We review the definition and an elementary property of the Wronskian. We recall that the notation $f^{(n)}(x)$ denotes the nth derivative of the function f.

Definition. Let $f_{1}, \ldots, f_{n}:(a, b) \rightarrow \mathbf{R}, a, b \in \mathbf{R} \cup\{-\infty,+\infty\}$, and suppose that the first $n-1$ derivatives of all n functions exist on (a, b). Then the Wronskian of f_{1}, \ldots, f_{n} is the function $W:(a, b) \rightarrow \mathbf{R}$ defined by

$$
W(x)=\left|\begin{array}{cccc}
f_{1}(x) & f_{2}(x) & \ldots & f_{n}(x) \\
f_{1}^{\prime}(x) & f_{2}^{\prime}(x) & \ldots & f_{n}^{\prime}(x) \\
\vdots & \vdots & \ddots & \vdots \\
f_{1}^{(n-1)}(x) & f_{2}^{(n-1)}(x) & \ldots & f_{n}^{(n-1)}(x)
\end{array}\right| .
$$

ExAmples.
(a) Let $(a, b)=\mathbf{R}, f_{1}(x)=x, f_{2}(x)=x^{2}$. Then the Wronskian of f_{1} and f_{2} is given by

$$
\begin{aligned}
W(x) & =\left|\begin{array}{ll}
x & x^{2} \\
1 & 2 x
\end{array}\right| \\
& =2 x^{2}-x^{2}=x^{2} .
\end{aligned}
$$

(b) Let $(a, b)=\mathbf{R}, f_{1}(x)=e^{x}, f_{2}(x)=e^{-x}$. Then the Wronskian of f_{1} and f_{2} is

$$
\begin{aligned}
W(x) & =\left|\begin{array}{cc}
e^{x} & e^{-x} \\
e^{x} & -e^{-x}
\end{array}\right| \\
& =-1-1=-2 .
\end{aligned}
$$

The importance of the Wronskian can be seen from the following proposition.
Proposition. Suppose that the functions $f_{1}, f_{2}, \ldots, f_{n}:(a, b) \rightarrow \mathbf{R}$ possess derivatives of up to order $n-1$ and are linearly dependent on (a, b). Then their Wronskian is zero everywhere on (a, b).

Proof. Since the functions $f_{1}, f_{2}, \ldots, f_{n}$ are linearly dependent on (a, b), there must exist constants $c_{1}, c_{2}, \ldots, c_{n}$ such that for all $x \in(a, b)$ we have

$$
c_{1} f_{1}(x)+c_{2} f_{2}(x)+\cdots+c_{n} f_{n}(x)=0 .
$$

Since $c_{1}, c_{2}, \ldots, c_{n}$ are all constants, we may differentiate this equation k times to obtain

$$
c_{1} f_{1}^{(k)}(x)+c_{2} f_{2}^{(k)}(x)+\cdots+c_{n} f_{n}^{(k)}(x)=0
$$

where $k=1, \ldots, n-1$. Thus we see that for each $x \in(a, b)$, the vectors

$$
\left(\begin{array}{c}
f_{1}(x) \\
f_{1}^{\prime}(x) \\
\vdots \\
f_{1}^{(n-1)}(x)
\end{array}\right), \quad\left(\begin{array}{c}
f_{2}(x) \\
f_{2}^{\prime}(x) \\
\vdots \\
f_{2}^{(n-1)}(x)
\end{array}\right), \quad \cdots \quad\left(\begin{array}{c}
f_{n}(x) \\
f_{n}^{\prime}(x) \\
\vdots \\
f_{n}^{(n-1)}(x)
\end{array}\right)
$$

are linearly dependent. Thus the matrix

$$
D=\left(\begin{array}{cccc}
f_{1}(x) & f_{2}(x) & \ldots & f_{n}(x) \\
f_{1}^{\prime}(x) & f_{2}^{\prime}(x) & \ldots & f_{n}^{\prime}(x) \\
\vdots & \vdots & \ddots & \vdots \\
f_{1}^{(n-1)}(x) & f_{2}^{(n-1)}(x) & \ldots & f_{n}^{(n-1)}(x)
\end{array}\right)
$$

is not full-rank, so its determinant $|D|$ must be zero. But $|D|$ is exactly the Wronskian of $f_{1}, f_{2}, \ldots, f_{n}$, so this completes the proof of the proposition.

QED.
From this it follows that if the Wronskian is not identically zero on (a, b), then $f_{1}, f_{2}, \ldots, f_{n}$ must be linearly independent on (a, b).

ExAMPLES.

(c) From examples (a) and (b) above, we see that x and x^{2} are linearly independent on \mathbf{R}, as are e^{x} and e^{-x}.

