APM 346, practice problems for week 4.

1. Recall the decomposition of x^{4} in terms of Legendre polynomials. Use this to solve the following boundary-value problem on the unit ball:

$$
\nabla^{2} u=0,\left.\quad u\right|_{r=1}=\cos ^{4} \theta
$$

2. Now solve problem 1, but on the complement of the unit ball (i.e., the set $\{(r, \theta, \phi) \mid r \geq 1\}$). [Hint: this solution can be written down almost immediately given that to 1 , after a little thought.]
3. Solve on $\{(r, \theta, \phi) \mid r \leq 2\}$:

$$
\nabla^{2} u=0,\left.\quad u\right|_{r=2}=\cos \theta
$$

4. Solve on $\left\{(r, \theta, \phi) \left\lvert\, \frac{1}{2} \leq r \leq 1\right.\right\}$:

$$
\nabla^{2} u=0,\left.\quad u_{r}\right|_{r=1}=1,\left.\quad u\right|_{r=\frac{1}{2}}=0
$$

5. Same as 4, but on the exterior of the unit ball and without the second boundary condition. Is this solution unique?
6. Solve on $\{(r, \theta, \phi) \mid 1 \leq r \leq 2\}$:

$$
\nabla^{2} u=0,\left.\quad u\right|_{r=2}=\cos \theta,\left.\quad u\right|_{r=1}=0
$$

7. Solve on $\left\{(r, \theta, \phi) \left\lvert\, \frac{1}{2} \leq r \leq 1\right.\right\}$:

$$
\nabla^{2} u=0,\left.\quad u\right|_{r=\frac{1}{2}}=1,\left.\quad u\right|_{r=1}=0 .
$$

[Can you see how to put these last two problems together - with a slight modification of 7, of course to solve problem 5 on Homework 4?]
8. Make up your own linear combination of Legendre polynomials, call it $f(x)$, and solve Laplace's equation on the unit ball subject to $\left.u\right|_{r=1}=f(\cos \theta)$.
9. Same as 8 , but instead of solving on the unit ball solve on the shell $\{(r, \theta, \phi) \mid 2 \leq r \leq 3\}$, with the conditions $\left.u\right|_{r=2}=f(\cos \theta),\left.u\right|_{r=3}=0$.

