APM 346, practice problems for week 7.

1. Solve on $\{(\rho, \phi, z) \mid \rho<3,0<z<4\}$:

$$
\nabla^{2} u=0,\left.\quad u\right|_{z=0}=\left.u\right|_{z=4}=0,\left.\quad u\right|_{\rho=3}=\left\{\begin{array}{cc}
\sin \phi, & 0<\phi<\pi \\
0, & \pi<\phi<2 \pi
\end{array}\right.
$$

2. Same as 1, but with $\left.u\right|_{z=0}=\left.u\right|_{z=4}=1$. [Hint: try subtracting off a trivial solution of Laplace's equation to turn this into a homogeneous condition.]
3. Solve on $\{(\rho, \phi, z) \mid \rho<1,0<z<1\}$:

$$
\nabla^{2} u=0,\left.\quad u\right|_{z=0}=0,\left.\quad u\right|_{z=1}=-\left.\frac{\partial u}{\partial z}\right|_{z=1},\left.\quad u\right|_{\rho=3}=\sin 2 \phi \cos z
$$

4. Solve on $\left\{(\rho, \phi, z) \mid \rho<1,0<z<1,0<\phi<\frac{\pi}{4}\right\}$:

$$
\nabla^{2} u=0,\left.\quad u\right|_{\rho=1}=0,\left.\quad u\right|_{\phi=0}=\left.u\right|_{\phi=\frac{\pi}{4}}=0,\left.\quad u\right|_{z=0}=1,\left.\quad u\right|_{z=1}=\rho^{4} \sin 4 \phi
$$

[Hint: Start directly from separation of variables. Also, recall that $\left\{J_{m}\left(\lambda_{m i} \rho\right)\right\}_{i=1}^{\infty}$ is a complete orthogonal set on $[0,1]$ for any value of m.]
5. Solve on $\left\{(\rho, \phi, z) \mid \rho<1,0<z<1,0<\phi<\frac{\pi}{3}\right\}:$

$$
\nabla^{2} u=0,\left.\quad u\right|_{z=0}=\left.u\right|_{z=1}=0,\left.\quad u\right|_{\phi=0}=\left.u\right|_{\phi=\frac{\pi}{3}}=0,\left.\quad u\right|_{\rho=1}=(1-\cos 6 \phi) e^{z}
$$

6. And finally, everything rolled all together into one big problem! Solve on $\{(\rho, \phi, z) \mid \rho<2,0<z<$ $\left.4,0<\phi<\frac{\pi}{6}\right\}$:

$$
\nabla^{2} u=0,\left.\quad u\right|_{z=0}=\rho^{12} \sin 12 \phi,\left.\quad u\right|_{z=4}=\rho^{24} \cos 24 \phi,\left.\quad u\right|_{\phi=0}=\left.u\right|_{\phi=\frac{\pi}{6}}=0,\left.\quad u\right|_{\rho=2}=\phi\left(\phi-\frac{\pi}{6}\right) e^{z} .
$$

