APM 346, practice problems for week 10.

1. Consider problem 1 from Homework 10. If the Poisson equation were replaced by

$$
\nabla^{2} u=\left\{\begin{array}{cc}
2, & 0 \leq z<\frac{1}{2} \\
-1, & \frac{1}{2}<z \leq 1
\end{array}\right.
$$

would the problem still have a solution? Also, what role does the requirement $u\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)=0$ play in the problem? [Hint: does the Laplacian have a zero eigenvalue in this case? What does that mean about the possibility of solving Poisson's equation?]
2. Find the eigenfunctions and eigenvalues for the Laplacian on the unit ball with homogeneous Neumann conditions; i.e., solve the problem on B

$$
\nabla^{2} u=\lambda u,\left.\quad \frac{\partial u}{\partial n}\right|_{\partial B}=0 .
$$

[It turns out that these eigenfunctions also give a complete orthogonal set on the unit ball; in fact, the same is true with various Robin conditions as well.]
3. Using the expression for the Green's function on \mathbf{R}^{3} derived in class (and the lecture notes), solve the following problem on \mathbf{R}^{3} :

$$
\nabla^{2} u=\left\{\begin{array}{ll}
1, & x^{2}+y^{2}+z^{2}<1 \\
0, & x^{2}+y^{2}+z^{2}>1
\end{array}, \quad u \rightarrow 0 \text { as } \mathbf{x} \rightarrow \infty .\right.
$$

4. Similarly, solve the following problem on \mathbf{R}^{3} for $a>0$:

$$
\nabla^{2} u=e^{-a|\mathbf{x}|}, \quad u \rightarrow 0 \text { as } \mathbf{x} \rightarrow \infty
$$

5. We provide a simple introduction to the method of images. Consider the following problem on the halfspace $H=\{(x, y, z) \mid z>0\}$:

$$
\nabla^{2} u=f,\left.\quad u\right|_{\partial H}=0
$$

By our work in class (and in the lecture notes), an appropriate Green's function for this problem would solve the problem

$$
\nabla_{\mathbf{x}}^{2} G\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=-\delta\left(\mathbf{x}-\mathbf{x}^{\prime}\right),\left.\quad G\right|_{\mathbf{x} \in \partial H}=0
$$

The idea behind the method of images is to write the Green's function as a sum of two free-space Green's functions, which exactly cancel on the boundary. (Note that it is not clear a priori that such a thing is actually possible; but it turns out that it is for a plane - as here - and also for a sphere - see Example 8.2.1 in the text.) The second one will correspond to a point outside of the region H, which means that it will satisfy Laplace's equation in H and hence won't disturb the first equation for G above. Putting all of this together, we seek a point $\mathbf{x}^{*}=\left(x^{*}, y^{*}, z^{*}\right)$ with $z^{*}<0$ such that

$$
\frac{1}{4 \pi\left|\mathrm{x}-\mathrm{x}^{\prime}\right|}-\frac{1}{4 \pi\left|\mathrm{x}-\mathrm{x}^{*}\right|}=0
$$

for any $\mathbf{x} \in \partial H$. (\mathbf{x}^{*} may depend on \mathbf{x}^{\prime}.) Show that such an \mathbf{x}^{*} does indeed exist and find a formula for it in terms of \mathbf{x}^{\prime}; then use the resulting Green's function to solve the problem on H (i.e., $z>0$)

$$
\nabla^{2} u=\left\{\begin{array}{ll}
1, & x^{2}+y^{2}+z^{2}<1 \\
0, & x^{2}+y^{2}+z^{2}>1
\end{array},\left.\quad u\right|_{\partial H}=0 .\right.
$$

6. Repeat 5 , but with homogeneous Neumann conditions instead of Dirichlet conditions.
7. Consider the following sequence of functions:

$$
f_{n}(x)=\left\{\begin{array}{lc}
1, & x \in[-n, n] \\
0, & \text { otherwise }
\end{array}\right.
$$

Find $\mathcal{F}\left[f_{n}\right](k)$. What can you say about the limit of $\mathcal{F}\left[f_{n}\right](k)$ as $n \rightarrow \infty$? [Hint: does it behave like a delta function, possibly after a rescaling?]
8. Same as 7, but with the sequence

$$
f_{n}(x)=e^{-\frac{1}{n} x^{2}}
$$

9. Can you extend the previous two problems to \mathbf{R}^{3} ?
