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Additional solutions to Laplace’s equation

Laplace’s equation ∇2u = 0 has the following general series expansions as its solutions when solved in the
indicated regions and with the indicated boundary conditions:

Region and boundary conditions,

and dates for notes

Series expansion, related complete orthogonal set, and inner product

{(ρ, φ, z)|ρ ≤ a, 0 ≤ z ≤ b}
u|z=0 = u|z=b = 0

July 2 – 4

∞∑
n=1

∞∑
m=0

Im

(nπ
b
ρ
)

(anm cosmφ+ bnmsinmφ)sin
nπ

b
z

{cosmφsin nπ
b z, sinmφsin nπ

b z|n,m ∈ Z, n ≥ 1,m ≥ 0}
(f(φ, z), g(φ, z)) =

∫ 2π

0

∫ b
0
f(φ, z)g(φ, z) dz dφ

{(x, y, z)|0 ≤ x, y, z ≤ 1}
u|x=0 = u|x=1 =

u|y=0 = u|y=1 = 0

July 9 – 11

∞∑
`=1

∞∑
m=1

sin `πxsinmπy
(
a`mcosh

√
`2 +m2πz + b`msinh

√
`2 +m2πz

)
{sin `πxsinmπy|`,m ∈ Z, `,m ≥ 1}, (f(x, y), g(x, y)) =

∫ 1

0

∫ 1

0

f(x, y)g(x, y) dx dy

We may interchange x, y, and z in the last example to obtain additional solutions on the cube.
In cases where more than one set of boundary conditions is inhomogeneous, we may express the solution
as a sum of two or three separate ones, each of which satisfies a problem with one set of inhomogeneous
boundary conditions. See notes of July 2 – 4, pp. 3 – 6 for an example.

Eigenfunctions and eigenvalues for the Laplacian: ∇2u = λu

Region and boundary conditions,

and dates for notes

Eigenfunctions, eigenvalues, and parameter ranges

Q = {(x, y, z)|0 ≤ x, y, z ≤ 1}, u|∂Q = 0

July 9 – 11

sin `πxsinmπysinnπz, −π2
(
`2 +m2 + n2

)
, `,m, n ∈ Z, `,m, n ≥ 1

Q = {(x, y, z)|0 ≤ x, y, z ≤ 1}, ∂u

∂n

∣∣∣∣
∂Q

= 0

[Homeworks 10 and 11]

cos `πx cosmπy cosnπz, −π2
(
`2 +m2 + n2

)
, `,m, n ∈ Z, `,m, n ≥ 0

C = {(ρ, φ, z)|ρ ≤ 1, 0 ≤ z ≤ 1}, u|∂C = 0

July 9 – 11, 16 – 18

Jm(λmiρ)sinnπz

{
cosmφ
sinmφ

, −λ2mi − n2π2,

m, n, i ∈ Z, m ≥ 0, n, i ≥ 1, λmi the ith positive zero of Jm(x)

B = {(r, θ, φ)|r < 1}, u|∂B = 0

July 16 – 18

j` (κ`ir)P`m(cos θ)

{
cosmφ
sinmφ

, −κ2`i, `,m, i ∈ Z, ` ≥ 0, 0 ≤ m ≤ `, i ≥ 1,

κ`i = λ`+ 1
2 ,i

the ith positive zero of j`(x)

D = {(ρ, φ)|ρ < a}, u|∂D = 0

August 6 – 8

Jm

(
λmi
a
ρ

){
cosmφ
sinmφ

, − 1

a2
λ2mi, m, i ∈ Z,m ≥ 0, i ≥ 1,

λmi the ith positive zero of Jm(x)

The inner product used is (f, x) =
∫
X
f(x)g(x) dx, where X is the region and dx is the volume or area element.

All of the above sets are complete and orthogonal with respect to their respective inner product.
For general concepts relating to eigenfunctions and eigenvalues, see notes of July 2 – 4.

Additional special functions: equations and properties

Modified Bessel functions. These are solutions Im(x), m ∈ Z, m ≥ 0 to the equation

d2I

dx2
+

1

x

dI

dx
−
(

1 +
m2

x2

)
I = 0

(compare the equation satisfied by Bessel functions Jm(x)). They are exponential rather than oscillatory in
nature and hence do not form an orthogonal basis. They satisfy many similar identities to the unmodified
Bessel functions but we do not need these identities in this course. (continued)
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Spherical Bessel functions. These are solutions j`(x), ` ∈ Z, ` ≥ 0 to the equation

d2j

dx2
+

2

x

dj

dx
+

(
1− `(`+ 1)

x2

)
j = 0

and can be expressed as j`(x) =
√

π
2xJ`+ 1

2
(x). They can be expressed in terms of elementary functions

(though we don’t use that here). If κ`i denotes the ith positive zero of j`(x), then for each ` the set
{j`(κ`ir)}∞i=1 forms a complete orthogonal set on [0, 1] with respect to the inner product

(f(r), g(r)) =

∫ 1

0

f(r)g(r) r2 dr.

Their normalisation with respect to this inner product is

(j`(κ`ir), j`(κ`ir)) =
1

2
j2`+1(κ`i).

The j` satisfy many identities similar to those satisfied by the ordinary Bessel functions, but everything we
shall need to calculate can be obtained by reducing to the ordinary Bessel functions so we do not give them.

Poisson’s equation on a bounded domain. Let X denote one of Q, C, and B. The problem on X

∇2u = f, u|∂X = 0

can be solved by expanding f =
∑
I aIeI , where aI = (f,eI)

(eI ,eI)
, and u =

∑
I bIeI ; ∇2u = f then gives

λ2IbI = aI .

Here eI is the eigenfunction of the Laplacian satisfying

∇2eI = λIeI , eI |∂X = 0.

See the notes of July 9 – 11 and 16 – 18 for examples. The more general problem

∇2u = f, u|∂X = g

may be solved as the sum u = u1 + u2 of the two problems

∇2u1 = f, u1|∂X = 0, ∇2u2 = 0, u2|∂X = g.

See the notes of July 16 – 18 for examples of this type of problem. The related problem

∇2u = f, ∂u
∂n

∣∣
∂X

= 0 [ ∂∂n the outward normal derivative]

may be solved in the same way, using the eigenfunctions satisfying

∇2eI = λIeI ,
∂eI
∂n

∣∣
∂
X = 0,

except when one or more of the eigenvalues vanish: in that case f must be orthogonal to all corresponding
eigenfunctions, and additional conditions must be imposed on u to get a unique solution. See the Appendix
to the solutions for Homework 11, and the notes for July 2 – 4. The inhomogeneous problem may then be
treated as above.

Green’s functions for Poisson’s equation. Suppose that G(x,x′) is a function satisfying

∇2
xG(x,x′) = −δ(x− x′)

where δ is the Dirac delta function (see the next page for a review of this function). Then for u sufficiently
differentiable on a domain D we have

u(x) = −
∫
D

G(x,x′)∇2
x′u(x′) dx′ +

∫
∂D

G(x,x′)
∂u

∂n′
− u(x′)

∂G

∂n′
dS′.

We may use Green’s functions satisfying certain boundary conditions to solve boundary-value problems.

G(x,x′)|x∈∂D = 0 : u = −
∫
D

G(x,x′)f(x′) dx′ −
∫
∂D

∂G

∂n′
g(x′) dS′ solves ∇2u = f, u|∂D = g

∂G

∂n

∣∣∣∣
x∈∂D

= 0 : u = −
∫
D

G(x,x′)f(x′) dx′ +

∫
∂D

G(x,x′)g(x′) dS′ solves ∇2u = f,
∂u

∂n

∣∣∣∣
∂D

= g

On R3, the solution vanishing at infinity to

∇2
xG(x,x′) = −δ(x− x′) is G(x,x′) =

1

4π|x− x′|
.

Thus on R3 the solution vanishing at infinity to Poisson’s equation

∇2u = f is u(x) = −
∫
R3

G(x,x′)f(x′) dx′.
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Fourier transforms. These are covered in the notes for July 23 – 25, July 30 – August 1, and August 6 –
August 8. If f(x) is a function on Rm which satisfies

∫
Rm |f(x)| dx < ∞, then we say that f is in L1 and

define its Fourier transform

f̂(k) = F [f(x)](k) =

∫
Rm

f(x)e−2πik·x dx.

If f is continuous and bounded and such that f̂(k) is in L1, then we have the Fourier inversion theorem

f(x) = F−1[f̂(k)](x) =

∫
Rm

f̂(k)e2πik·x dk.

This may be shewn by making use of so-called approximate identities, which are sequences {φn(x)} of
functions in L1 satisfying∫

Rmφn(x) dx = 1,
∫
Rmφn(x)f(x) dx→ f(0) as n→∞

for all suitable (e.g., continuous and bounded) functions f(x). If φ is any individual function in L1 satisfying∫
Rm φ(x) dx = 1, then the sequence {nmφ(nx)} is an approximate identity.

If f(x) and g(x) are two functions in L1 on Rm, we define their convolution f ∗ g by

(f ∗ g)(x) =

∫
Rm

f(x− x′)g(x′) dx′.

The Fourier transform maps convolution to multiplication in the following sense:

F [(f ∗ g)(x)](k) = f̂(k)ĝ(k), F−1[f(k)g(k)](x) = (F−1[f ] ∗ F−1[g])(x).

The Fourier transform possesses the following properties (see notes for July 23 – 25, p. 15):

F [af + bg](k) = aF [f ](k) + bF [g](k), F [∂jf ](k) = 2πikjF [f ](k), F [2πixjf ](k) = − ∂

∂kj
F [f ](k)

F [f(x−α)](k) = e−2πik·αf̂(k), F [e2πiα·xf(x)](k) = F [f ](k−α).

The Fourier transform of a Gaussian is

F
[
e−a|x|

2
]

(k) =
(π
a

)m
2

e−
π2|k|2
a , F−1

[
e−a|k|

2
]

(x) =
(π
a

)m
2

e−
π2|x|2
a .

Heat equation: bounded domains. Let X denote one of Q, C, and B. The problem on (0,+∞)×X
∂u

∂t
= ∇2u, u|t=0 = f, u|∂X = 0

can be solved by expanding f =
∑
I aIeI , where aI = (f,eI)

(eI ,eI)
, and u =

∑
I bI(t)eI ; the equation and initial

condition then give
b′I(t) = λIbI , bI(0) = aI , whence bI(t) = aIe

λIt.

Here eI and λI denote the appropriate eigenfunctions and eigenvalues, as in our discussion of the Poisson
equation. See the notes of July 2 – 4, 9 – 11, and 16 – 18 for details and examples. The more general problem

∂u
∂t = ∇2u, u|t=0 = f, u|∂X = g,

where g is a function of x alone, can be solved as the sum u = u1 + u2 of the two problems

∇2u1 = 0, u1|∂X = g, ∂u2

∂t = ∇2u2, u2|t=0 = f − g, u2|∂X = 0.

See the notes of July 16 – 18, pp. 7 – 8, for discussion and an example.
Heat equation and generalisations on Rm. The problem on (0,+∞)×Rm

∂u

∂t
= ∇2u, u|t=0 = f, lim

|x|→∞
u(x) = 0

can be solved using Fourier transforms, obtaining ∂û
∂t = −4π2|k|2û, û|t=0 = f̂ , whence û = f̂ e−4π

2t|k|2 , and

u(t,x) = (Kt ∗ f)(x), where the heat kernel Kt(x) = 1

(4πt)
m
2
e−

|x|2
4t .

Note that the heat kernel is an approximate identity in the limit t → 0+. The more general problem on
(0,+∞)×Rm

∂u
∂t = ∇2u+ g(x, t), u|t=0 = f

has solution
u(t,x) = Kt(x) ∗ f(x) +

∫ t
0
Kt−s(x) ∗ g(s,x) ds.

In practice it may be simpler to solve both of these problems by working directly with Fourier transforms.
More general equations such as ∂u

∂t = ∇2u+n ·∇u can be solved in this way. See notes for July 30 – August
1 and Homework 12, and the practice problems for week 12 and the final.
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Wave equation: bounded domains. Again, let X denote one of Q, C, and B. The problem on (0,+∞)×X
∂2u

∂t2
= ∇2u, u|t=0 = f,

∂u

∂t

∣∣∣∣
t=0

= g, u|∂X = 0

can be solved by expanding f =
∑
I aIeI , g =

∑
I bIeI , where aI = (f,eI)

(eI ,eI)
and bI = (g,eI)

(eI ,eI)
, and also

u =
∑
I cI(t)eI ; the equation and initial conditions then give

c′′I (t) = λIcI(t), cI(0) = aI , c′I(0) = bI .

This is a simple second-order constant-coefficient ordinary differential equation and can be solved easily.
Here eI and λI denote the appropriate eigenfunctions and eigenvalues, as above. The frequencies are

√
−λI .

See the notes for August 6 – August 8 for an example on the disk.
Wave equation on R3. The problem on (0,+∞)×R3

∂2u

∂t2
= ∇2u, u|t=0 = f,

∂u

∂t

∣∣∣∣
t=0

= g

can be solved using Fourier transforms, obtaining ∂2û
∂t2 = −4π2|k|2û, û|t=0 = f̂ , ∂û

∂t

∣∣
t=0

= ĝ. Ultimately,

u(t,x) =
∂

∂t

[
1

4πt

∫
St(x)

f(x′) dS′

]
+

1

4πt

∫
St(x)

g(x′) dS′,

where St(x) is the sphere of radius t centred at x.

More general equations on Rm. The problem on (0,+∞)×Rm

∂u

∂t
= ∇2u+ n · ∇u+ bu, u|t=0 = f

can be solved by taking Fourier transforms, obtaining

∂û

∂t
= −4π2|k|2û+ 2πin · kû+ bû, û|t=0 = f̂ ,

whence
û = e−4π

2t|k|2+2πitn·k+btf̂ ,

which can be inverted using properties of the Fourier transform to obtain u.
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