APM 346, practice problems for week 12.

1. Solve the following problem on D, using the eigenfunctions for the Laplacian on D which we found in class:

$$
\frac{\partial^{2} u}{\partial t^{2}}=\nabla^{2} u,\left.\quad u\right|_{t=0}=0,\left.\quad \frac{\partial u}{\partial t}\right|_{t=0}=1,\left.\quad u\right|_{\partial D}=0 .
$$

2. Same as 1, but with the initial condition $\left.\frac{\partial u}{\partial t}\right|_{t=0}=\rho^{4} \cos 4 \phi$.
3. Solve on D :

$$
\frac{\partial^{2} u}{\partial t^{2}}=\nabla^{2} u,\left.\quad u\right|_{t=0}=\rho^{2} \sin 2 \phi,\left.\quad \frac{\partial u}{\partial t}\right|_{t=0}=\rho^{3} \cos 3 \phi,\left.\quad u\right|_{\partial D}=0
$$

4. Solve on D :

$$
\frac{\partial^{2} u}{\partial t^{2}}=\nabla^{2} u+u,\left.\quad u\right|_{t=0}=1,\left.\quad \frac{\partial u}{\partial t}\right|_{t=0}=0,\left.\quad u\right|_{\partial D}=0
$$

What is the behaviour of the solution in the limit $t \rightarrow \infty$?
5. Same as 4 , but with the initial conditions

$$
\left.u\right|_{t=0}=0,\left.\quad \frac{\partial u}{\partial t}\right|_{t=0}=1
$$

6. Repeat the previous two problems on the unit ball B instead of D.
7. Solve the following problem on $(0,+\infty) \times \mathbf{R}^{3}$:

$$
\frac{\partial^{2} u}{\partial t^{2}}=\nabla^{2} u, \quad u(0, x, y, z)=\left\{\begin{array}{cc}
1, & \sqrt{x^{2}+y^{2}+z^{2}} \in\left[\frac{1}{2}, 1\right] \\
0, & \text { otherwise }
\end{array},\left.\quad \frac{\partial u}{\partial t}\right|_{t=0}=0 .\right.
$$

8. Solve on $(0,+\infty) \times \mathbf{R}^{3}$:

$$
\frac{\partial^{2} u}{\partial t^{2}}=\nabla^{2} u,\left.\quad u\right|_{t=0}=0,\left.\quad \frac{\partial u}{\partial t}\right|_{t=0}=e^{-|\mathbf{x}|^{2}}
$$

[Hint: it may be easier to solve this problem by working directly with Fourier transforms rather than with the representation formula given in class.]
[The following two problems develop concepts related to the wave equation which are useful and important but are not considered examinable material for this course.]
9. Suppose that $u=e^{2 \pi i f t-2 \pi i \mathbf{k} \cdot \mathbf{x}}$ is a solution of the wave equation $\frac{\partial^{2} u}{\partial t^{2}}=\nabla^{2} u$ on \mathbf{R}^{3}. What relation must f and \mathbf{k} satisfy? (This is known as a dispersion relation.) Solutions of this form are known as plane waves since, for fixed t, the surfaces of constant u are planes $\mathbf{k} \cdot \mathbf{x}=$ constant.
10. Similarly, suppose that $\mathbf{e}=j_{\ell}(\lambda r) P_{\ell m}(\cos \theta) \cos m \phi$ is an eigenfunction of the Laplacian ∇^{2} on \mathbf{R}^{3} (so that now λ may be any real number). Find a relation between f and λ such that $e^{2 \pi i f t} \mathbf{e}$ is a solution of the wave equation on \mathbf{R}^{3}. (These expressions are known as spherical waves.)

