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• Please fill out the front of this exam booklet, but do not begin writing the actual exam until the
announcements are over and the Exam Facilitator has started the exam.

• No aids of any form are allowed on this exam. Possessing an aid during this exam may result in your
being charged with an academic offence.

• All cell phones, smart watches, electronic devices, toasters, etc., must be turned off and placed in your
bag under your desk. All study materials must also be placed in your bag under your desk. Having
such items on your person after the exam has started may be an academic offence.

• [Your instructor does not recommend carrying toasters in your pockets anyway.]
• When you are done with your exam, please raise your hand and wait for someone to come and collect
it. Do not collect your bag and jacket while still in possession of the exam paper.

• If you are feeling ill and unable to finish your exam, please let an Exam Facilitator know this prior to
leaving the exam hall so it can be properly noted.

• In the event of a fire alarm, do not check your cell phone when escorted outside.

Special instructions:

• You must use the definition of the Fourier transform given in class. Use of a different definition
(including that given in the textbook) may result in lost marks.

• Use of an incorrect orthogonal set on a problem may result in a very low score for the entire problem.
Please check the sets you use. Sets which were derived in class, in the notes, or in the homework
solutions on the course webpage may be used without derivation. Other sets, if needed, may be stated
without derivation, but then no partial credit will be given for a partially correct set.

• This exam has eight questions, for a total of 125 marks. The weighting is indicated on each question.
Note that weighting may not directly correspond either to difficulty or to amount of writing required,
and that the ordering of the problems may not be the best order in which to write the exam. You
must show all of your work for credit.

• You may use the back sides of the pages, as well as the last four pages, to continue your solutions, as
long as this is clearly indicated.

• Unless otherwise stated, you must write out the full form of the final answer for full marks.
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1. [8 marks℄ Solve the following boundary-value problem on the unit 
ube

Q = f(x; y; z)jx; y; z 2 [0; 1℄g:

r

2
u = 0; uj∂Q =

�

1; z = 1

0; otherwise

:

We have from class that the general solution to ∇2u = 0 on Q with u|x=0 = u|x=1 = u|y=0 = u|y=1 = 0 is

u =

∞
∑

ℓ=1

∞
∑

m=1

sin ℓπxsinmπy
(

aℓmsinhπ
√

ℓ2 +m2z + bℓmcoshπ
√

ℓ2 +m2z
)

. [2 marks]

The boundary conditions then give

u|z=0 = 0 =

∞
∑

ℓ,m=1

sin ℓπxsinmπy (bℓm) , [1 mark] so bℓm = 0 [1 mark]

u|z=1 = 1 =

∞
∑

ℓ,m=1

sin ℓπxsinmπy
(

aℓmsinhπ
√

ℓ2 +m2
)

[1 mark]

aℓmsinhπ
√

ℓ2 +m2 = 4

∫ 1

0

∫ 1

0

sin ℓπxsinmπy dy dx = 4

(
∫ 1

0

sin ℓπx dx

)(
∫ 1

0

sinmπy dy

)

[1 mark]

= r

(

− 1

ℓπ
cos ℓπx

∣

∣

∣

∣

1

0

)(

− 1

mπ
cosmπy

∣

∣

∣

∣

1

0

)

=
4

π2ℓm

(

1− (−1)ℓ
)

(1− (−1)m) , [1 mark]

so the solution is

u =

∞
∑

ℓ=1,ℓ odd

∞
∑

m=1,m odd

16

π2ℓmsinhπ
√
ℓ2 +m2

sin ℓπxsinmπysinhπ
√

ℓ2 +m2z. [1 mark]

NOTES. 1 mark was given if the form for the expansion was not quite correct. Writing out a sum over only
ℓ and m odd (as done here) was not required. Taking the initial value of ℓ and m to be 0 instead of 1 should
typically result in a deduction of 0.5 marks, since in this case the final expression is meaningless.



APM346 (Summer 2019), Final Exam 4/22



APM346 (Summer 2019), Final Exam 5/22

2. [22 marks℄ Solve the following boundary-value problem on the spheri
al shell

f(r; �; �)j1 < r < 2g:

r

2
u = 0; ujr=1 =

(

0; 0 � � <

π
2

sin 2�;

π
2
< � � �

; ujr=2 =

(

sin 2�; 0 � � <

π
2

0;

π
2
< � � �

:

Re
all Legendre's equation: (1�x

2
)P

′′
ℓ � 2xP

′
ℓ + `(`+1)Pℓ = 0. [Can you see a


ertain Pℓm hiding here?℄ The following identities may be useful: P

′
ℓ+1� xP

′
ℓ =

(`+1)Pℓ, (2`+1)Pℓ = P

′
ℓ+1�P

′
ℓ−1. [Hint: the algebra is probably easiest if you

write everything in terms of derivatives of Pn for various n before integrating.℄

Your answer may in
lude Pn(0) for values of n for whi
h this is nonzero. You

may also use the normalisation integral for Pℓm:

R 1

−1 P
2
ℓm(x) dx =

(ℓ+m)!

(ℓ−m)!
2

2ℓ+1
.

We have the general solution

u(r, θ, φ) =

∞
∑

ℓ=0

ℓ
∑

m=0

Pℓm(cos θ)
[

cosmφ
(

αℓmrℓ + βℓmr−(ℓ+1)
)

+ sinmφ
(

γℓmrℓ + δℓmr−(ℓ+1)
)]

. [1 mark]

The first boundary condition [1 mark] then gives

αℓm + βℓm = 0, all ℓ,m [1 mark]

γℓm + δℓm = 0, m 6= 2 [0.5 marks]
∞
∑

ℓ=2

Pℓ2(cos θ) (γℓ2 + δℓ2) =

{

0, 0 ≤ θ < π
2

1, π
2 < θ ≤ π

[1 mark]

Similarly, the second boundary condition [1 mark] gives

2ℓαℓm + 2−(ℓ+1)βℓm = 0, all ℓ,m [1 mark]

2ℓγℓm + 2−(ℓ+1)δℓm = 0, m 6= 2 [0.5 marks]
∞
∑

ℓ=2

Pℓ2(cos θ)
(

2ℓγℓ2 + 2−(ℓ+1)δℓ2

)

=

{

1, 0 ≤ θ < π
2

0, π
2 < θ ≤ π

[1 mark]

Since the matrix
(

1 1
2ℓ 2−(ℓ+1)

)

has inverse
1

2−(ℓ+1) − 2ℓ

(

2−(ℓ+1) −1
−2ℓ 1

)

,

we see that αℓm = βℓm = 0 for all ℓ, m [1 mark], while γℓm = δℓm = 0 for all m 6= 2 [1 mark]. We now need
to expand the two functions appearing in the remaining two conditions. To do this, we note that

Pℓ2(x) = (1− x2)P ′′
ℓ [0.5 marks] = 2xP ′

ℓ − ℓ(ℓ+ 1)Pℓ[0.5 marks] = 2
[

P ′
ℓ+1 − (ℓ+ 1)Pℓ

]

− ℓ(ℓ+ 1)Pℓ

= 2P ′
ℓ+1 − (ℓ + 2)(ℓ+ 1)Pℓ = 2P ′

ℓ+1 −
(ℓ+ 2)(ℓ+ 1)

2ℓ+ 1

(

P ′
ℓ+1 − P ′

ℓ−1

)

=
4ℓ+ 2−

(

ℓ2 + 3ℓ+ 2
)

2ℓ+ 1
P ′
ℓ+1 +

(ℓ+ 2)(ℓ+ 1)

2ℓ+ 1
P ′
ℓ−1 = − ℓ(ℓ− 1)

2ℓ+ 1
P ′
ℓ+1 +

(ℓ+ 2)(ℓ+ 1)

2ℓ+ 1
P ′
ℓ−1,

[3.5 marks]
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so
∫

Pℓ2(x) dx = − ℓ(ℓ− 1)

2ℓ+ 1
Pℓ+1 +

(ℓ + 2)(ℓ+ 1)

2ℓ+ 1
Pℓ−1 + C.

Thus (making the change of variables x = cos θ, as usual)

[

(ℓ+ 2)!

(ℓ− 2)!

2

2ℓ+ 1

]

[0.5 marks]
(

2ℓγℓ2 + 2−(ℓ+1)δℓ2

)

= − ℓ(ℓ− 1)

2ℓ+ 1
Pℓ+1 +

(ℓ+ 2)(ℓ+ 1)

2ℓ+ 1
Pℓ−1

∣

∣

∣

∣

1

0

[0.5 marks]

=
ℓ2 + 3ℓ+ 2− ℓ2 + ℓ

2ℓ+ 1
+

ℓ(ℓ− 1)

2ℓ+ 1
Pℓ+1(0)−

(ℓ+ 2)(ℓ+ 1)

2ℓ+ 1
Pℓ−1(0)

= 2 +
ℓ(ℓ− 1)

2ℓ+ 1
Pℓ+1(0)−

(ℓ + 2)(ℓ+ 1)

2ℓ+ 1
Pℓ−1(0), [1 mark]

while since P ′
ℓ+1, P

′
ℓ−1 are even or odd as ℓ is [1 mark],

[

(ℓ+ 2)!

(ℓ− 2)!

2

2ℓ+ 1

]

(γℓ2 + δℓ2) = (−1)ℓ
[

2 +
ℓ(ℓ− 1)

2ℓ+ 1
Pℓ+1(0)−

(ℓ+ 2)(ℓ+ 1)

2ℓ+ 1
Pℓ−1(0)

]

.

[0.5 marks] [0.5 marks]
Thus finally
(

γℓ2
δℓ2

)

=
(ℓ− 2)!

(ℓ+ 2)!

2ℓ+ 1

2

1

2−(ℓ+1) − 2ℓ

(

2−(ℓ+1) −1
−2ℓ 1

)(

(−1)ℓ

1

)

·
[

2 +
ℓ(ℓ− 1)

2ℓ+ 1
Pℓ+1(0)−

(ℓ + 2)(ℓ+ 1)

2ℓ+ 1
Pℓ−1(0)

]

=
(−1)ℓ

2−(ℓ+1) − 2ℓ

[

2ℓ+ 1

(ℓ+ 2)(ℓ+ 1)ℓ(ℓ− 1)
+

1

2(ℓ+ 2)(ℓ+ 1)
Pℓ+1(0)−

1

2ℓ(ℓ− 1)
Pℓ−1(0)

]

·
(

2−(ℓ+1) − (−1)ℓ

−2ℓ + (−1)ℓ

)

[3.5 marks]

and we have the final answer

u =
∞
∑

ℓ=2

Pℓ2(cos θ)sin 2φ
2ℓ+ 1

(ℓ + 2)(ℓ+ 1)ℓ(ℓ− 1)
(

2−(ℓ+1) − 2ℓ
)

·
[

rℓ
(

(−1)ℓ2−(ℓ+1) − 1
)

− r−(ℓ+1)
(

(−1)ℓ2ℓ − 1
)

]

+
∞
∑

ℓ=2,ℓ odd

Pℓ2(cos θ)sin 2φ
1

2−(ℓ+1) − 2ℓ

[

1

2(ℓ+ 2)(ℓ+ 1)
Pℓ+1(0)−

1

2ℓ(ℓ− 1)
Pℓ−1(0)

]

·
[

rℓ
(

(−1)ℓ2−(ℓ+1) − 1
)

− r−(ℓ+1)
(

(−1)ℓ2ℓ − 1
)

]

. [0.5 marks]

NOTES. One can also use the alternative (less general) form for the solution

u(r, θ, φ) =

∞
∑

ℓ=0

ℓ
∑

m=0

Pℓm(cos θ) (aℓm cosmφ+ bℓmsinmφ)
(

cℓmrℓ + dℓmr−(ℓ+1)
)

.

However, in either case it is necessary to solve systems for all of the coordinates; and concluding too quickly
that (for example) aℓm = 0 for all ℓ and m led to lost marks. (This is analogous to problem 3 on the
midterm.) Additionally, the identity (2ℓ+1)Pℓ = P ′

ℓ+1 −P ′
ℓ−1 only applies to Pℓ, not to the Pℓ2 with which

we need to work here: attempting to solve the problem that way probably led to little credit being given.
Beyond the foregoing, most lost marks on this problem were probably due to algebraic errors or simply

not finishing.
The alert reader will note that the marks above add up to 22.5, not 22. This was an inadvertant slip

on the part of the instructor which was felt not to be serious enough to attempt to correct once it was
discovered. Thus this problem had effectively 0.5 bonus marks attached to it.
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3. [9 marks℄ Solve the following boundary-value problem on the 
ylinder

f(�; �; z)j� < 1; 0 < z < 2g:

r

2
u = 0; ujz=0 = ujz=2 = 0; ujρ=1 = z 
os 2�:

We have the general expansion

u(ρ, φ, z) =

∞
∑

m=0

∞
∑

n=1

Im

(nπ

2
ρ
) [

cosmφβnmsin
nπ

2
z + sinmφδnmsin

nπ

2
z
]

; [1.5 marks]

applying the boundary condition [1 mark] gives

δnm = 0 for alln,m [1 mark]

βnm = 0 for allm 6= 2 [0.5 marks]
∞
∑

n=1

I2

(nπ

2

)(

βn2sin
nπ

2
z
)

= z; [1 mark]

thus (since
∫ 2

0
sin2 nπ

2 z dz = 1 [0.5 mark])

βn2I2

(nπ

2

)

=

∫ 2

0

zsin
nπ

2
z dz [0.5 marks] =

[

− 2

nπ
z cos

nπ

2
z

∣

∣

∣

∣

2

0

+
4

n2π2
sin

nπ

2
z

∣

∣

∣

∣

2

0

]

[1 mark]

=
4

nπ
(−1)n+1, [1 mark]

so βn2 = 4(−1)n+1

nπI2(nπ

2 )
[0.5 marks], and the solution is

u(ρ, φ, z) =

∞
∑

n=1

I2

(nπ

2
ρ
)

cos 2φ(−1)n+1 4

nπI2
(

nπ
2

) sin
nπ

2
z. [0.5 marks]

NOTES. Probably the single most common mistake on this problem was forgetting the factor of 1
2 in the z

separation constant, i.e., using nπ instead of nπ
2 in the foregoing. This fails to give a correct answer since

{sinnπz} is not a complete set on the interval [0, 2]. This generally resulted in the deduction of 0.5 marks.
As with problem 1, beginning the sum for n at 0 instead of 1 should generally result in a deduction of 0.5
marks.
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4. [12 marks℄ Suppose that n 2 Z, n > 0. Solve the following problem on

(0;+1)�R

3
, using Fourier transforms:

�u

�t

= r

2
u+ (4�t)

− 3
2
e

−x2

4t
; ujt=0 =

�

�

n

2

�− 3
2

e

−n2|x|2
:

Find the limit of the solution as n ! 1. What does the initial data behave

like in this limit?

We have, upon Fourier transforming in space,

∂û

∂t
= −4π2|k|2û [1 mark] + (4πt)−

3
2

(

π
1
4t

)
3
2

e−4π2|k|2t

= −4π2|k|2û+ e−4π2|k|2t [1 mark]

û|t=0 =
( π

n2

)− 3
2
( π

n2

)
3
2

e
−

π
2|k|2

n2

= e−
π
2|k|2

n2 [1 mark]

whence, using the integrating factor e4π
2|k|2t [1 mark],

∂

∂t

(

e4π
2|k|2tû

)

= 1,

û = [û(0) [1 mark] + t [1 mark]] e−4π2|k|2t

= te−4π2|k|2t + e−|k|2π2(4t+ 1

n2 ), [0.5 marks]

whence we obtain upon inverse transforming

u = t
( π

4π2t

)
3
2

e−
|x|2

4t [1 mark] +

(

π

π2
(

4t+ 1
n2

)

)
3
2

e
−

|x|2

4t+ 1

n2 [1 mark]

=
1

8π
3
2 t

1
2

e−
|x|2

4t [0.5 marks] +
1

(

π
(

4t+ 1
n2

))
3
2

e
−

|x|2

4t+ 1

n2 [1 mark].

In the limit as n → ∞, the second term becomes simply 1

(4πt)
3
2

e−
|x|2

4t , and the whole solution is

u =
1

(4πt)
3
2

(1 + t)e−
|x|2

4t . [1 mark]

Since
∫

R3

π− 3
2 e−|x|2 dx = π− 3

2

(π

1

)
3
2

= 1,

and
( π

n2

)− 3
2

e−n2|x|2 = n3
[

π− 3
2 e−|nx|2

]

,

we see that the initial data is an approximate identity and behaves like the delta function δ(x) in the limit
n → ∞.[1 mark]
NOTES. Probably the most common mistake here was incorrectly taking the forward or inverse Fourier
transform of a Gaussian. I think almost nobody correctly found the indicated limit of the initial data (many
people said it was zero, which is true only for x 6= 0).
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5. (a) [19 marks℄ Solve the following problem on (0;+1)�B, where B is the

unit ball f(r; �; �)jr < 1g:

�u

�t

= r

2
u; ujt=0 = r

2
sin

2
�sin 2�; uj∂B = 0:

[If you wish to use quantities like �ℓn, you must de�ne them expli
itly.℄ Find

the limit of the solution as t! +1.

(b) [4 marks℄ Suppose that the 
ondition uj∂B = 0 were repla
ed by the 
ondi-

tion uj∂B = 
os �. Explain how you would solve the problem in this 
ase (you

need not a
tually 
al
ulate anything). What would you expe
t the limit of the

solution to be in this 
ase as t! +1? [You need not give an expli
it formula,

but your answer must be a de�nite fun
tion, not just a des
ription in words.℄

(a) The Laplacian on B with Dirichlet boundary conditions has eigenfunctions

jℓ (κℓnr)Pℓm(cos θ)

{

cosmφ

sinmφ
[1 mark]

(where κℓn, n = 1, 2, . . ., is the nth positive root of jℓ [0.5 marks]) with corresponding eigenvalues λℓnm =
−κ2

ℓn [1 mark]. Suppose that we expand u in this basis as

u =

∞
∑

ℓ=0

ℓ
∑

m=0

∞
∑

n=1

jℓ (κℓnr)Pℓm(cos θ) (aℓnm cosmφ+ bℓnmsinmφ) . [1 mark]

Then substituting into the equation gives

∞
∑

ℓ=0

ℓ
∑

m=0

∞
∑

n=1

jℓ (κℓnr)Pℓm(cos θ) (a′ℓnm cosmφ+ b′ℓnmsinmφ) [1 mark]

=

∞
∑

ℓ=0

ℓ
∑

m=0

∞
∑

n=1

−κ2
ℓnjℓ (κℓnr)Pℓm(cos θ) (aℓnm cosmφ+ bℓnmsinmφ) ,

[1 mark]

so
a′ℓnm = −κ2

ℓnaℓnm, [1 mark] b′ℓnm = −κ2
ℓnbℓnm, [1 mark]

and
aℓnm(t) = aℓnm(0)e−κ2

ℓn
t, [1 mark] bℓnm(t) = bℓnm(0)e−κ2

ℓn
t.[1.5 marks]

The initial values can be obtained from u|t=0:

∞
∑

ℓ=0

ℓ
∑

m=0

∞
∑

n=1

jℓ (κℓnr)Pℓm(cos θ) (aℓnm(0) cosmφ+ bℓnm(0)sinmφ) = r2sin 2θsin 2φ. [1 mark]
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Since P22(cos θ) = 3sin 2θ, we see that bℓnm(0) = 0 unless ℓ = m = 2 [0.5 marks], and aℓnm = 0 for all ℓ, n,
m [1 mark]; finally

∞
∑

n=1

b2n2(0)j2 (κ2nr) =
r2

3
, [1 mark]

b2n2(0) =
2

j23 (κ2n)
[1 mark]

∫ 1

0

r4

3
j2 (κ2nr) dr[1 mark] =

2

3j23 (κ2n)

√

π

2κ2n

∫ 1

0

r
7
2 J 5

2

(

λ 5
2
,nr
)

[0.5 marks]dr

=
2

3j23 (κ2n)

√

π

2

1

κ
3
2

2n

J 7
2
(κ2n) [1 mark] =

2

3j23 (κ2n)κ2n
j3(κ2n)

=
2

3j3 (κ2n)κ2n
, [0.5 marks]

and the final solution is

u =

∞
∑

n=1

j2 (κ2nr)P22(cos θ)sin 2φ
2

3j3 (κ2n)κ2n
e−κ2

2nt. [0.5 marks]

Since κ2n > 0 for all n, we see that u → 0 as t → +∞. [1 mark]
(b) In this case we would first solve the problem on B

∇2U1 = 0, U1|∂B = cos θ, [1 mark]

and then solve on (0,+∞)×B

∂u2

∂t
= ∇2u2, u2|t=0 = r2sin 2θsin 2φ− U1, u2|∂B = 0; [1 mark]

the full solution would be u = U1 + u2 [1 mark]. We expect lim
t→+∞

u = U1 [1 mark] in this case.

NOTES. Probably the biggest single reason for deducted marks in (a) was not deriving the equations satisfied
by the coefficients, but rather assuming the solutions from the outset. For (b), the single biggest quantitative
error was probably taking u2|t=0 = r2sin 2θsin 2φ− cos θ, or even dropping the subtracted term altogether.

Starting the n sum at 0 instead of 1 should not result in lost marks (since n is just a counter, which can
just as well be started at 0 as at 1, though in class we always started it at 1).

The curious asymmetry in marking the expressions for aℓnm(t) and bℓnm(t) was not intended to create
any asymmetry in practice, in that if only one appeared, it would be given the higher mark. (I probably had
some reason in mind when I wrote 1 mark for a and 1.5 marks for b, but I have long since forgotten what it
was.)
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6. [24 marks℄ Solve the following problem on the unit disk D = f(�; �)j� < 1g:

�

2
u

�t

2
= r

2
u; uj∂D = 0; ujt=0 = 0;

�u

�t

�

�

�

�

t=0

= �

2
sin 2�:

[As in problem 5, if you wish to use quantities like �mi, you must de�ne them

expli
itly.℄ What is the lowest frequen
y o

urring? [A symboli
 answer is

suÆ
ient.℄

In this case we have the eigenfunctions Jm (λmiρ)

{

cosmφ

sinmφ
[1 mark] (where λmi is the ith positive root of

Jℓm(x) [0.5 marks]) with eigenvalues −λ2
mi [1 mark]. Expanding u as

u =
∞
∑

m=0

∞
∑

i=1

Jm (λmiρ) (ami cosmφ+ bmisinmφ) , [1 mark]

we have, upon substituting into the equation,

∞
∑

n=0

∞
∑

i=1

Jm (λmiρ) (a
′′
mi cosmφ+ b′′misinmφ) [1 mark]

=

∞
∑

m=0

∞
∑

i=1

Jm (λmiρ)
(

−λ2
mi

)

(ami cosmφ+ bmisinmφ) , [1 mark]

so that the ami and bmi satisfy

a′′mi = −λ2
miami, [1 mark] b′′mi = −λ2

mibmi, [1 mark]

so
ami(t) = αmi cosλmit+ βmisinλmit, bmi(t) = γmi cosλmit+ δmisinλmit. [1 mark]

Now we see that

ami(0) = αmi, a′mi(0) = λmiβmi, bmi(0) = γmi, b′mi(0) = λmiδmi;

and these initial values can be determined from the initial conditions for u:

0 = u|t=0 =

∞
∑

m=0

∞
∑

i=1

Jm (λmiρ) (ami(0) cosmφ+ bmi(0)sinmφ) [1 mark]

so αmi = γmi = 0 for all m, i [1 mark];

ρ2sin 2φ = ut|t=0 =

∞
∑

m=0

∞
∑

i=1

Jm (λmiρ) (a
′
mi(0) cosmφ+ b′mi(0)sinmφ) , [1 mark]

so a′mi(0) = 0 for all m, i [1 mark], which gives βmi = 0 and ami(t) = 0 for all t, all m, i [2 marks], while
b′mi(0) = 0 for all m 6= 2 [0.5 marks] , which gives δmi = 0, hence bmi(t) = 0 for all t [0.5 marks], for m 6= 2
[1 mark]; finally,

ρ2 =

∞
∑

i=1

J2 (λ2iρ) b
′
2i(0), [1 mark]
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so

b′2i(0) =
2

J2
3 (λ2i)

∫ 1

0

ρ3J2 (λ2iρ) dρ =
2

J2
3 (λ2i)

1

λ2i
J3 (λ2i) =

2

λ2iJ3 (λ2i)
, [3.5 marks]

whence

δ2i =
2

λ2
2iJ3 (λ2i)

[1 mark]

and we have finally for u

u(t, ρ, φ) =

∞
∑

i=1

2

λ2
2iJ3 (λ2i)

J2 (λ2iρ) sin 2φsinλ2it. [1 mark]

The lowest frequency is thus λ21

2π . [1 mark]
NOTES. As with problem 5, probably the biggest reason for lost marks was starting directly with the
solutions for the coefficients rather than deriving them as here. For the last part of the question, an answer
λ21 was also acceptable (missing the factor of 2π did not result in lost marks): while technically only λ21

2π is
the frequency, λ21 is the so-called angular frequency, and since we didn’t spend much time on this point in
class I didn’t see a point in deducting marks for missing the 2π.

As with problem 5, starting the i sum at 0 should not result in lost marks.
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7. [18 marks℄ Solve the following problem on the unit 
ube Q (de�ned in

problem 1):

r

2
u = sin 4�xsin 2�y 
os�z;

�u

�n

�

�

�

�

∂Q

= 0; u(

1

2

;

1

2

;

1

2

) = 0:

(Here

∂
∂n

denotes the derivative in the normal dire
tion to the surfa
e �Q.)

We have the eigenfunctions cos ℓπx cosmπy cosnπz [2 marks], with eigenvalues −π2
(

ℓ2 +m2 + n2
)

[1 mark].
Expanding u as

u(x, y, z) =

∞
∑

ℓ=0

∞
∑

m=0

∞
∑

n=0

aℓmn cos ℓπx cosmπy cosnπz, [1 mark]

we see that the equation gives

∞
∑

ℓ,m,n=0

−π2
(

ℓ2 +m2 + n2
)

aℓmn cos ℓπx cosmπy cosnπz = sin 4πxsin 2πy cosπz, [1 mark]

whence we see that

−π2
(

ℓ2 +m2 + n2
)

aℓmn = nℓnmnn

∫

Q

sin 4πxsin 2πy cosπz cos ℓπx cosmπy cosnπz dV, (1)

where nℓ =

{

2, ℓ 6= 0
1, ℓ = 0

is the appropriate normalisation constant. Now we see that the integral above

vanishes for n 6= 1, while

∫ 1

0

sin 2kπx cos ℓπx dx[0.5 marks] =
1

2

∫ 1

0

sin [(2kπ + ℓπ)x] + sin [(2kπ − ℓπ)x] dx[1 mark]

[

= 0 if ℓ = 2k

]

[1 mark]

= −1

2

[

1

(2k + ℓ)π
cos [(2k + ℓ)πx]

∣

∣

∣

∣

1

0

+
1

(2k − ℓ)π
cos [(2k − ℓ)πx]

∣

∣

∣

∣

1

0

]

,

[0.5 marks] ℓ 6= 2k

=
1

2π

(

1− (−1)ℓ
)

(

1

2k + ℓ
+

1

2k − ℓ

)

=
2k

π

(

1− (−1)ℓ
) 1

4k2 − ℓ2
,

[1 mark]

so for (ℓ,m, n) 6= (0, 0, 0) we have

aℓmn =











0, n 6= 1, or m = 2,[0.5 marks] or ℓ = 4 [0.5 marks]
nℓnm

8

π2 (1−(−1)ℓ)(1−(−1)m) 1

16−ℓ2

· 1

4−m2
[1 mark]· −1

π2(ℓ2+m2+1)

, otherwise

=

{

0[0.5 marks], n 6= 1, or m or ℓ even[0.5 marks]
− 128

π2

1
16−ℓ2

1
4−m2 [0.5 marks] 1

π2(ℓ2+m2+1) [1 mark], otherwise.
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Now if ℓ = m = n = 0, then the integral in (1) is zero, as is the left-hand side. Thus this equation is consistent
but tells us nothing about a000 [1 mark]. However, since our series for u only has nonzero coefficients for ℓ,
m, n all odd, and

cos
ℓπ

2
cos

mπ

2
cos

nπ

2
= 0 [1 mark]

in such a case, the final condition gives a000 = 0 [1 mark]. Thus

u =

∞
∑

ℓ,m=1,ℓ,m odd

−128

π2

1

16− ℓ2
1

4−m2

1

π2 (ℓ2 +m2 + 1)
cos ℓπx cosmπy cosπz. [1.5 marks]

NOTES. Again, some marks were lost by simply assuming the general form of the solution to Poisson’s
equation rather than deriving it as here (though this is less of an issue than with 5 and especially 6). Marks
were also lost for being insufficiently careful with the term a000.
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8. [9 marks℄ Solve the following problem on R

3
(here x is the �rst 
oordinate

of x = (x; y; z)):

�u

�t

= r

2
u+

�u

�x

; ujt=0 = e

−|x|2
:

We have the Fourier transform:

∂û

∂t
= −4π2|k|2û[1 mark] + 2πik1û[1 mark], û|t=0 = π

3
2 e−π2|k|2 .[1 mark]

The equation gives

∂

∂t

(

e(4π
2|k|2−2πik1)tû[1 mark]

)

= 0,

û = û(0)e−(4π
2|k|2−2πik1)t

= π
3
2 e−π2|k|2(4t+1)e2πik1t.[1 mark]

Since

F−1
[

π
3
2 e−π2|k|2(4t+1)

]

= π
3
2

(

1

π(4t+ 1)

)
3
2

e−
|x|2

4t+1 =
1

(4t+ 1)
3
2

e−
|x|2

4t+1 , [2 marks]

we see by properties of Fourier transforms that

u =
1

(4t+ 1)
3
2

e−
1

4t+1 (y
2+z2+(x+t)2). [2 marks]

NOTES. Again, probably the biggest issue with this problem was the mishandling of the relevant Fourier
transforms. Another issue which came up was failure to use the property

F [f(x− x0)](k) = e−2πik·x0 f̂(k).

Some solutions wrote effectively F
[

∂u
∂x

]

= ∂û
∂x

, probably by analogy with a similar (though correct) formula

for ∂u
∂t
: unfortunately this formula is not only wrong in actuality but meaningless even in principle, since

û is a function of k and t and hence does not depend on x. The point behind the analogous formula
for ∂u

∂t
is that we are taking a function of (t,x) and transforming only in x, meaning that t is essentially

a parameter with respect to which we can differentiate either before or after transforming (assuming, as
always, that our functions are sufficiently well-behaved that we are allowed to take the derivative inside the
integral representing the Fourier transform). x, however, is one of the variables with respect to which we
are transforming; i.e., it will be one of the variables over which we integrate, and hence it does not appear
in the transformed function and it makes no sense to speak of the derivative of the transform with respect
to it. More explicitly:

F
[

∂u

∂t

]

=

∫

R3

∂u

∂t
e−2πik·x dx =

∂

∂t

∫

R3

ue−2πik·x dx

=
∂

∂t
F [u] =

∂û

∂t
,

while attempting to do the same thing with ∂u
∂x

leads to

F
[

∂u

∂x

]

=

∫

R3

∂u

∂x
e−2πik·x dx,

and now there is no way to take the derivative outside of the integral since the integral over x includes an
integral over x: one needs instead to do an integration by parts, which leads to the formula

F
[

∂u

∂x

]

= 2πik1û

used here, as derived in class. (Here k1 represents the component of k corresponding to x.)
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