APM 346, practice problems for week 6 .
[The problems below were distilled from homework problems in [1], Chapter 3, by (attempting to!) extract the mathematical core from the physics problem. As I have not yet had time to work all of them out it is possible that I may not have extracted all of the relevant information from the physics, or may have done so incorrectly; if you find any problem totally intractable, please let me know.

Given that these problems come from a textbook I do not intend to post solutions to them. I would however be happy to discuss solutions you have in office hours, or read over a rough write-up.]

1. [See [1], problem 3.2.] Solve Laplace's equation on the ball $r<a$, subject to the boundary condition

$$
\left.u_{r}\right|_{r=a}=\left\{\begin{array}{c}
0, \\
1, \quad \theta<\alpha \\
1, \quad \alpha<\theta<\pi
\end{array}\right.
$$

where $\alpha \in(0, \pi)$.
2. [See [1], problem 3.4.] Let $n \in \mathbf{Z}, n \geq 1$, and solve Laplace's equation on the ball $r<a$ subject to the boundary condition

$$
\left.u\right|_{r=a}=\left\{\begin{array}{c}
-1, \quad \phi \in\left(\frac{k \pi}{n}, \frac{(2 k+1) \pi}{2 n}\right) \\
1, \quad \phi \in\left(\frac{(2 k+1) \pi}{2 n}, \frac{(k+1) \pi}{n}\right)
\end{array},\right.
$$

where k ranges from 0 to $n-1$. (In other words, the range in ϕ is divided into $2 n$ equal pieces, and u on these pieces is required to be alternately -1 or 1.)
3. [This problem requires using the \sin / \cos basis in the z direction and hence is somewhat outside of the scope of the material we have discussed in class; but if you have a good grasp of what is going on, you should be able to do it - just leave the solutions to Bessel's equation (which in this case are denoted I_{m} and K_{m} instead of J_{m}) as they are: they play the role of the exponential functions (alternatively, sinh $/ \cosh$), which means that their values at certain points enter into the results but one doesn't need to calculate any integrals involving them. See [1], 3.10.] Solve Laplace's equation on the cylinder $\left\{(\rho, \phi, z) \mid \rho<\rho_{0}, 0<z<z_{0}\right\}$, subject to the boundary conditions

$$
\left.u\right|_{z=0}=\left.u\right|_{z=z_{0}}=0,\left.\quad u\right|_{\rho=\rho_{0}}= \begin{cases}-1, & 0<\phi<\pi \\ 1, & \pi<\phi<2 \pi .\end{cases}
$$

References

1. Jackson, J. D. Classical Electrodynamics, 3rd ed. Hoboken, NJ: John Wiley \& Sons, Inc., 1999.
