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Summary:
•We discuss Taylor series and the relation between their coefficients and the derivatives of the functions

they represent.
• Then we discuss methods of determining new Taylor series from known ones.

Review of Taylor polynomials
Recall that back at the start of the course we talked about the possibility of representing functions by

polynomials. This is discussed in detail in the lecture notes for January 6; here we simply give a brief recap.
Recall that the idea was to find a polynomial whose derivatives up to a certain degree at a certain point
(say 0) were all equal to those of the original function at that point. This led us to the formula for the nth
Taylor polynomial of a function f about x = 0:

Pn(x) = f(0) + f ′(0)x +
1

2!
f ′′(0)x2 +

1

3!
f ′′′(0)x3 + · · ·+ 1

n!
f (n)(0)xn

=

n∑
k=0

1

k!
f (k)(0)xk.

(We note two things here: by convention f (0) = f ; more importantly, by definition, 0! = 1.1) Taylor
polynomials around points other than 0 can be treated similarly; in general, we have the following formula
for the nth degree Taylor polynomial about x = a:

Pn(x) =

n∑
k=0

1

k!
f (k)(a)(x− a)k. (1)

If we are given a Taylor polynomial, we can determine the centre point, that is, the point around which we
expand, by determining the value of a for which the series is a power series in x− a. Also, if we are given a
Taylor polynomial of degree n of a function f , we can determine the kth derivative of f at the point x = a
by multiplying the coefficient of (x− a)k by k!; in other words, if we are given

Pn(x) =

n∑
k=0

Ck(x− a)k,

then we know that for k = 0, 1, . . . , n, f (k)(a) = k!Ck. (This is by comparison with the definition of the
Taylor polynomial above, since two polynomials are equal if and only if their coefficients are equal.) Note
however that this method does not allow us to calculate the derivatives (or even the value) of f at any point
other than a.

Taylor series
As we saw at the start of the course, in general, higher order Taylor polynomials give better approx-

imations to the function. This raises the question as to whether we can somehow take the order of the
polynomial ‘to infinity’, with the hope that in that limit the approximation would become exact and we
would get the full, exact function.

If we look at the formula in equation (1) above, this would amount to considering the infinite power
series

∞∑
k=0

1

k!
f (k)(a)(x− a)k.

1There is a good reason for this definition. The factorial of a number n can be defined as the number of
ways of arranging n objects; thus if I have one object, there is only one way of arranging it, if I have two
there are 2 (if I label them a and b, I can arrange them either as ab or as ba), if there are three objects then
there are 6 ways of doing the arranging (abc, acb, bac, bca, cab, cba), and in general if there are n > 0 objects
then there are n(n− 1)(n− 2) · · · 3 · 2 · 1 = n! ways of doing the arranging. Now if there are 0 objects then
there is also exactly one way of doing the arranging (slightly tongue-in-cheek, one might say that way can
be expressed as, Don’t do it, i.e., don’t do anything at all). But for us it is sufficient to consider this as a
special-case definition.
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We note a few things right away. First of all, for this procedure to have any chance of working, the function
f must possess derivatives of all orders. Second, we note that the question of whether the series above is
equal to the function f can be split into two parts: first, whether the series converges at all; second, whether
it converges to f . In this course we shall focus on the first question; section 10.4 in the textbook discusses
the second question but is not part of the course this year.2 Now Taylor series are just power series, which
means we can use the methods we talked about on Monday (see the notes for March 23) to determine the
set of x for which they converge, and that it will always be an interval centred on x = a.

There are examples in the textbook, and more in the TopHat. Here we just make a few further comments.
First of all, we note that representation of a function by a power series is always unique; in other words,
any representation of a function by a power series will be the Taylor series of that function. This will be
particularly useful in the next section, but even here it allows us to see that the relationship between a
function and a power series goes both ways: if we are given a function, we can compute its Taylor series
around a point a by finding its derivatives of all orders at a; and if we are given a power series around a
point a which represents some function, then we know that the power series must be the Taylor series of
that function, so we can find its derivative of any order, say n, simply by multiplying the coefficient of its
nth order term by n!.

We note one point which could cause confusion. When thinking about Taylor series we think of all
terms from zeroth order (i.e., the constant term) up to be present; in cases where a certain term does not
appear (for example, x2 in the series for sinx around x = 0), we consider that the term is there but has
a zero coefficient. Thus when we speak of the nth order term of a power series we always mean the term
involving (x− a)n, not the nth nonzero term. (Because of this, we do not generally talk about the nth term
of a power series as that could be ambiguous: we either say the nth order term, or the nth nonzero (or
non-vanishing) term.)

Constructing new Taylor series from old
In general, it is very difficult to find a formula for the nth derivative of a function, except in very

simple cases. Now most functions we write down are constructed out of simpler functions by the processes
of addition, subtraction, multiplication, division, and composition, so it would be nice if we could figure out
how these processes are reflected in Taylor series. This is made possible by the uniqueness of power series
expansions just mentioned. Let us demonstrate by a simple example.

Suppose that I have two functions f(x) and g(x) whose Taylor series about a point a (note that this
must be the same point for both functions!) are

∑∞
n=0 Cn(x− a)n and

∑∞
n=0 Dn(x− a)n. This means that

there is some interval (a− r, a + r)3 on which

∞∑
n=0

Cn(x− a)n = f(x),

∞∑
n=0

Dn(x− a)n = g(x).

2Most of the more-or-less natural functions one can write down have Taylor series which, when they converge
at all, converge to the original function. A function which has this property is called analytic. In particular,
sums, differences, products, quotients (as long as the denominator is nonzero), and compositions of analytic
functions are all analytic. While not at all part of the present course, it is not difficult to write down an
example of a function which has derivatives of all orders but is not analytic; the standard example is the
following:

f(x) =

{
e−

1
x , x > 0

0 x ≤ 0
;

it is not particularly difficult, though extremely long, to show that the function f as defined has derivatives
of all orders at x = 0, and that they are all zero. However, e−

1
x is not zero anywhere, meaning that the

series does not converge to the function on any open interval around x = 0. Roughly, this is because as
x→ 0+, − 1

x → −∞, and the exponential function at infinity goes to zero so quickly that the graph of e−
1
x

is in some sense ‘infinitely flat’ as x → 0+. While we do not need these functions for anything we do here,
they give rise to so-called C∞ functions of compact support, which are very important in more advanced
parts of mathematics (I use them all the time in my research, for example).
3Here r can be no larger than the smaller of the radii of convergence of the Taylor series for f and g.
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But by general properties of series, this means that the sum of the two series, which is the same as the series
of the sums of the general terms, must converge to (f + g)(x) on the interval (a− r, a + r), i.e., that

∞∑
n=0

(Cn + Dn)(x− a)n =

∞∑
n=0

Cn(x− a)n +

∞∑
n=0

Dn(x− a)n = f(x) + g(x).

This makes perfect sense when we recall how Cn and Dn are computed from the derivatives of f and g: we
have

Cn =
1

n!
f (n)(a), Dn =

1

n!
g(n)(a),

so

Cn + Dn =
1

n!

(
f (n)(a) + g(n)(a)

)
=

1

n!

dn

dxn
(f + g)

∣∣∣∣
x=a

.

More interesting series result when we consider composition. Let us consider the function f(x) = sinx2, and
find its Taylor series about 0. We know that the Taylor series for sinx around x = 0 is4

∞∑
n=0

(−1)n

(2n + 1)!
x2n+1.

It is not hard to show that the radius of convergence of this series is infinite, so that the series converges for
all x. It can also be shown that the series converges to sinx everywhere on its interval of convergence. How
does this help us? Well, if x ∈ R, then certainly also x2 ∈ R; and since the above series converges to sinx
for all real x, we must have also

sinx2 =

∞∑
n=0

(−1)n

(2n + 1)!

(
x2
)2n+1

=

∞∑
n=0

(−1)n

(2n + 1)!
x4n+2.

But this last series is just a power series! This means that we have constructed a power series representation
of sinx2, which must therefore be the Taylor series expansion for sinx2.

We can also multiply Taylor series to obtain the Taylor series of a product, or work out the Taylor series
of more complicated compositions than that given here.

Another manipulation we can do with Taylor series is to differentiate. For this, we need the following
result: Suppose that the function f(x) has a Taylor series

∑∞
n=0 Cn(x− a)n which is convergent on an open

interval (a − r, a + r). Then the Taylor series of its derivative f ′(x) about x = a converges on this same
interval, and can be obtained by term-by-term differentiation; i.e., on (a− r, a + r) we have

f ′(x) =

∞∑
n=1

nCn(x− a)n−1

(where we write n = 1 instead of n = 0 since the term with n = 0 would be zero as it would be the derivative
of the constant term from f(x), and the derivative of a constant is, of course, always zero). The same is true
for integration, at least as long as we stay within the interval of convergence. In other words, in the above
case, we have also that for x in (a− r, a + r)∫ x

a

f(t) dt =

∞∑
n=0

Cn

n + 1
(x− a)n+1;

note that this is just the term-by-term integral of the series for f , since∫ x

a

(t− a)n dt =
(t− a)n+1

n + 1

∣∣∣∣x
a

=
(x− a)n+1

n + 1
.

Examples are in the textbook and the TopHat.

4You should memorise the Taylor series about x = 0 for the functions sinx, cosx, and ex, and also the
geometric series (which is just the Taylor series for the function 1

1−x around x = 0).
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