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We review some concepts and methodology from linear algebra.
DEFINITION. Let V and W be two vector spaces1. A map T : V →W is called a linear transformation if it
satisfies T (αv + βw) = αT (v) + βT (w) for all v, w ∈ V and all scalars α, β.

DEFINITION. Let V be a vector space, and let S ⊂ V . We say that S spans V if for all v ∈ V there are
w1, . . . , wn ∈ S and scalars α1, . . . , αn such that v = α1w1+· · ·+αnwn. We say that S is linearly independent
if for any w1, . . . , wn ∈ S the equation α1w1 + · · · + αnwn = 0 has only α1 = · · · = αn = 0 as a solution.
If S both spans V and is linearly independent then it is called a basis for V . In this case, the number of
elements of S is called the dimension of V . It could be finite or infinite2.

EXAMPLE. If V = Rn or V = Cn, then
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is a basis for V .

DEFINITION. Let V , W be vector spaces with bases B = {v1, . . . , vn}, D = {w1, . . . , wm}, and let T : V →W
be a linear transformation. Then the basis representation of T with respect to B and D, [T ]DB , is defined as
follows. For each vk ∈ V , T (vk) ∈ W can be expressed in a unique way as a linear combination of elements
of D, say

T (vk) = a1kw1 + · · ·+ amkwm.

We define

[T ]DB =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn

 .

In linear algebra courses, one learns about the properties of these matrices, and how to transform from
one basis to another, but we do not need all this at the moment.

DEFINITION. Let V be a vector space, and let T : V → V . If v ∈ V , v 6= 0, is such that T (v) = λv for some
scalar λ, then v is said to be an eigenvector of T with eigenvalue λ. If there is a basis B = {v1, . . . , vn} of
V , each element of which is an eigenvector of T , then T is said to be diagonalisable.

In this case, it is not hard to see that [T ]BB is a diagonal matrix, with the kth element being the eigenvalue
corresponding to vk.

1I am not going to give the formal definition of a vector space here. Roughly, a vector space is a collection of
objects (which can be vectors in Rn but can also be other things, such as functions) which can be added and
multiplied by scalars (real or complex numbers) in such a way that vector addition and scalar multiplication
interact as one would expect. Those of you who have never seen abstract vector spaces can think of Rn or
Cn for the time being.
2For the benefit of those who know a little set theory, we note that in the case of an infinite-dimensional
vector space V , by ‘the number of elements of S’ we mean the cardinality of S. Much of the numerology of
finite-dimensional linear algebra can be carried over to the infinite-dimensional case in this way. However,
in this case an (algebraic) basis as defined here is not particularly useful and one prefers to use something
like an orthogonal basis, as we shall see later, where one is able (essentially) to represent elements of V as
infinite linear combinations of elements of S.
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DEFINITION. Let V be a complex vector space. An inner product on V is a map (·, ·) : V ×V to C satisfying
the following properties:

1. (av + bw, u) = a(v, u) + b(w, u) for all v, w, u ∈ V and all a, b ∈ C;
2. (v, u) = (u, v) for all v, u ∈ V ;
3. (v, v) ≥ 0 for all v ∈ V , and (v, v) = 0 if and only if v = 0.
The first and second properties imply that (·, ·) is conjugate linear in the second argument, i.e., (v, aw+

bu) = a(v, w) + b(v, u). This is sometimes combined with property 1 above to say that (·, ·) is a sesquilinear3

map. (It would be bilinear , i.e., linear in each argument separately, if it weren’t for the conjugate on the a
and b.)

The text has an introduction to inner products in section 0.3, and we shall go over similar material from
a slightly different perspective in class.

3While I have never checked this, ‘sesqui’ apparently means ‘one-and-a-half’, as in sesquicentennial, or 150th
anniversary.
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