APM346, Summer 2019

We review the definition and an elementary property of the Wronskian. We recall that the notation $f^{(n)}(x)$ denotes the *n*th derivative of the function f.

DEFINITION. Let $f_1, \ldots, f_n : (a, b) \to \mathbf{R}$, $a, b \in \mathbf{R} \cup \{-\infty, +\infty\}$, and suppose that the first n-1 derivatives of all n functions exist on (a, b). Then the Wronskian of f_1, \ldots, f_n is the function $W : (a, b) \to \mathbf{R}$ defined by

$$W(x) = \begin{vmatrix} f_1(x) & f_2(x) & \dots & f_n(x) \\ f'_1(x) & f'_2(x) & \dots & f'_n(x) \\ \vdots & \vdots & \ddots & \vdots \\ f_1^{(n-1)}(x) & f_2^{(n-1)}(x) & \dots & f_n^{(n-1)}(x) \end{vmatrix}$$

EXAMPLES.

(a) Let $(a,b) = \mathbf{R}$, $f_1(x) = x$, $f_2(x) = x^2$. Then the Wronskian of f_1 and f_2 is given by

$$W(x) = \begin{vmatrix} x & x^2 \\ 1 & 2x \end{vmatrix}$$
$$= 2x^2 - x^2 = x^2$$

(b) Let $(a,b) = \mathbf{R}$, $f_1(x) = e^x$, $f_2(x) = e^{-x}$. Then the Wronskian of f_1 and f_2 is

$$W(x) = \begin{vmatrix} e^x & e^{-x} \\ e^x & -e^{-x} \end{vmatrix}$$
$$= -1 - 1 = -2$$

The importance of the Wronskian can be seen from the following proposition.

PROPOSITION. Suppose that the functions $f_1, f_2, \ldots, f_n : (a, b) \to \mathbf{R}$ possess derivatives of up to order n-1 and are linearly dependent on (a, b). Then their Wronskian is zero everywhere on (a, b).

Proof. Since the functions f_1, f_2, \ldots, f_n are linearly dependent on (a, b), there must exist constants c_1, c_2, \ldots, c_n such that for all $x \in (a, b)$ we have

$$c_1 f_1(x) + c_2 f_2(x) + \dots + c_n f_n(x) = 0.$$

Since c_1, c_2, \ldots, c_n are all constants, we may differentiate this equation k times to obtain

$$c_1 f_1^{(k)}(x) + c_2 f_2^{(k)}(x) + \dots + c_n f_n^{(k)}(x) = 0,$$

where k = 1, ..., n - 1. Thus we see that for each $x \in (a, b)$, the vectors

$$\begin{pmatrix} f_1(x) \\ f'_1(x) \\ \vdots \\ f_1^{(n-1)}(x) \end{pmatrix}, \quad \begin{pmatrix} f_2(x) \\ f'_2(x) \\ \vdots \\ f_2^{(n-1)}(x) \end{pmatrix}, \quad \cdots \quad \begin{pmatrix} f_n(x) \\ f'_n(x) \\ \vdots \\ f_n^{(n-1)}(x) \end{pmatrix}$$

are linearly dependent. Thus the matrix

$$D = \begin{pmatrix} f_1(x) & f_2(x) & \dots & f_n(x) \\ f'_1(x) & f'_2(x) & \dots & f'_n(x) \\ \vdots & \vdots & \ddots & \vdots \\ f_1^{(n-1)}(x) & f_2^{(n-1)}(x) & \dots & f_n^{(n-1)}(x) \end{pmatrix}$$

is not full-rank, so its determinant |D| must be zero. But |D| is exactly the Wronskian of f_1, f_2, \ldots, f_n , so this completes the proof of the proposition. QED.

From this it follows that if the Wronskian is not identically zero on (a, b), then f_1, f_2, \ldots, f_n must be linearly independent on (a, b).

EXAMPLES.

(c) From examples (a) and (b) above, we see that x and x^2 are linearly independent on **R**, as are e^x and e^{-x} .