
APM346, Summer 2019 Nathan Carruth

APM 346, final exam review practice problems, solutions and sketches.

1. Solve on [0, 1]× [0, 1]:

∇2u = 0, u|x=0 = u|x=1 = 0, u|y=0 = x, u|y=1 = 1− x.

The general solution to Laplace’s equation on the unit square satisfying the first two boundary conditions
is

u(x, y) =

∞∑
n=1

sinnπx(ancoshnπy + bnsinhnπy).

Substituting this into the second set of boundary conditions gives

u(x, 0) =

∞∑
n=1

sinnπxan = x,

whence

an = 2

∫ 1

0

xsinnπx dx = 2

(
− x

nπ
cosnπx

∣∣∣1
0

+

∫ 1

0

1

nπ
cosnπ dx

)
= 2

(
(−1)n+1

nπ
+

1

n2π2
sinnπx

∣∣∣∣1
0

)
= 2

(−1)n+1

nπ
,

and

u(x, 1) =

∞∑
n=1

sinnπx(ancoshnπ + bnsinhnπ) = 1− x,

whence

ancoshnπ + bnsinhnπ = 2

∫ 1

0

(1− x)sinnπx dx = 2

(
−(1− x)

1

nπ
cosnπx

∣∣∣∣1
0

−
∫ 1

0

1

nπ
cosnπx dx

)

= 2

(
1

nπ
− 1

n2π2
sinnπx

∣∣∣∣1
0

)
=

2

nπ
,

so

bn =
2

nπ
((−1)n cothnπ + cschnπ) ,

and finally

u(x, y) =

∞∑
n=1

sinnπx

(
2

nπ

)(
(−1)n+1coshnπy + ((−1)n cothnπ + cschnπ) sinhnπy

)
.

2. Solve on [0, 2]× [0, 3]:

∇2u = 0, u|x=0 = 1− |y − 1|, u|x=2 = 0, u|y=0 = u|y=3 = 0.

This is quite similar to the previous problem, in principle. Here the general solution satisfying the last
two boundary conditions1 is

u(x, y) =

∞∑
n=1

sin
nπ

3
y(ancosh

nπ

3
x+ bnsinh

nπ

3
y),

1In both cases, the key is that the solution has to satisfy the homogeneous boundary conditions
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and the boundary conditions are used to determine an and bn as before.

3. Solve on [0, 1]× [0, 1]:
∇2u = 1, u|x=0 = u|x=1 = u|y=0 = u|y=1 = 0.

While not explicitly derived in class, it should be evident from our treatment of the corresponding prob-
lem on the unit cube that the eigenfunctions and eigenvalues of the Laplacian satisfying Dirichlet boundary
conditions on the unit square (the set given here) are

e`m = sin `πxsinmπy, λ`m = −π2
(
`2 +m2

)
, `,m ∈ Z, `,m ≥ 1.

Expanding u in this basis, we have

u(x, y) =

∞∑
`=1

∞∑
m=1

a`msin `πxsinmπy;

substituting this into the equation ∇2u = 1 and using the fact that the functions sin `πxsinmπy are eigen-
functions of ∇2 gives

∞∑
`=1

∞∑
m=1

−π2(`2 +m2)a`msin `πxsinmπy = 1.

Now since ∫ 1

0

sin `πx dx =
1

`π
(1− (−1)`),

we see that

a`m = − 4

π2(`2 +m2)

∫ 1

0

∫ 1

0

sin `πxsinmπy dx dy

= − 4

π2(`2 +m2)

1

`π
(1− (−1)`)

1

mπ
(1− (−1)m)

= − 4

π4`m(`2 +m2)
(1− (−1)`)(1− (−1)m),

and thus

u(x, y) = −
∞∑

`=1,` odd

∞∑
m=1,m odd

16

π4`m(`2 +m2)
sin `πxsinmπy.

4. Solve on [0, 1]× [0, 1]:

∇2u = 1, u|x=0 = u|x=1 = 0, u|y=0 = x, u|y=1 = 1− x.

Do this twice: once by splitting up into two separate problems, and once by using a Green’s function
(expressed as a series in the eigenfunctions of the Laplacian on [0, 1]× [0, 1]).

The first method gives simply the sum of the solution to 1 and the solution to 3.

5. Solve on the ball {(r, θ, φ)|r < 1}:

∇2u = 0, u|r=1 =

{
1− cos θ, θ ∈ [0, π2 ]
1 + cos θ, θ ∈ [π2 , π]

.

6. Solve on the ball {(r, θ, φ)|r < 2}:

∇2u = 0,
∂u

∂r

∣∣∣∣
r=2

=

{
cos2 θ, θ ∈ [0, π2 ]
− cos2 θ, θ ∈ [π2 , π]

, u|r=0 = 0.
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The main idea here is to use the identity (`+ 1)P`+1− (2`+ 1)xP` + `P`−1 = 0 twice in order to reduce
x2P` to a linear combination of P`+2, P`, and P`−2, which may be integrated as usual using the identity
(2`+ 1)P` = P ′`+1 − P ′`−1.

7. Solve on the shell {(r, θ, φ)|1 < r < 2}:

∇2u = 0, u|r=1 =

{
cos θ, θ ∈ [0, π2 ]
− cos θ, θ ∈ [π2 , π]

, u|r=2 =

{
cos θsin 2φ, θ ∈ [0, π2 ]
− cos θ cos 2φ, θ ∈ [π2 , π]

.

[Hint: Use Legendre’s equation!] This problem requires heavy use of Legendre polynomial identities. It is
nevertheless good preparation for the exam.

We provide a rough sketch of the solution. We have the general expansion (using the most general,
unfactored version)

u(r, θ, φ) =

∞∑
`=0

∑̀
m=0

P`m(cos θ)
(
α`mr

` cosmφ+ β`mr
`sinmφ+ γ`mr

−(`+1) cosmφ+ δ`mr
−(`+1)sinmφ

)
.

The first boundary condition gives

∞∑
`=0

∑̀
m=0

P`m(cos θ) ((α`m + γ`m) cosmφ+ (β`m + δ`m)sinmφ) =

{
cos θ, θ ∈ [0, π2 ]
− cos θ, θ ∈ [π2 , π]

,

from which we see that α`m + γ`m = 0 for all m 6= 0, while β`m + δ`m = 0 for all m (both β`m and δ`m are
zero for m = 0 by convention). For m = 0, we have

α`0 + δ`0 =
2`+ 1

2

(∫ π
2

0

cos θP`(cos θ)sin θ dθ −
∫ π

π
2

cos θP`(cos θ)sin θ dθ

)

=
2`+ 1

2

(∫ 1

0

xP`(x) dx−
∫ 0

−1
xP`(x) dx

)
,

which we see is equal to 0 if ` is odd (i.e., if xP`(x) is even). If ` is even, we may use Legendre function
identities to write

xP`(x) =
1

2`+ 1
((`+ 1)P`+1 + `P`−1)

=
1

2`+ 1

(
`+ 1

2`+ 3
(P ′`+2 − P ′`) +

`

2`− 1
(P ′` − P ′`−2)

)
=

`+ 1

(2`+ 3)(2`+ 1)
P ′`+2 +

1

(2`+ 3)(2`− 1)
P ′` −

`

(2`− 1)(2`+ 1)
P ′`−2,

whence∫ 1

0

xP`(x) dx =
`+ 1

(2`+ 3)(2`+ 1)
(1−P`+2(0)) +

1

(2`+ 3)(2`− 1)
(1−P`(0))− `

(2`− 1)(2`+ 1)
(1−P`−2(0)),

so that

α`0 + δ`0 =
`+ 1

2`+ 3
(1− P`+2(0)) +

2`+ 1

(2`+ 3)(2`− 1)
(1− P`(0))− `

2`− 1
(1− P`−2(0)).

Let us call this quantity C`. Now the second boundary condition gives similarly

∞∑
`=0

∑̀
m=0

P`m(cos θ)
((
α`m2` + γ`m2−(`+1)

)
cosmφ+

(
β`m2` + δ`m2−(`+1)

)
sinmφ

)
=

{
cos θsin 2φ, θ ∈ [0, π2 ]
− cos θ cos 2φ, θ ∈ [π2 , π]

; (1)
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from this we see as before that α`m2` + γ`m2−(`+1) = 0 and β`m2` + δ`m2−(`+1) = 0 for all m 6= 2. Since the
matrix (

1 1
2` 2−(`+1)

)
has nonzero determinant for ` ∈ Z, ` ≥ 0, this implies that α`m = β`m = γ`m = δ`m = 0 unless m = 0 or
m = 2. Equation (1) above then gives

α`22` + γ`22−(`+1) =
(`− 2)!

(`+ 2)!

2`+ 1

2

∫ π
2

0

cos θP`2(cos θ) sin θ dθ

=
(`− 2)!

(`+ 2)!

2`+ 1

2

∫ 1

0

xP`2(x) dx,

and similarly

β`22` + δ`22−(`+1) = − (`− 2)!

(`+ 2)!

2`+ 1

2

∫ 0

−1
xP`2(x) dx.

Now

P`2(x) = (1− x2)
d2

dx2
P`(x),

so by Legendre’s equation (1− x2)P ′′` − 2xP ′` + `(`+ 1)P` = 0 we have

xP`2(x) = 2x2P ′` − `(`+ 1)xP`

= 2 (P ′` − `P`−1 + `xP`)− `(`+ 1)xP`

= 2P ′` − 2`P`−1 − `(`− 1)xP`, (2)

whence we have, from our work above,∫ 1

0

xP`2(x) dx = 2(1− P`(0))− 2`

2`+ 1
(P`−1(0)− P`+1(0))

− `(`− 1)

[
`+ 1

(2`+ 3)(2`+ 1)
(1− P`+2(0)) +

1

(2`+ 3)(2`− 1)
(1− P`(0))− `

(2`− 1)(2`+ 1)
(1− P`−2(0))

]
=

2`

2`+ 1
(P`+1(0)− P`−1(0))

−
[

(`+ 1)`(`− 1)

(2`+ 3)(2`+ 1)
(1− P`+2(0)) +

3`2 + 5`− 3

(2`+ 3)(2`− 1)
(1− P`(0))− `2(`− 1)

(2`− 1)(2`+ 1)
(1− P`−2(0))

]
This gives

α`22` + γ`22−(`+1) =
1

(`+ 2)(`+ 1)(`− 1)
(P`+1(0)− P`−1(0))

−

[
1

(2`+ 4)(2`+ 3)
(1− P`+2(0))− `

(2`+ 4)(2`− 1)(`+ 1)
(1− P`−2(0))

+
(2`+ 1)(3`2 + 5`− 3)

(2`+ 4)(`+ 1)`(`− 1)(2`+ 3)(2`− 1)
(1− P`(0))

]
.

Let us call this quantity on the right D`. Since relation (2) above implies that xP`2 is odd or even as ` is
even or odd, i.e., that its parity is the opposite of that of `, we see that we have also

β`22` + δ`22−(`+1) = (−1)`D`.
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We thus have the systems

α`0 + γ`0 = C`

α`02` + γ`02−(`+1) = 0

α`2 + γ`2 = 0

α`22` + γ`22−(`+1) = D`

β`2 + δ`2 = 0

β`22` + δ`22−(`+1) = (−1)`D`

Since the coefficient matrix has inverse(
1 1
2` 2−(`+1)

)−1
=

1

2−(`+1) − 2`

(
2−(`+1) −1
−2` 1

)
,

these systems have solutions, letting ∆ = 1
2−(`+1)−2` ,

α`0 = ∆2−(`+1)C`,

γ`0 = −∆2`C`

α`2 = −∆D`

γ`2 = ∆D`

β`2 = (−1)`+1∆D`

δ`2 = (−1)`∆D`

whence we have finally for u the most imposing expression

u(r, θ, φ) =

∞∑
`=0

1

2
∆C`

((r
2

)e
ll −

(
2

r

)`+1
)
P`(cos θ)

+

∞∑
`=2

∆D`(−r` + r−(`+1))(cos 2φ+ (−1)`sin 2φ)P`2(cos θ)

=

∞∑
`=0

1

2−` − 2`+1

[
`+ 1

2`+ 3
(1− P`+2(0)) +

2`+ 1

(2`+ 3)(2`− 1)
(1− P`(0))− `

2`− 1
(1− P`−2(0))

]

·

((r
2

)`
−
(

2

r

)`+1
)
P`(cos θ)

+

∞∑
`=2

1

2−(ell+1) − 2`

[
1

(`+ 2)(`+ 1)(`− 1)
(P`+1(0)− P`−1(0))

−

[
1

(2`+ 4)(2`+ 3)
(1− P`+2(0))− `

(2`+ 4)(2`− 1)(`+ 1)
(1− P`−2(0))

+
(2`+ 1)(3`2 + 5`− 3)

(2`+ 4)(`+ 1)`(`− 1)(2`+ 3)(2`− 1)
(1− P`(0))

]](
−r` + r−(`+1)

)
(cos 2φ+ (−1)`sin 2φ)P`2(cos θ).

8. Solve on the cylinder {(ρ, φ, z)|ρ < 1, 0 < z < 2}:

∇2u = 0, u|ρ=1 = 0, u|z=0 = 0, u|z=2 = 1.

This can just about be written down without any work; the answer is

u(ρ, φ, z) =

∞∑
n=1

2

λ0iJ1(λ0i)
J0(λ0iρ)

sinhλ0iz

sinh 2λ0i
.

(On the exam, of course, I need to see all of the work behind this!)

9. Solve on the cylinder {(ρ, φ, z)|ρ < 2, 0 < z < 3}:

∇2u = 0, u|ρ=2 = 0, u|z=0 = ρ3 cos 3φ, u|z=3 = ρ2sin 2φ.
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This one is similar; the answer should be something like (this is not guaranteed to be exactly correct! – in
particular I am not entirely sure I have the overall factor correct)

u(ρ, φ, z) =

∞∑
n=1

1

λ3iJ4(λ3i)
J3

(
1

2
λ3iρ

)(
cosh

1

2
λ3iz − coth

3

2
λ3isinh

1

2
λ3iz

)

+

∞∑
n=1

1

λ2iJ3(λ2i)
J2

(
1

2
λ2iρ

)
sinh 1

2λ2iz

sinh 3
2λ2i

.

(Again, of course, on the exam I need to see all of the work behind this!)

10. Solve on the cylinder {(ρ, φ, z)|ρ < 4, 0 < z < 1}:

∇2u = 0, u|z=0 = u|z=1 = 0, u|ρ=4 = φ(2π − φ)z(1− z).

11. Solve on the cylinder {(ρ, φ, z)|ρ < 2, 0 < z < 4}:

∇2u = 0, u|z=0 = 1, u|z=4 = ρ3sin 3φ, u|ρ=2 = sin 2φsin 16πz.

12. Solve on the cube {(x, y, z)|0 < x, y, z < 1}:

∇2u = 0, u|x=0 = u|x=1 = u|y=0 = u|y=1 = 0, u|z=0 = 0, u|z=1 = sinxsin y.

13. Solve on the cube {(x, y, z)|0 < x, y, z < 1}:

∇2u = 0, u|x=0 = u|x=1 = 0, u|y=0 = sinπxsinπz, u|y=1 = sin 3πxsin 3πz,

u|z=0 = sin 2πxsin 2πy, u|z=1 = x(1− x)y(1− y).

14. The same as 13, except that the conditions on x = 0 and x = 1 are replaced by

∂u

∂x

∣∣∣∣
x=0

=
∂u

∂x

∣∣∣∣
x=1

= 0.

15. Solve on the cube Q = {(x, y, z)|0 < x, y, z < 1}:

∇2u = x(1− x)y(1− y)z(1− z), u|∂Q = 0.

16. Solve on the cube Q = {(x, y, z)|0 < x, y, z < 1}:

∇2u = xy(1− y)z(1− z), ∂u

∂n

∣∣∣∣
∂Q

= 0,

where ∂
∂n denotes the outwards normal derivative at the boundary of ∂Q.

17. Solve on the unit ball B = {(r, θ, φ)|r < 1}:

∇2u = r cos θ, u|r=1 = 0.
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18. Solve on the unit ball B = {(r, θ, φ)|r < 1}:

∇2u = r2sin θ cos θsinφ, u|r=1 = 0.

19. Solve on the unit ball B = {(r, θ, φ)|r < 1}:

∇2u = rsin θ cosφ, u|r=1 = cos θ.

Try doing this problem two ways, one by splitting it up into the sum of two separate problems, and the other
by using an appropriate Green’s function.

20. Solve on the cylinder C = {(ρ, φ, z)|ρ < 1, 0 < z < 1}:

∇2u = ρ3sin 3φ(1− z), u|∂C = 0.

21. Solve on the cylinder C = {(ρ, φ, z)|ρ < 1, 0 < z < 1}:

∇2u =

{
ρ3sin 3φ, ρ ∈ [0, 12 ]
ρ4 cos 4φ, ρ ∈ [ 12 , 1]

}
(1− z), u|∂C = 0.

22. Solve on the cylinder C = {(ρ, φ, z)|ρ < 1, 0 < z < 1}:

∇2u =

{
ρ2 cos 2φ, ρ ∈ [0, 12 ]

0, ρ ∈ [ 12 , 1]

}
sin z, u|z=0 = 1, u|z=1 = ρ2 cos 2φ, u|ρ=1 = 0.

Again, try doing this two ways, one by directly writing out an orthogonal expansion and the other by using
an appropriate Green’s function.

23. Repeat the previous eight problems, but instead of solving Poisson’s equation ∇2u = f solve the problem
on (0,+∞)×X (where X is either Q, B, or C as appropriate)

∂u

∂t
= ∇2u, u|t=0 = f,

with the boundary conditions on ∂X unchanged. What is the behaviour of the solutions in the limit t→∞?

24. Again repeat the same eight problems, but now instead of solving the heat equation as in 23, solve the
wave equation

∂2u

∂t2
= ∇2u,

with f taken alternatively as the initial data for u and ∂u
∂t at t = 0, with the other one set to zero there.

25. Repeat problems 20 – 22, dropping the z dependence, on the unit disk D = {(ρ, φ)|ρ < 1}, and then
solve the corresponding heat and wave equation problems as in 23 and 24. For the wave equations, comment
on the lowest frequency appearing. Can you say anything about the which frequency will be the loudest
(i.e., have the largest coefficient in the orthogonal expansion)?

26. Solve on R1:
∇2u =

(
4x2 − 2

)
e−x

2

, lim
|x|→∞

u = 0.

Try using Fourier transforms in space. (There is actually a much easier way of solving this problem which
doesn’t require anything more than elementary calculus; can you see it? Even if you can, try doing this
using Fourier transforms anyway as it is good practice.)
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27. Solve on R3:
∇2u = e−|x|

2

, lim
|x|→∞

u = 0.

You can do this either using Fourier transforms or the Green’s function on R3 which we derived in class.

28. Solve on (0,+∞)×R3:
∂u

∂t
= ∇2u, u|t=0 = e−|x|

2

sinx.

(Here x is the first component of x = (x, y, z).) Hint: write sinx in terms of complex exponentials and use
properties of the Fourier transform.

29. Solve on (0,+∞)×R3:

∂u

∂t
= ∇2u, u|t=0 =

{
1, x, y, z ∈ [−1, 1]
0, otherwise

.

Express your answer in terms of the function (related to the error function)

E(x) =

∫ x

0

e−u
2

du.

30. Repeat the previous two problems, but with the initial data taken as the inhomogeneous term f for the
equation

∂u

∂t
= ∇2u+ f

and with the initial data u|t=0 = 0. What is the behaviour of the solutions as t→∞?

31. Do problems 7 and 8 from the week 12 practice problem sheet, if you have not already done so. Then
redo them, changing which of u|t=0 and ∂u

∂t

∣∣
t=0

is set to zero.

32. Solve on (0,+∞)×R3:

∂u

∂t
= ∇2u+ bu, u|t=0 =

sin 2πxsin 2πysin 2πz

xyz
.

[Hint: what is the inverse Fourier transform of the function χ(x)χ(y)χ(z) (where χ(x) =

{
1, x ∈ [−1, 1]
0, otherwise

)?

What does this say about the Fourier transform of the inhomogeneous function above (assuming that it
exists)?] Consider both b > 0 and b < 0. What is the behaviour of the solution in the limit t→ +∞? How
does it depend on b?

33. [This problem is interesting but less relevant than the others for exam preparation.] Redo 32, but with
the initial data multiplied by sin 200πx. Consider the dependence of the behaviour as t→∞ on b. Is there
a critical value for b at which the behaviour changes drastically?

34. Solve on (0,+∞)×R3:
∂u

∂t
= ∇2u+ n · ∇u, u|t=0 = e−|x|

2

.

Here n is some fixed unit vector. How does this solution compare to the solution for the same problem
without the n · ∇u term?
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