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Example of using Taylor series to solve a differential equation
Remember that we discussed solving the equation y′ = x + y using Taylor polynomials. This process

gave us an approximate solution because we always had one more term on the right-hand side than on the
left-hand side – there was always an error term which we could not balance between the two sides. Now the
higher the degree of the Taylor polynomial, the higher the degree of this term. At least if x is close to 0,
this suggests that if we take the Taylor polynomial of high enough degree, we can find a solution which is as
accurate as we like. Thus if we replace the Taylor polynomial with a Taylor series, perhaps we can get an
exact solution. Let us see how this would work.

Suppose that we assume our solution has a Taylor series expansion

y =

∞∑
n=0

anx
n.

(Remember that writing the solution out this way does not assume anything particular about the coefficients
an – in particular, some or many of them could be zero.) We want this to satisfy y′ = x+ y. To see whether
this holds, we differentiate both sides:

y′ =

∞∑
n=1

nanx
n−1 = a1 + 2a2x + 3a3x

2 + · · · =
∞∑

n=0

(n + 1)an+1x
n,

x + y = x +

∞∑
n=0

anx
n = a0 + (a1 + 1)x + a2x

2 + · · · .

If we set these two expressions equal, we obtain the equations

a1 = a0,

2a2 = a1 + 1,

3a3 = a2,

4a4 = a3,

...

(n + 1)an+1 = an,

...

whence we see that, given a0, we can find all higher coefficients.
We shall work out a particular case of this, as well as this method applied to other equations, in class.
It is worthwhile to step back for a moment and compare this method to what we did previously when

we were working only with polynomials. Beyond the second equation, all equations in the above list are of
the form (n + 1)an+1 = an; in other words, if an is nonzero, then of necessity an+1 must be nonzero also.
This clearly implies that, as long as a2 6= 0, all of the coefficients an for n ≥ 2 must also be nonzero; in
other words, we need infinitely many nonzero coefficients, and hence infinitely many nonzero terms, in order
to exactly satisfy the differential equation. Our approximation method previously was to look for Taylor
polynomials of a certain degree, say n; this amounts to setting an+1 = an+2 = · · · = 0, which means that
it is not possible to satisfy the equation (n + 1)an+1 = an and we will have the ‘error term’ anx

n on the
right-hand side. In the present case, on the other hand, we can keep going indefinitely, meaning that, at
least formally, there is no error term since all of the equations above will be satisfied. More careful work
would of course be required to show that the resulting series converges to a solution, but we pass over that
here.
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