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Generalities; Laplace’s equation

If {eα} is a complete, orthogonal set with respect to an inner product (·, ·), then any f can be written

f =
∑
α aαeα, where aα = (f,eα)

(eα,eα)
.

Laplace’s equation ∇2u = 0 has the following general series expansions as its solutions when solved in the
indicated regions and with the indicated boundary conditions:

Region and boundary conditions Series expansion, related complete orthogonal set, and inner product

{(x, y)|0 ≤ x ≤ 1, 0 ≤ y ≤ 1}
u|x=0 = u|x=1 = 0

u =

∞∑
n=0

sinnπx (ansinhnπy + bncoshnπy)

{sinnπx}∞n=1, (f(x), g(x)) =
∫ 1

0
f(x)g(x) dx

{(r, θ, φ)|r ≤ a}
azimuthally symmetric

u finite and single-valued

u =

∞∑
`=0

a`P`(cos θ)r`

{P`(cos θ)}∞`=0, (f(x), g(x)) =
∫ 1

−1 f(x)g(x) dx, (f(θ), g(θ)) =
∫ π
0
f(θ)g(θ)sin θ dθ

{(r, θ, φ)|a ≤ r ≤ b}
azimuthally symmetric

u finite and single-valued

u =

∞∑
`=0

P`(cos θ)
(
a`r

` + b`r
−(`+1)

)
{P`(cos θ)}∞`=0, (f(x), g(x)) =

∫ 1

−1 f(x)g(x) dx, (f(θ), g(θ)) =
∫ π
0
f(θ)g(θ)sin θ dθ

{(ρ, φ, z)|ρ ≤ a, 0 ≤ z ≤ z0}
azimuthally symmetric

u|ρ=a = 0, u finite

u =

∞∑
i=1

J0

(
λ0i
a
ρ

)(
aicosh

λ0i
a
z + bisinh

λ0i
a
z

)
{J0

(
λ0i
a
ρ

)
}∞i=1, (f(ρ), g(ρ)) =

∫ a
0
f(ρ)g(ρ)ρ dρ

λmi, m ∈ Z, m ≥ 0, i ∈ Z, i ≥ 1 denotes the ith positive zero of Jm(x)

{(r, θ, φ)|a ≤ r ≤ b}
u finite and single-valued

u =

∞∑
`=0

∑̀
m=0

P`m(cos θ) (a`m cosmφ+ b`msinmφ)
(
c`mr

` + d`mr
−(`+1)

)
{P`m(cos θ) cosmφ,P`m(cos θ)sinmφ|` ∈ Z, ` ≥ 0,m ∈ Z, 0 ≤ m ≤ `}
(f(θ, φ), g(θ, φ)) =

∫ π
0

∫ 2π

0
f(θ, φ)g(θ, φ)sin θ dφ dθ

{(ρ, φ, z)|ρ ≤ a, 0 ≤ z ≤ z0}
u|ρ=a = 0, u finite

u =

∞∑
m=0

∞∑
i=1

Jm

(
λmi
a
ρ

)
(ami cosmφ+ bmisinmφ)

(
cmicosh

λmi
a
z + dmisinh

λmi
a
z

)
{Jm

(
λmi
a
ρ

)
cosmφ, Jm

(
λmi
a
ρ

)
sinmφ|m ∈ Z,m ≥ 0, i ∈ Z, i ≥ 1}

(f(ρ, φ), g(ρ, φ)) =
∫ a
0

∫ 2π

0
f(ρ, φ)g(ρ, φ)ρ dφ dρ

λmi, m ∈ Z, m ≥ 0, i ∈ Z, i ≥ 1 denotes the ith positive zero of Jm(x)

In all cases, solving Laplace’s equation proceeds as follows:
1. Determine the correct coordinate system and boundary conditions (including azimuthal symmetry

or lack thereof).
2. Assuming this corresponds to an entry in the above table, write down the corresponding general

series expansion.
3. Apply the remaining boundary conditions to this series and equate the result to the given boundary

data to determine the expansion coefficients.

For the first four examples above, the boundary data is essentially one-dimensional, so that only one set of
integrals occurs in step 3. In the last two examples, the expansion part of step 3 can be split into two steps,
as follows:

3.1. Expand in φ for fixed θ (resp. ρ) to obtain θ- (resp. ρ-) dependent coefficients am, bm.
3.2. Expand am and bm in the basis {P`m(cos θ)}∞`=m (resp. {Jm

(
λmi

ρ
a

)
}∞i=1; both of these are complete

orthogonal sets) to obtain the final expansion coefficients a`m, b`m (resp. ami, bmi).
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Special functions: equations and properties

Associated Legendre functions. These are solutions P`m(x), ` ∈ Z, ` ≥ 0, m ∈ Z, 0 ≤ m ≤ ` to the equation(
1− x2

) d2P
dx2
− 2x

dP

dx
+

(
`(`+ 1)− m2

1− x2

)
P = 0

which are finite at x = 0. For fixed m, the set {P`m(x)}∞`=m is complete and orthogonal on the interval [−1, 1]

with respect to the inner product (f(x), g(x)) =
∫ 1

−1 f(x)g(x) dx; equivalently, {P`m(cos θ)}∞`=m is complete

and orthogonal (in θ) on the interval [0, π] with respect to the inner product (f(θ), g(θ)) =
∫ π
0
f(θ)g(θ)sin θ dθ.

They have normalisation∫ 1

−1
P 2
`m(x) dx =

∫ π

0

P 2
`m(cos θ)sin θ dθ =

(`+m)!

(`−m)!

2

2`+ 1
.

The first few for m > 0 are as follows. (For m = 0, see the Legendre polynomials below.)

P1,1(cos θ) = sin θ, P2,1(cos θ) = 3sin θ cos θ, P2,2(cos θ) = 3sin 2θ.

The associated Legendre functions satisfy the following relation:

P`m(x) =
(
1− x2

)m
2
dm

dxm
P`,0(x).

Legendre polynomials. When m = 0, the associated Legendre functions P`,0(x) are polynomials and denoted
by P`(x). By the foregoing, they satisfy the equation(

1− x2
) d2P
dx2
− 2x

dP

dx
+ `(`+ 1)P = 0

and form a complete orthogonal set on [−1, 1] with respect to the above-given inner product, with normali-
sation ∫ 1

−1
P 2
` (x) dx =

∫ π

0

P 2
` (cos θ)sin θ dθ =

2

2`+ 1
.

The first few are as follows:

P0(x) = 1, P1(x) = x, P2(x) =
3

2
x2 − 1

2
.

They satisfy the following recursion and differentiation relations:

(n+ 1)Pn+1 − (2n+ 1)xPn + nPn−1 = 0, P ′n+1 − 2xP ′n + P ′n−1 = Pn, xP ′n − P ′n−1 = nPn,

P ′n+1 − P ′n−1 = (2n+ 1)Pn, (1− x2)P ′n = nPn−1 − nxPn.
P`(x) is an odd or even function as ` is odd or even. Thus P`(0) = 0 if ` is odd.

Bessel functions. These are solutions Jm(x), m ∈ Z, m ≥ 0 to the equation

d2J

dx2
+

1

x

dJ

dx
+

(
1− m2

x2

)
J = 0

which are finite at x = 0. It can be shewn that each Jm(x) has infinitely many zeroes, and we denote the
ith positive zero of Jm by λmi, i = 1, 2, . . .. It can be shewn that the spacing between zeroes approaches a
constant value when i → +∞, but there is no closed-form formula for them. Jm(x) has the Taylor series
expansion

Jm(x) =

∞∑
k=0

(−1)k

k!(m+ k)!

(x
2

)2k+m
.

For any positive number a and any m ≥ 0, the set {Jm
(
λmi

ρ
a

)
}∞i=1 is complete orthogonal on the interval

[0, a] with respect to the inner product (f(ρ), g(ρ)) =
∫ a
0
f(ρ)g(ρ)ρ dρ. They have normalisation∫ a

0

J2
m

(
λmi

ρ

a

)
ρ dρ =

1

2
a2J2

m+1 (λmi) .

The Bessel functions cannot be expressed in any simple way in terms of elementary functions. They satisfy
the relations (m > 0)

J ′0(x) = −J1(x),

Jm−1(x)− Jm+1(x) = 2J ′m(x), Jm−1(x) + Jm+1(x) =
2m

x
Jm(x), Jm−1(x) = J ′m(x) +

m

x
Jm(x),

Jm+1(x) = −J ′m(x) +
m

x
Jm(x),

d

dx
(xmJm(x)) = xmJm−1(x),

d

dx

(
x−mJm(x)

)
= −x−mJm+1(x).
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