
cases: one where the region is that between the graph of y = f(x) and the x-axis, and one where the region
is that between the graphs of y = f(x) and y = g(x), f(x) ≥ g(x). In the first case, the cross-section at a

point x will be a circle of radius f(x) and hence of area A(x) = π [f(x)]
2
, and the volume will be

∫ b

a

π [f(x)]
2
dx.

In the second case, the cross-section will be an annulus with outer radius f(x) and inner radius g(x), which

has area π
(

[f(x)]
2 − [g(x)]

2
)

, and the volume will be

∫ b

a

π
(

[f(x)]
2 − [g(x)]

2
)
dx.

(Note that we square before taking the difference; this is very important!)
There are other similar applications of integrals to problems involving various notions of density. Sup-

pose, for example, that we are told that a certain quantity exists in amount δ(x) per unit length. Then the
total amount of that quantity in an interval [a, b] will be

∫ b

a

δ(x) dx;

this can be shewn by considering breaking the interval [a, b] up into subintervals as we did for volumes just
now. A more interesting case is where we have a density in two dimensions, in other words, when we are
told that a certain quantity exists in amounts δ per unit area. In general, finding the amount of the quantity
in a region will require doing double integrals, which are beyond the scope of this course. In cases where the
function has some symmetry though we can reduce the situation to one we can handle. Examples of this
were done in class.
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One final application of definite integrals is in finding the length of curves. The length of the curve
y = f(x) from x = a to x = b can be shewn to be equal to the integral∫ b

a

√
1 + [f ′(x)]

2
dx.

Improper integrals
In our definition of the integral and our statement of the fundamental theorem of calculus, we assumed

that we were working with a continuous function on a bounded interval. When one or both of these conditions
does not hold, we can sometimes still determine the value of the integral by replacing evaluation at one of the
bounds by a limit. We distinguish two cases: one where the integrand f(x) is discontinuous at an endpoint,
and one where one (or both) of the endpoints is ±∞. In the first case, suppose that f(x) is continuous on
[a, b] except at x = a. Then if F is any antiderivative of f on (a, b], we have for any c ∈ (a, b] that∫ b

c

f(x) dx = F (b)− F (c).

If lim
c→a+

F (c) exists, then it makes sense to define

∫ b

a

f(x) dx = F (b)− lim
c→a+

F (c).

A similar definition can be given if f is discontinuous at b:∫ b

a

f(x) dx = lim
c→b−

F (c)− F (a).

Note that in both cases the direction of the limit is chosen so that the quantity c is always inside the interval
(a, b).

Now suppose that f is continuous everywhere but b = +∞. If c > a then we have∫ c

a

f(x) dx = F (c)− F (a);

if lim
c→+∞

F (c) exists, then again it makes sense to define

∫ +∞

a

f(x) dx = lim
c→+∞

F (c)− F (a).

A similar definition can be given if a = −∞.
More complicated situations can be handled by breaking the original integral up into a sum of integrals.

Thus, for example, if f is discontinuous at both endpoints, we may write∫ b

a

f(x) dx =

∫ c

a

f(x) dx+

∫ b

c

f(x) dx,

where c ∈ (a, b) is arbitrary, and evaluate each of these integrals as indicated previously. (If f is discontinuous
at an interior point in the interval, say at c ∈ (a, b), then we may also break up the integral this way.) We
may do something similar if a = −∞ and b = +∞.

Integrals defined by limits as above are called improper integrals. When the appropriate limits exist we
say that the integral converges.

Sometimes it is useful to know whether a particular integral converges even in cases where we cannot
compute its value exactly. We may use the following comparison test:
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Let f(x) and g(x) be two functions satisfying 0 ≤ f(x) ≤ g(x). If an improper integral
for g converges, then the same improper integral for f also converges; while if an improper
integral for f diverges, then the same improper integral for g also diverges.

In other words, smaller than convergent is convergent, and greater than divergent is divergent.

Differential equations
It often happens in modelling problems that the rate of change of a particular quantity depends on

that quantity itself; for example, the rate of growth of bacteria in a culture depends on the amount of
bacteria, how fast a hot object cools depends on how much hotter it is than the surrounding air, and so
forth. Situations like this can be modelled by differential equations.

The most general type of differential equation we usually consider is an equation of the form

y′ = f(x, y). (1)

A solution to such an equation is a function g(x) such that y = g(x) satisfies the above equation in the sense
that

y′ = g′(x) = f(x, y) = f(x, g(x));

in other words, for every point x (in some interval), the slope of the curve y = g(x) at the point (x, g(x)),
which is what is represented by the left-hand side of the equation (1), is exactly equal to the right-hand side,
namely f(x, y) = f(x, g(x)).

In the event that the right-hand side of (1) can be written as a product of a function of x and a function
of y, say h(x)k(y), we can sometimes find a solution analytically as follows:

y′ =
dy

dx
= h(x)k(y)

dy

k(y)
=

dx

h(x)∫
dy

k(y)
=

∫
dx

h(x)
.

Provided that both of these integrals can be evaluated, we will then arrive with a relation giving y in terms
of x implicitly.

Note that both of the integrals in the above solution are indefinite integrals; this means that there will
be an undetermined constant of integration in the general solution. This is a general property of differential
equations: in order to get a unique solution, we must also specify a point through which the solution curve
passes. In other words, we do not just solve the equation y′ = f(x, y) but rather the initial value problem

y′ = f(x, y), y(x0) = y0,

for some point (x0, y0). This means that in addition to the solution’s satisfying the differential equation in
the sense explained above, the graph of the solution curve also passes through the point (x0, y0).

As we have seen at many points in this course, many integrals which we can write down cannot be
evaluated explicitly in terms of elementary functions. Similarly, most differential equations which we can
write down cannot be solved explicitly in terms of elementary functions. For these differential equations, as
with integrals, it is often helpful to be able to find approximate solutions using numerical techniques. One
of the simplest of these is Euler’s method; it is very similar to our method of approximating an integral by a
left or right Riemann sum. In detail, suppose that we seek the solution to the above initial value problem:

y′ = f(x, y), y(x0) = y0.

Then we know that the solution curve passes through the point (x0, y0). Moreover, we also know that the
solution curve has slope y′|x0

= f(x0, y0) there, since the curve is the graph of a solution to the differential
equation. Thus we know that the tangent line to the solution curve at the point (x0, y0) has the equation

y − y0 = f(x0, y0)(x− x0). (2)
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Now we may use this to approximate the solution at a point near x0. In particular, let ∆x > 0 be small,
and let x0 = x1 + ∆x. Then the tangent line (2) tells us that the solution at x1 can be approximated by

y1 = y0 + f(x0, y0)(x1 − x0)

= y0 + f(x0, y0)∆x.

In other words, the solution curve will pass near the point (x1, y1) = (x0 + ∆x, y0 + f(x0, y0)∆x). If we
now start from this5 point, and apply a further tangent-line approximation, we will find that at x = x2 =
x1 + ∆x = x0 + 2∆x the solution can be approximated by

y2 = y1 + f(x1, y1)(x2 − x1)

= y1 + f(x1, y1)∆x.

In general, then, we find that we can approximate the solution at the points xn = x0 + n∆x by values yn
which satisfy the recurrence relation

yn+1 = yn + f(xn, yn)∆x.

This is called Euler’s method.
A pictorial method of visualising qualitative features of solutions to differential equations which is related

to Euler’s method is using so-called slope fields. The differential equation

y′ = f(x, y)

means that a solution passing through the point (x, y) must have slope f(x, y) there. Thus suppose we make
a grid of points on the (x, y) plane, and at each of these points we plot a small line segment with slope equal
to the value of f there; i.e., at the point (x, y) we plot a small line segment with slope f(x, y). This plot of
small line segments is called the slope field of the differential equation. By looking at the slope field we can
deduce information about the solutions to the differential equation.

An analogy may be helpful at this point. The information a slope field gives us about a differential
equation is roughly similar to the information plotting points (x, f(x)) gives us about the graph of a function
y = f(x); in other words, we only get discrete information at a select number of points. When we are sketching
the graph of a function, we can get a better picture by connecting the points we have plotted with a smooth
curve. While we do not do quite the same thing with slope fields, we can get a better idea of parts of the
solution by plotting specific solution curves, either determined analytically – in the rare cases where that is
possible – or numerically (say by using Euler’s method).

Sometimes we are more interested in qualitative information about the behaviour of solutions than in
exact quantitative information. Oftentimes the slope field can give us this qualitative information. For
example, if we plot the slope field for the equation

y′ = 1− y,

we will immediately see that all solutions tend towards the line y = 1 as x → ∞. We will also see that the
line y = 1 appears to be a solution to the equation, which can be verified directly since y = 1 implies y′ = 0,
1 − y = 0, so y′ = 1 − y. More complicated qualitative information can also be deduced, such as threshold
values.
Systems of equations; SIR model

5Note that since the exact solution curve does not, in general, pass exactly through this point, we are now
taking the tangent line approximation to a solution curve which is only an approximation to our original
curve; in other words, we are taking an approximation to an approximation. A detailed study of the error
resulting from approximating a solution to a differential equation using Euler’s method is an interesting
problem in numerical analysis which is unfortunately beyond the scope of the present course. Here we
simply note that the error can be estimated.
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Often we run into cases where we wish to model more than one value at the same time, and where the
rates of change depend on multiple quantities. Examples are the robin-worm and SIR models discussed in
section 11.8 of the textbook. Here let we look at a simpler example. An object of mass 1 connected to a
spring with spring constant 1 (both in whatever system of units we happen to be using) which oscillates
along a line has a coordinate x and velocity v which satisfy the system of equations

dx

dt
= v

dv

dt
= −x.

Now it can be shown (and is not hard to check) that if we give also the initial conditions x(0) = 1, v(0) = 0,
then the solution to this system is x = cos t, v = −sin t. But suppose that we do not know how to solve
this equation to get x and v as functions of t. Is there anything we can do? Well, perhaps we are not just
interested in how x and v depend on t, but also in how they depend on each other. Then we can see whether
we might be able to find a differential equation relating just x and v.6 Now by the chain rule we have

dx

dv
=
dx

dt
· dt
dv
.

Similarly, by the chain rule we may write7

dt

dt
= 1 =

dt

dv

dv

dt
,

so
dt

dv
=

1
dv
dt

,

and we have
dx

dv
=

dx
dt
dv
dt

=
v

−x
= − v

x
.

This is clearly separable, and applying separation of variables gives

−x dx = v dv

−1

2
x2 =

1

2
v2 + C

v2 + x2 = −2C,

which is, for C ≤ 0, the equation of a circle with centre (0, 0) and radius
√
−2C. In our example above, we

have x(0) = 1, v(0) = 0, which gives −2C = 1, so that the point (x, v) will be on the unit circle. In other
words, while it may not have been a simple matter to determine where on the circle x and v are at a certain
time t, we can say for certain that having started out on the unit circle, the point (x, v) will stay on the unit
circle for all time.

We note one other feature which the above manipulation reveals. What happens if C = 0? A circle
of radius 0 is just a point! Now for C to be zero we must have x(t) = v(t) = 0 for some t (for example,
t = 0), and so what this says is that if at any point in time we have x(t) = v(t) = 0, then we must have
x(t) = v(t) = 0 for all other times. A solution with this property is called a stationary solution or an
equilibrium solution, since it does not depend on time.

6We hasten to point out that for general systems this is not possible. The robin-worm and SIR models, as
well as the mass-on-a-spring system we consider here, are special cases in this sense.
7We are assuming that the function v = v(t) can be inverted to obtain t = t(v), at least in principle
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The SIR model discussed in the textbook has another feature. This model is given by (see p. 617 of the
textbook)

dS

dt
= −aSI

dI

dt
= aSI − bI.

Here S represents the number of people susceptible to a certain disease in a population, I represents the
number of people infected, a represents the rate at which infected people infect susceptible people, and b
represents the rate at which infected people recover. Now for this system it is not a simple matter to find an
exact expression for S and I as functions of time. (In the textbook example curves are shown which were
found numerically.) We can however attempt to find a curve of I versus S the way we did for the example
system above. If we divide dI

dt by dS
dt as we did above, we obtain

dI
dt
dS
dt

=
dI

dS
=
aSI − bI
−aSI

= −1 +
b

aS

.

As before, this equation may be solved by separation of variables:

dI =
(
−1 +

a

bS

)
dS

I = −S +
a

b
lnS + C.

We may then plot I versus S and examine the resulting curves.

One particular feature of the above system can be determined directly from the equations. Since a, S,
and I are always positive, we see that dS

dt is always negative; in other words, S always decreases with time.

Now suppose that initially S is such that −1 + b
aS > 0, i.e., that S < b

a . Since S decreases with time, this

means that S < b
a for all time, so that −1 + b

aS = dI
dS > 0 for all time. This means that I will always move

in the same direction as S: i.e., if S increases, so does I; if S decreases, so does I. Now since S always
decreases with time, I must also always decrease with time – in other words, no matter how many infections
we start out with, the number of infections will always decrease with time, which means that the disease
cannot spread out of control. This point S = b

a is called a threshold value: the number of infections can only
increase with time if the initial number of susceptible people is greater than this value. See the textbook for
additional discussion.

Sequences, series, and Taylor series

[Since fairly extensive notes for much of this section of the course have already been posted, I will keep this
section brief.]

There are many situations in this course where we have talked about approximating a certain quantity
to a higher and higher degree of accuracy. Thus, for example, integrals are approximated by Riemann sums,
and the accuracy gets better if we take more and more subintervals; we have just discussed using Euler’s
method to approximate solutions to differential equations, and there too the approximation gets better as
the number of steps gets larger (equivalently, as the step size ∆x gets smaller).8 Another example is given
by finding square roots, as we discussed in class (we can find a sequence of rational numbers getting closer
and closer to the square root of 2, for example).

8We are being a bit loose here. In particular it may not be the case that the accuracy increases monotonically
with the number of subintervals: there are some cases where a 4-subinterval estimate, for example, may be
worse than a 2-subinterval estimate. Our statement is to be taken in the limiting sense that we can make
the accuracy as good as we want by taking the number of subintervals sufficiently large.

10
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In general, a sequence is an ordered list {sn} of numbers s0, s1, . . .,
9 and we say that it has a limit S, or

that it converges to S, if sn is arbitrarily close to S as long as n is sufficiently large. (Note that this means
that sn must remain arbitrarily close to S as n gets large.) Here are a few simple examples.
EXAMPLES. (a) The sequence given by sn = 1

n converges to 0, since if n is very large, 1
n will be a very

small positive number.
(b) The sequence given by sn = sin 2πn converges since it is always equal to the number 0. (This is called a
constant sequence.)
(c) The sequence given by sn = (−1)n does not converge since it is close to (in fact, equal to!) 1 some of the
time and −1 the rest of the time, and this happens for arbitrarily large values of n.

A sequence which does not converge is said to diverge. Note that convergence, divergence, and the value
of the limit (when it exists) does not depend on the first terms of the sequence, but only on the terms sn for
sufficiently large n.

Our interest in sequences is mostly for their application to series. Suppose that we have a sequence
{an}∞n=0. Then the infinite series

∞∑
k=0

ak,

when it converges, is defined as follows. For every n ≥ 0 define the nth partial sum

Sn =

n∑
k=0

ak,

i.e., the sum of the first n+ 1 (since we are starting with k = 0!) terms of the sequence. This gives us a new
sequence {Sn}∞n=0, called the sequence of partial sums. If this sequence has a limit, say S, then we call this
limit the sum of the infinite series

∑∞
k=0 ak, and say that the series converges to this value.10

As with integrals, it is generally not possible, even for very simple sequences {an}, to find an explicit
form for the partial sums Sn. Fortunately, it is often possible to determine whether a series converges by
working directly with the terms {an} instead of the partial sums. Specifically, we have the following three
tests:

1. The DIVERGENCE TEST: If lim
n→+∞

an does not exist or exists but does not equal 0, then
∑
an

diverges.

2. The RATIO TEST: If lim
n→+∞

∣∣∣an+1

an

∣∣∣ = L, then
∑
an converges if L < 1 and diverges if L > 1, while

if L = 1 it may either converge or diverge.
3. The INTEGRAL TEST: If an = f(n), where f(x) is a function which is positive and decreasing,

then
∑
an converges if

∫∞
b
f(x) dx converges, and

∑
an diverges if

∫∞
b
f(x) dx diverges.

The most important series for us are the power series, which are the Taylor series of their limits where
these exist. More precisely, suppose that we have a function f(x) on an interval (a− r, a+ r) for some r > 0,
and that all the derivatives of f exist at the point a. Then the Taylor series of f around the point a is the
series

∞∑
k=0

1

k!
f (k)(a)(x− a)k.

Note that, assuming it is permissible to differentiate the series term-by-term, this is exactly the series whose
kth derivative at x = a is equal to that of f . Similarly, if we have a power series

∞∑
k=0

ak(x− a)k (3)

9It makes no fundamental difference to anything we do in this paragraph whether the index n starts at 0,
or 1, or 235, or 2,957,120, or any other number. If we wish to explicitly specify ths starting point, we may
write, for example, {sn}∞n=0.
10Technically, the series

∑∞
k=0 ak only exists if the limit of the sequence of partial sums converges, and hence

it is meaningless to write it out until we know whether this sequence converges. We uniformly ignore this
technicality and gleefully write

∑∞
k=0 ak whenever convenient regardless of whether it actually exists or not.

11
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which converges to the function f for x near a, then it must be the Taylor series for f , i.e., we must have

ak =
1

k!
f (k)(a).

The convergence of a general power series may be determined using the ratio test. This gives rise to

the following. Consider the power series in (3). Consider the limit lim
k→∞

∣∣∣ak+1

ak

∣∣∣. If this limit exists and is

equal to some positive number, say 1
R , then the power series will converge on the interval (a−R, a+R) and

we call the number R the radius of convergence. If the limit exists and equals zero, then the power series
converges for all x; in this case we say that the radius of convergence is infinite. If the limit does not exist
then we must do something else to determine convergence of the series.

In the first case above, the series may converge at either, both, or neither of the endpoints of the interval
(a − R, a + R). The set of all points on which the series converges is called the interval of convergence; in
the case under consideration, it is always one of the four intervals

(a−R, a+R), [a−R, a+R), (a−R, a+R], [a−R, a+R].

Convergence at the endpoints must be determined by a test other than the ratio test as the ratio test always
fails at the endpoints by definition of R.11

The following series expansions should be memorised:

1

1 + x
=

∞∑
k=0

xk, x ∈ (−1, 1)

ex =

∞∑
k=0

xk

k!
, x ∈ (−∞,+∞)

cosx =

∞∑
k=0

(−1)k

(2k)!
x2k, x ∈ (−∞,+∞)

sinx =

∞∑
k=0

(−1)k

(2k + 1)!
x2k+1, x ∈ (−∞,+∞).

(It is worth noting here that when we speak of the nth order term of a Taylor series, we mean the term
containing xn, not the nth nonzero term, which is generally something different. Thus, for example, the
second order term in the Taylor series for sinx around x = 0 is 0 since the series above does not have a
quadratic term. It is not − 1

6x
3, which is the second nonzero term.)

Finding Taylor series does not always require finding derivatives as new Taylor series can be obtained
by algebraic manipulations, composition, and differentiation and integration. In particular, if the function
f has a Taylor series

∞∑
k=0

ak(x− a)k

(where of course we must have ak = 1
k!f

(k)(a) as always) which converges on (a − r, a + r), then on this
interval the function f ′ is represented by the Taylor series

∞∑
k=1

kak(x− a)k−1,

11Note that convergence of a Taylor series does not imply that the series actually converges to the function.
However, the functions we generally deal with do have Taylor series which converge to the original function,
when they converge at all.
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which is exactly the term-by-term derivative of the series for f . Similarly, series may also be integrated
term-by-term, and we may apply normal algebraic and functional composition to them. An example of this
last procedure is the series for e−x

2

:

e−x
2

=

∞∑
k=0

1

k!

(
−x2

)k
=

∞∑
k=0

(−1)k

k!
x2k.

Finally, Taylor series can also be used to find solutions to differential equations, either exact solutions
or approximations. Suppose, for example, that we have the equation

y′ = cy + d.

This can be easily solved by separation of variables. To solve it using Taylor series, we suppose that y has a
series expansion

y =

∞∑
k=0

ak(x− a)k.

(If we are given y|x=a, then we take a0 to be this value.) If we assume that this series converges to y on
some interval, then we know that we have

y′ =
∞∑
k=1

kak(x− a)k−1 =
∞∑
k=0

(k + 1)ak+1(x− a)k,

while

cy + d =

∞∑
k=0

(cak + d)(x− a)k;

for y to satisfy the differential equation, these expressions must be equal, and hence we must have

(k + 1)ak+1 = cak + d

for all k, so the coefficients ak must satisfy the recurrence relation

ak+1 =
cak + d

k + 1
.

Given a0, we are thus able to find all other coefficients. In the general case it is not clear how to find a
simple expression for ak, but in the case d = 0 it is not hard to see that

ak = a0
ck

k!
,

so that the solution is

a0

∞∑
k=0

ck

k!
(x− a)k = a0

∞∑
k=0

1

k!
(c[x− a])

k
= a0e

c(x−a),

which is what we would have found with separation of variables.
In the event that we are not able to find a simple expression for ak, or that having found one we are not

able to find a simple expression for the sum of the resulting series, we may still find an approximate solution
by keeping only the first several terms of the series.
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