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Summary:
• We consider how to approximate the function sinx near x = 0.
• We look at the tangent-line approximation and note where it begins to fail, and why.
• We then see how using additional derivatives can provide a higher-order polynomial which gives a

better approximation.
• Finally, we show how to do all of this for a general function, and discuss Taylor polynomials around

arbitrary points.

How can we approximate functions?

Consider the function sinx. We know sin 0 = 1, sin π
6 = 1

2 , sin π
4 =

√
2
2 , sin π

3 =
√
3
2 , sin π

2 = 1, and so
on; but suppose we needed to calculate sin 1: how could we go about doing that? Since we know we could
use a computer or a calculator to find an approximate value for sin 1, there has to be a way; but what is it?

One way1 to approximate sinx is to use a tangent-line approximation. Let us investigate the accuracy
of this approximation. The tangent line to the graph of sinx at x = 0 is the line which has the same value
and slope as the graph of sinx at x = 0. Now sin 0 = 0, and the slope of the graph of sinx at x = 0 is

d

dx
sinx

∣∣∣∣
x=0

= cos 0 = 1,

so the tangent line is just the line y = 0 +x = x. If we plot these two together (it is also interesting to make
a table of values but we will not do that here), we ee that the approximation is good for small x, but by
x = 1 the two curves are quite far apart. What can be done about this?

Let us recall the second derivative test: Suppose that f is a twice-differentiable function and x is some
point in its domain. If f ′′(x) > 0, then f is concave up at x, while if f ′′(x) < 0 then f is concave down
at x; if f ′′(x) = 0 then f can be concave up (think of f(x) = x4), concave down (f(x) = −x4), or neither
(f(x) = x3). Now ‘concave up’ means that the graph curves upwards from its tangent line, while ‘concave
down’ means that the graph curves downwards from its tangent line; thus this suggests that f ′′ may tell us
something about how the graph of f deviates from its tangent line – i.e., it may give us information which
can be used to devise a more precise approximation.

In particular, perhaps we would obtain a better approximation to sinx if we used, instead of a polynomial
of degree one, a higher-order polynomial whose second-, or even third- or fourth-, order derivatives matched
those of sinx at x = 0. Let us see how we might go about doing this and investigate the result.

Let2 p(x) = a + bx + cx2 + dx3 + ex4 + fx5 be a fifth-order polynomial, where a, b, c, d, e and f are
constants to be determined. We shall determine these constants by requiring that the values p(0), p′(0),

p′′(0), etc., are equal to, respectively, sin 0, d
dx sinx

∣∣
x=0

, d2

dx2 sinx
∣∣∣
x=0

, etc.. We first note the following

derivatives:
p(x) = a + bx + cx2 + dx3 + ex4 + fx5

p′(x) = b + 2cx + 3dx2 + 4ex3 + 5fx4

p′′(x) = 2c + 6dx + 12ex2 + 20fx3

p′′′(x) = 6d + 24ex + 60fx2

p(4)(x) = 24e + 120fx

p(5)(x) = 120f.

We note something interesting here: the nth derivative of p(x), where n ≥ 0, only involves the coefficients
of the terms of degree n and higher in p. In other words, p′(x) (n = 1) only involves the coefficients from

1The matter of finding good methods for computing transcendental functions such as sinx on digital com-
puters is very complicated, and using a power series as we discuss here is probably not the best in general. If
anyone is interested in more discussion of this point, see, for example, Cody, W.J. and Waite, W., Software
Manual for the Elementary Functions. Toronto: Prentice-Hall, 1980.
2In class we considered a fourth-order polynomial. This was probably due to an oversight on the instructor’s
part, since the highest-order term ends up being zero and a fourth-order polynomial therefore gives us no
more information than a third-order one. Here we consider a fifth-order polynomial to rectify that.
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terms of degree 1 and higher in p: it doesn’t involve the term of degree 0 (a). Similarly, p(5)(x) only involves
the coefficient in the highest-order term in p, namely f , since p has degree 5.

Now if we evaluate all of these derivatives at x = 0, we find

p(0) = a

p′(0) = b

p′′(0) = 2c

p′′′(0) = 6d

p(4)(0) = 24e

p(5)(0) = 120f.

Note that while differentiating n times got rid of coefficients from p(x) of order less than n, evaluating
at x = 0 got rid of coefficients from p(x) of terms of order greater than n: thus differentiating and then
evaluating at 0 allows us to isolate single coefficients.

Also, you may recognise the sequence of numbers 1, 1, 2, 6, 24, 120: in fact it is just the sequence of
factorials, 0! = 1, 1! = 1, 2! = 2, 3! = 6, 4! = 24, 5! = 120. This turns out to be true in a much more general
setting, as we shall see shortly.

Recall now that our goal was to construct a polynomial whose derivatives at zero agreed with those of
sinx. Thus we now need to redo the calculations above with sinx in place of p(x). We have first3

d

dx
sinx = cosx

d2

dx2
sinx = −sinx

d3

dx3
sinx = − cosx

d4

dx4
sinx = sinx

d5

dx5
sinx = cosx.

This gives

sin 0 = 0

d

dx
sinx

∣∣∣∣
x=0

= 1

d2

dx2
sinx

∣∣∣∣
x=0

= 0

d3

dx3
sinx

∣∣∣∣
x=0

= −1

d4

dx4
sinx

∣∣∣∣
x=0

= 0

d5

dx5
sinx

∣∣∣∣
x=0

= 1.

3Note that d4

dx4 sinx = sinx. When we come back to discuss Taylor series later on in the course (what we
have here are simply Taylor polynomials), we shall see that this is very useful.
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We may now equate these to the derivatives of p(x) obtained above. This gives

a = 0

b = 1

2c = 0, c = 0

6d = −1, d = −1

6

24e = 0, e = 0

120f = 1, f =
1

120
.

Thus our polynomial p is

p(x) = x− 1

6
x3 +

1

120
x5.

Note that the first term is just the tangent-line approximation, while the higher-order terms are corrections
which came about since some of the higher-order derivatives of sinx were nonzero at x = 0, just as we
guessed at the beginning.

Now let us see how well this new polynomial approximates sinx. If we plot sinx, its tangent line at x = 0,
x, and the polynomial p(x) together, we can see that this new polynomial is a much better approximation
to sinx than the tangent-line approximation as we move away from 0.

The procedure above may be carried out in general. The result is called the Taylor polynomial of degree
n of the function. We now indicate how this may be done. Let n be some positive integer, and suppose
that f is a function with at least n derivatives. Then the method above can be used to find an nth degree
polynomial which approximates f . Specifically, consider the polynomial

p(x) = a0 + a1x + a2x
2 + · · · + anx

n.

As above, we require p(0) = f(0), p′(0) = f ′(0), p′′(0) = f ′′(0), and so on, all the way up to p(n)(0) = f (n)(0).
Thus we need to determine how to differentiate powers of x arbitrarily many times.

Suppose that k is a positive integer greater than or equal to 3. Then we have

d

dx
xk = kxk−1,

d2

dx2
xk = k(k − 1)xk−2,

d3

dx3
xk = k(k − 1)(k − 2)xk−3,

and in general the mth derivative of xk, where m ≤ k, will be

k(k − 1)(k − 2) · · · (k −m + 1)xk−m.

Now if m = k, xk−m means just the constant function 1; in other words, the kth derivative of xk is just a
constant. This means that the k + 1th derivative of xk must be zero, and also that all further derivatives of
xk must also be zero. What is going on here is exactly what we saw above when we noted that, for example,
p′(x) did not depend on a, and p(5)(x) only depended on f . In particular, this means that p(k)(0) cannot
depend on any of the coefficients a0, a1, . . . , ak−1.

At the end of the day, though, we are only really interested in the derivatives of p at x = 0. Now as we
noted in our example with sinx above, if we differentiate a power xk less than k times and then evaluate
at 0, the result is always 0. This means that p(k)(0) cannot depend on ak+1, . . . , an. Thus, just like in our
example above, p(k)(0) only depends on ak. If we look at the formula for dm

dxmxk above, we see that when
m = k it gives

dk

dxk
xk = k(k − 1)(k − 2) · · · 2 · 1 = k!.

Thus

p(k)(0) = k! · ak,
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so our requirement that p(k)(0) = f (k)(0) gives

ak =
f (k)(0)

k!

and the nth-orer Taylor polynomial of f (at 0) is

p(x) = f(0) + f ′(0)x +
1

2
f ′′(0)x2 +

1

6
f ′′′(0)x3 + · · · +

1

n!
f (n)(0)xn.

As discussed in section 10.1 of the textbook, we can also construct Taylor polynomial approximations
to a function f around points other than 0. The formula for the Taylor polynomial around a point x = a is
very similar to the formula above:

p(x) = f(a) + f ′(a)(x− a) +
1

2
f ′′(a)(x− a)2 +

1

6
f ′′′(a)(x− a)3 + · · · +

1

n!
f (n)(a)(x− a)n.

This makes sense if one thinks about the formula for the tangent line to f at x = a for a moment.
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