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Summary:
•We continue with our discussion of series, and talk about tests for series convergence.

PROPERTIES OF SERIES. DIVERGENCE AND INTEGRAL TESTS.
In the notes for last class we gave an introduction to infinite series. In these notes we will continue this
study by giving some properties satisfied by infinite series as well as some tests for their convergence.

Infinite series satisfy the basic algebraic properties of finite series: if the series
∑

an and
∑

bn converge1,
then ∑

an + bn =
∑

an +
∑

bn∑
kan = k

∑
an

.

Note that, just as with ordinary finite series, the sum of a product is not the product of the sums. (This
was in the TopHat question just to innoculate us against any misconceptions!)

Additionally, if
∑

an converges, then we must have lim
n→+∞

an = 0. (Recall that this is not necessarily

true for functions with convergent improper integrals: the best we can say there is that if
∫∞
a

f(x) dx exists,
and lim

x→+∞
f(x) exists, then lim

x→+∞
f(x) = 0. In the case of series, we have that the limit lim

n→+∞
an must exist

and equal zero whenever the infinite sum
∑

an converges.) This gives rise to the so-called divergence test:

If lim
n→+∞

an 6= 0, then
∑

an does not converge.

When this test is applicable, it is usually the easiest one to use, and therefore one we should always think of
when asked about the convergence of a series we don’t recognise.

We also have the so-called integral test , which can be described in words as follows (please see the
textbook for illustrations). Suppose that we have a series

∑
an, and that we also have a function f(x) which

satisfies an = f(n) (at least for n sufficiently large; recall that the starting values of a sequence do not affect
convergence of the series at all). Then the integral test tells us the following2:

If the function f(x) is continuous, decreasing everywhere, and positive everywhere, and the
integral

∫∞
a

f(x) dx converges (this is independent of the value a, as long as f is continuous
everywhere), then the series

∑
an also converges.

Note that all of the conditions are on the function f , not the sequence an. In particular, it is not enough for
the sequence to simply be decreasing and positive. (An example of this is given in Friday’s TopHat.) Also
note that the test does not say anything about the value of the infinite sum

∑
an, only that it converges.

(Indeed, given that we are allowed to choose a essentially arbitrarily in evaluating the integral
∫∞
a

f(x) dx,
there is no way that the value of the integral could always be connected to the value of the series. But even
if we choose the value of a to be the same as the starting point for the series, there is no reason for the
integral and the series to be equal.) If we are careful with starting points, we can sometimes use the value
of the integral to put an upper bound on the value of the series; see examples 3 and 4 of section 9.3 of the
textbook for an illustration of this point.

The integral test together with what we know about convergence of integrals gives rise to the convergence
rule for so-called p-series:

∞∑
n=1

1

np
converges if p > 1 and diverges if p ≤ 1.

1As the textbook discusses, convergence of a series only depends on the ultimate behaviour of the series; in
other words, whether or not the series converges does not depend on the initial value for the index. Because
of this, we simplify our notation by leaving off explicit bounds on the index, since the lower bound doesn’t
matter and the upper bound will always be ∞.
2Conditions required to hold ‘everywhere’ really only need to hold for x sufficiently large, since what happens
for small x does not affect the convergence of the series or the integral – assuming, of course, that f is
continuous everywhere so that the integral isn’t improper at some finite x!
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RATIO TEST.
Recall the comparison test for improper integrals:

• If 0 ≤ f(x) < g(x) on [a,+∞), and
∫∞
a

g(x) dx converges, then
∫∞
a

f(x) dx converges.

• If 0 ≤ g(x) < f(x) on [a,+∞), and
∫∞
a

g(x) dx diverges, then
∫∞
a

f(x) dx diverges.

In other words: smaller than convergent is convergent, greater than divergent is divergent (assuming that
all functions involved are positive!). For series, we have an exactly analogous result:

• If 0 ≤ an < bn, and
∑

bn converges, then
∑

an converges.
• If 0 ≤ bn < an, and

∑
bn diverges, then

∑
an also diverges.

In other words, assuming again that all sequences involved are positive, we have the same rule: smaller than
convergent is convergent, greater than divergent is divergent. This is called the comparison test.

For us, the main use of the above test will be its application to the so-called ratio test, which is probably
one of the easiest tests to use to prove convergence:

Suppose that the sequence an is nonzero and that the limit lim
n→+∞

∣∣∣an+1

an

∣∣∣ = L. Then:

• If L < 1, the series
∑

an converges.
• If L > 1, the series

∑
an diverges.

• If L = 1, the series
∑

an could either converge or diverge.

In the third case above, we say that the test is inconclusive (or fails, though inconclusive is probably a
slightly better term). Examples of the use of this test are given in Friday’s TopHat.

Note that the quantity L only depends on the absolute values |an| of the sequence, not on their sign.
In other words, if L < 1 in the ratio test, we actually get convergence of

∑
|an|, which turns out to be

somewhat stronger than convergence of
∑

an alone. If a series
∑

an is such that
∑
|an| converges, then we

say that the original series is absolutely convergent; if
∑
|an| is divergent but

∑
an is convergent, then we

say that the series is conditionally convergent. Perhaps the simplest example of a conditionally convergent

series is
∑∞

n=1
(−1)n

n . It is easy to show that this series converges using the alternating series test (discussed

in section 9.4 of the textbook), but we know from our work with p-series above that
∑∞

n=1

∣∣∣ (−1)nn

∣∣∣ =
∑∞

n=1
1
n

is actually divergent.
As a summary, we now have three ways of checking for divergence of a series

∑
an (though only the

last two are able to prove convergence):

1. The DIVERGENCE TEST: If lim
n→+∞

an does not exist or exists but does not equal 0, then
∑

an

diverges.

2. The RATIO TEST: If lim
n→+∞

∣∣∣an+1

an

∣∣∣ = L, then
∑

an converges if L < 1 and diverges if L > 1, while

if L = 1 it may either converge or diverge.
3. The INTEGRAL TEST: If an = f(n), where f(x) is a function which is positive and decreasing,

then
∑

an converges if
∫∞
b

f(x) dx converges, and
∑

an diverges if
∫∞
b

f(x) dx diverges.

Note the hierarchy of ‘critical values’: for the divergence test, the critical value is 0 (if the limit of an is not
equal to zero, the series diverges); for the ratio test, it is 1 (if the limit of ratios is greater than 1, the series
diverges); for the integral test there is no ‘critical value’ – or, somewhat tongue-in-cheek, the ‘critical value’
is ∞: as long as the integral is finite, the series will converge. It is important to not confuse these!
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