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Consider the ordinary differential equation

d2u

dt2
= u.

This has solutions u = sinh t, cosh t. These are easily seen to be linearly independent and thus to form a
basis for the solution set of the above equation (exercise). Thus the general solution to this equation can be
written

u(t) = a cosh t+ b sinh t.

Now suppose that we are given initial conditions u(0) = u0, u
′(0) = u1. These give

u0 = u(0) = a cosh 0 + b sinh 0 = a

u1 = u′(0) = a sinh 0 + b cosh 0 = b.

Thus this particular solution is
u(t) = u(0) cosh t+ u′(0) sinh t.

Now it is a general fact (and one with which we shall become much better acquianted as this class goes

on) that for evolution equations, such as the one here, the heat equation ∂u
∂t = ∂2u

∂x2 , or the wave equation
∂u

∂t2 = ∂2u
∂x2 , there is a collection of data, usually termed Cauchy data, pertaining to and completely determined

by the solution, which, when given at one particular point in time, determine the solution uniquely for all
future points in time. For the equation above, Cauchy data at t = 0 would be the pair (u(0), u′(0)); for the
heat equation, it might be u(0, x), for all x; for the wave equation, it might be the pair (u(0, x), ut(0, x))
(where ut = ∂u

∂t ). It is worth noting, though, that there is nothing special about the choice of t = 0:
specifying Cauchy data at any point in time will allow us to find the solution at all future points. (The
equation above and the wave equation can also be solved backwards in time; this is not always possible for
the heat equation. But this does not matter for the present considerations.) Moreover, since the Cauchy
data is completely determined by the solution, having given it at one initial point, we are able to determine
it at all future points. Thus, in some sense, instead of thinking of the evolution of just the solution, we
should really think of the evolution of the Cauchy data.

In the context of our original ordinary differential equation, this suggests that we should consider not
just the solution u but actually the pair (u(t), u′(t)), and see how this pair evolves with time. Suppose, as
above, that we are given that at t = 0, (u(0), u′(0)) = (u0, u1). Then from the foregoing we have

u(t) = u0 cosh t+ u1 sinh t

u′(t) = u0 sinh t+ u1 cosh t

or in other words
(u(t), u′(t)) = u0(cosh t, sinh t) + u1(sinh t, cosh t).

In particular, if u0 = 1, u1 = 0, then we get the solution

(u1(t), u1
′
(t)) = (cosh t, sinh t),

while if u0 = 0, u1 = 1, we get the solution

(u2(t), u2
′
(t)) = (sinh t, cosh t).

Thus the general solution can be understood in this way: we decompose the initial data as u0 ·(1, 0)+u1 ·(0, 1),
evolve each piece separately, and sum the results.

In general, when we treat partial differential equations (even, in a modified way, those which are not

evolution equations, such as Laplace’s equation ∇2u = ∂2u
∂x2 + ∂2u

∂y2 + · · · = 0), we shall follow a similar

procedure: find a particularly convenient decomposition of the Cauchy (or, in general, boundary) data such
that each individual piece propagages in a simple way, and then sum all of these propagated pieces to obtain
the final solution.

We shall make this much more clear as we go on.
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Summary:
• The temperature in a body satisfies the equation ∂u

∂t = D∇2u for some constant D, where (in three

dimensions) ∇2u = ∂2u
∂x2 + ∂2u

∂y2 + ∂2u
∂z2 .

• In one dimension, this becomes ∂u
∂t = D ∂2u

∂x2 .
• If we require initial data u(x, 0) = sin kx for some constant k, then a corresponding solution to this

equation is u(x, t) = sin kxe−k
2Dt.

• Thus, if we require initial data u(x, 0) =
∑

sin knx, where the sum is over a finite collection of kn,

then a corresponding solution is u(x, t) =
∑

sinknxe
−k2nDt.

• This can be extended to infinite sums (and even integrals), which will allow us to represent (almost)
any initial data on a bounded interval.

NOTATION. We use the notations ∂u
∂x , ux, and ∂xu to denote the partial derivative of u with respect to x.

They are all equivalent.

EXAMPLE from ordinary differential equations. Let x(t) =

(
x1(t)
x2(t)

)
, and consider the equation (where a

dot indicates differentiation with respect to t)

(1) ẋ =

(
2 1
1 2

)
x,

ẋ1 = 2x1 + x2

ẋ2 = x1 + 2x2

with initial data x(0) =

(
x1,0
x2,0

)
. As it stands, this is a coupled system, which is difficult to solve directly.

It can be decoupled by diagonalising the coefficient matrix

(
2 1
1 2

)
, as follows. Let us denote this matrix

by A. It has characteristic equation

0 = det

((
2 1
1 2

)
− λ

(
1 0
0 1

))
= det

(
2− λ 1
1 2− λ

)

= (2− λ)
2 − 1 = λ2 − 4λ+ 3,

which has roots λ = 3, λ = 1. We see that

(
1
1

)
and

(
1
−1

)

are corresponding eigenvectors. It is useful to normalise these; thus we set

e1 =
1√
2

(
1
1

)
and e2 =

1√
2

(
1
−1

)
.

These vectors are clearly linearly independent and hence span R2; thus for each t there must exist numbers
y1(t), y2(t) such that

x(t) = y1(t)e1 + y2(t)e2.

If we substitute this back in to equation (1) above, we obtain

ẏ1(t)e1 + ẏ2(t)e2 = A (y1(t)e1 + y2(t)e2)

= y1(t)Ae1 + y2(t)Ae2 = y1(t) (3e1) + y2(t)e2 = 3y1(t)e1 + y2(t)e2

since e1 and e2 are eigenvectors of A with eigenvalues 3 and 1, respectively. Thus we obtain the two equations

ẏ1(t) = 3y1(t)

ẏ2(t) = y2(t)
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which are easily solved to give y1(t) = y1(0)e
3t, y2(t) = y2(0)e

t.What this means is that if our initial data is
equal to e1, so that y1(0) = 1, y2(0) = 0, then our solution will be

y1(t)e1 = e3te1,

while if our initial data is instead equal to e2, so that y1(0) = 0, y2(0) = 1, then our solution will be

y2(t)e1 = ete2.

In general, our solution will be a linear combination of these, depending on y1(0) and y2(0). To find y1(0)
and y2(0) in terms of x(0), we may proceed as follows. We have

x(0) · e1 = (y1(0)e1 + y2(0)e2) · e1
= y1(0)e1 · e1 + y2(0)e2 · e1 = y1(0),

since e1 · e1 = 1 and (crucially) e2 · e1 = 0. (We see that had we not normalised, this procedure would still
work; we would just have to divide x(0) · e1 by e1 · e1 to find y1(0).) In exactly the same way, we see that

x(0) · e2 = (y1(0)e1 + y2(0)e2) · e2
= y1(0)e1 · e2 + y2(0)e2 · e2 = y2(0).

Thus we may write the final solution for x as

x(t) = (x(0) · e1) e1e3t + (x(0) · e2) e2et.

It is instructive to compare this to the general result (true for any vector x in R2), whose demonstration
we leave as an exercise:

(2) x = (x · e1) e1 + (x · e2) e2.

The general theory of systems of ordinary differential equations will not be needed in the rest of the
course. The point of the above is to give a concrete example of the method of breaking multidimensional
initial data into components which evolve in a simple fashion, and then writing the solution to the original
problem as the sum of these evolved parts. Thus we decomposed x(0) according to (2), evolved each piece
separately (this only required multiplying by e3t and et, respectively), and then summed the results.

DERIVATION of the heat equation. Pages 99–100 of the textbook give a nice derivation of the heat equation
which we followed quite closely in class. The derivation in the textbook is actually a bit more general since it
allowed for heat sources located within the body. (If our sphere really were a cow, for example, these could
represent heat due to metabolisation of food or muscle contractions.) Here we shall only use the so-called
homogeneous heat equation, meaning the heat equation without sources, which we write as (we want to use
k for something else in a moment)

∂u

∂t
= D∇2u.

EXAMPLES of solutions to the one-dimensional heat equation without sources1. In this case we seek a
function u(x, t) which satisfies the equation

(3)
∂u

∂t
= D

∂2u

∂x2
.

1The point of the first example is to motivate the introduction of separated solutions, while that of the
second is to motivate the idea that a general solution can be written as a sum of separated ones.
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We need to know something more than just this equation if we wish to determine u throughout all of space
and time. By analogy with the system of ordinary differential equations above, we try specifying initial
datum2 u(x, 0) = sin kx, for some constant3. Now at t = 0, the equation (3) will then become

(4) ∂tu(x, 0) = D∂2x (sin kx) = −k2Dsin kx = −k2Du(x, 0).

This by itself does not really tell us much. However, it leads us to guess that we might be able to find a
solution to the original heat equation by requiring (4) to hold for all t, not just t = 0. This gives the equation

∂tu(x, t) = −k2Du(x, t).

Now fix some x = x0, and let u denote u(x0, t), so that the equation becomes the ordinary differential
equation

du

dt
= −k2Du.

By the theory of first-order linear equations, the solution to this will be u = Ce−k
2Dt, where C is some

constant which can be determined by evaluating both sides at t = 0:

C = Ce−k
2D·0 = u(0) = u(x0, 0) = sin kx0.

Thus we obtain, for all x0, u(x0, t) = sin kx0e
−k2Dt, which gives the function

u(x, t) = sin kxe−k
2Dt.

We must now check whether this is actually a solution to the heat equation. We have

∂u

∂t
= sin kx

(
−k2De−k2Dt

)

D
∂2u

∂x2
= D

(
−k2sin kx

)
e−k

2Dt,

which are easily seen to be equal. Thus the function u(x, t) = sin kxe−k
2Dt is a solution to the heat equation

satisfying u(x, 0) = sin kx, as desired. (Compare this to the solution to the system of ordinary differential
equations with initial datum x(0) = e1.)

Let us now consider the initial datum u = sin k1x+sin k2x, k1 6= k2. Unfortunately the above approach
does not work in this case, since

∂2xu = −k1sin k1x− k2sink2x

is not simply a multiple of u. In order to treat this case, we note that the heat equation is linear, by which
we mean that any linear combination of solutions is also a solution. To see this for the case of two solutions,
suppose that u1 and u2 are solutions of the heat equation (with the same constant D), and that a1 and a2
are constants. Then we see that

∂

∂t
(a1u1 + a2u2) = a1

∂u1
∂t

+ a2
∂u2
∂t

= a1
(
D∇2u1

)
+ a2

(
D∇2u2

)

= D∇2 (a1u1 + a2u2) ,

2The word ‘data’ is actually a Latin plural (so please never make the too-clever-by-half mistake of writing
datæ as though data were a Latin singular; the author encountered this once!). The singular is datum. One
could argue whether giving u(x, 0) is giving a singular or a plural quantity. We use the singular here because
we shall want to talk about multiple distinct data below.
3Throughout this course, when we say ‘constant’ we mean a number which does not depend on any of the
variables in the question; in other words, a quantity constant in both space and time.
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since a1 and a2, being constants, can be brought through the differentiation signs. Since our initial datum
is a sum of initial data both of which we know how to handle, this suggests that we do something similar to
what worked in the case of the system of ordinary differential equations above and work out the solution for
each of the initial data separately. More specifically, let u1 be the solution to the heat equation determined
above with u1(x, 0) = sin k1x, and u2 be that with u2(x, 0) = sin k2x, so that

u1(x, t) = sin k1xe
−k21Dt

u2(x, t) = sin k2xe
−k22Dt.

Since these are both solutions, their sum u1(x, t) + u2(x, t) will also be; moreover, at t = 0 it will agree with
the initial datum given above. Thus the solution to the heat equation with initial datum sin k1x+ sin k2x is

u(x, t) = sink1xe
−k21Dt + sin k2xe

−k22Dt.

Note the similarity to the solution to the system of ordinary differential equations above.

COMMENTARY. It should be clear from the foregoing how to handle the case of an initial datum which is
a sum of any finite number of sine functions. A review of our method shows that it also works for cosine
functions; hence we now know how to find a solution to the heat equation with initial datum any finite
sum of sine and cosine functions. By itself this is still not much use. However, it turns out that almost
any function on a finite interval (and in particular, any continuous function on a closed interval) can be
expressed as a series – an infinite sum – of sine and cosine functions. Thus, if we can find a way of expressing
our initial datum as such a sum, we can apply the above method to determine the solution for all future
times. The reason why sine and cosine functions (and, as we shall see later, Legendre polynomials and
Bessel functions) are particularly useful is that they turn out to be orthogonal with respect to certain inner
products (generalisations of the dot product we are familiar with in R2 and R3 to spaces of functions).
Recalling our method for computing y1(0), y2(0) in the first example above, we see that this should allow
us to compute the coefficients in the expansion of our initial datum as a series in sine and cosine functions
using inner products. Thus we must first discuss what we mean by an inner product, and what kind of inner
product we can put on a space of functions.

INNER PRODUCTS. We are all familiar with the dot product in R3: if v = v1i+v2j+v3k, w = w1i+w2j+w3k,
then

v ·w = v1w1 + v2w2 + v3w3.

The dot product is useful for finding projections (this is basically how we used it in the first example above).
In particular, we have

v = (v · i)i+ (v · j)j+ (v · k)k.
It would be helpful to be able to extend this formula to spaces of functions. Now a vector has only a finite
number of components while a function has essentially infinitely many components (speaking very loosely);
thus it seems reasonable that the sum over components which worked to give us the dot product of two
vectors should become an integral when we work with functions. More specifically, consider the function
space

X = {f : [a, b] → R|f is integrable and bounded};
on X we may define an inner product

(f, g) =

∫ b

a

f(x)g(x)dx.

It turns out that this inner product has many of the same properties as the dot product, and in particu-
lar can be used to separate out the different sine and cosine components of a function under appropriate
circumstances. We shall take this up on Tuesday.
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APM346, Homework 1. Solutions.

1. Calculate the indicated derivatives.

(a) d
dx

(
10x6 − 5x3 + 4x2 − 7x+ 1

)
= 60x5 − 15x2 + 8x− 7.

(b) d
dx

(
ln
[
5x2 − 3x+ 100

])
= 10x−3

5x2−3x+100 .

(c) d
dx

(
e5x

10−10x5+102
)
=
(
50x9 − 50x4

)
e5x

10−10x5+102.

(d) d
dx (sin 2x) = 2 cos 2x.

(e) d
dx (cos kx) = −ksinkx, k a constant.

(f) ∂
∂y (cos k1x sink2y) = k2 cos k1x cos k2y, k1, k2 constants.

(g)

∂

∂z

(
sin−1

(
ln
(
cos
(
tan

(
xyz + x2 + 10xy − 100

)))))

= − 1√
1− ln2 (cos (tan (xyz + x2 + 10xy − 100)))

sin
(
tan

(
xyz + x2 + 10xy − 100

))

cos (tan (xyz + x2 + 10xy − 100))

· xy sec2
(
xyz + x2 + 10xy − 100

)

= − 1√
1− ln2 (cos (tan (xyz + x2 + 10xy − 100)))

tan
(
tan

(
xyz + x2 + 10xy − 100

))

· xy sec2
(
xyz + x2 + 10xy − 100

)
.

2. Evaluate the following expressions.

(a) ∇
(
x2 + y2

)
= 2xi+ 2yj.

(b) ∇
(
x2 + y2 − 2z2

)
= 2xi+ 2yj− 4zk.

(c) div (xi + yj+ 10k) = 1 + 1 + 0 = 2.

(d) div
(
∇
(
x2 + y2 − 2z2

))
= div (2xi+ 2yj− 4zk) = 0.

(e) div (∇ (eysinx)) = div (ey cosxi+ eysinxj) = −eysinx+ eysinx = 0.

3. Evaluate the following integrals. (You must show your work to get credit.)

(a) We use integration by parts:

∫ 2π

0

x2 sinx dx = −x2 cosx
∣∣2π
0

+

∫ 2π

0

2x cosx dx = −4π2 +

(
2xsinx|2π0 −

∫ 2π

0

2sinx dx

)

= −4π2 + 2 cosx|2π0 = −4π2.

(b) We use integration by parts again:

∫ 2π

0

x sin (kx) dx = − 1

k
x cos(kx)

∣∣∣∣
2π

0

+

∫ 2π

0

1

k
cos(kx) dx = −2π

k
cos(2πk) +

1

k2
sin (kx)

∣∣∣∣
2π

0

= −2π

k
cos(2πk) +

1

k2
sin (2πk).
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(c)
∫ +∞
0

xe−x dx = −xe−x|+∞
0 +

∫ +∞
0

e−x dx = −e−x|+∞
0 = 1, where we can use L’Hôpital’s rule to

conclude lim
x→+∞

xe−x = 0.

(d) This problem can be done two ways, one using a double integration by parts, and the other (for those
who are comfortable working with complex functions) using complex exponentials. The first is as follows.
We work with indefinite integrals:

∫
ex cosx dx = ex cosx+

∫
exsinx dx

= ex cosx+

(
exsinx−

∫
ex cosx dx

)

from which we easily see that
∫
ex cosx dx = 1

2e
x (cosx+ sinx). From this it follows that

∫ 2π

0

ex cosx dx =
1

2

(
e2π − 1

)
.

The other method is as follows:

∫
ex cosx dx =

∫
ex
eix + e−ix

2
dx =

1

2

∫
e(1+i)x + e(1−i)x dx =

1

2

(
e(1+i)x

1 + i
+
e(1−i)x

1− i

)

=
1

4

(
(1− i)e(1+i)x + (1 + i)e(1−i)x

)
=

1

4
2Re (1 − i)ex (cosx+ isinx)

=
1

2
ex (cosx+ sinx) .

From this the definite integral follows as before.

(e)
∫ 2π

0
sink1x sin k2x dx, k1, k2 ∈ Z, k1 6= k2.

This integral can be evaluated by using the trigonometric identity sin asin b = 1
2 (cos(a− b)− cos(a+ b)).

In the present case, this gives

∫ 2π

0

sin k1x sin k2x dx =
1

2

∫ 2π

0

cos ((k1 − k2)x)− cos ((k1 + k2)x) dx

=
1

2

(
sin ((k1 − k2)x)

k1 − k2
− sin ((k1 + k2)x)

k1 + k2

)∣∣∣∣
2π

0

= 0,

assuming k1 6= −k2, k1, k2 6= 0, and since k1 6= k2. The case k1 = −k2 is essentially identical to k1 = k2
(since sin is odd) and is covered (up to a minus sign) by the solution to (f), and when either k1 or k2 is zero
the integral is zero. (The author apologises for these oversights in setting the original problem; he should
have written k1, k2 ∈ Z, k1, k2 > 0.)

(f) Same as (e), but with k1 = k2.
Again, we assume k1 6= 0 (otherwise the integrand is 0). In this case the identity above becomes

sin 2k1x = 1
2 (1− cos (2k1x)), and the above integral becomes

∫ 2π

0

sin 2k1x dx =
1

2

∫ 2π

0

1− cos (2k1x) dx = π,

since the integral of cos will vanish as in (e).

(g)
∫ 2π

0
sin k1x cos k2x dx, k1, k2 any two integers.
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This is very similar to (e) but uses instead the identity sina cos b = 1
2 (sin (a+ b) + sin (a− b)). The

integral becomes, for k1 6= ±k2,
∫ 2π

0

sin k1x cos k2x =
1

2

∫ 2π

0

sin ((k1 + k2)x) + sin ((k1 − k2)x) dx

= −1

2

(
cos ((k1 + k2)x)

k1 + k2
+

cos ((k1 − k2)x)

k1 − k2

)∣∣∣∣
2π

0

= 0.

If k1 = k2, then sin ((k1 − k2)x) = 0 for all x, so its integral still vanishes, while the above shows that the
remaining integral vanishes as before. If k1 = −k2 then the integral of sin ((k1 + k2)x) vanishes, while the
other integral vanishes as above. If k1 = k2 = 0 then the entire integrand vanishes. Thus the result above
holds for all k1, k2 ∈ Z.

4. Evaluate the following integrals.

(a) If R = [0, π]× [0, π], then

∫∫

R

sinx sin y dA =

∫ π

0

∫ π

0

sinx sin y dx dy

=

∫ π

0

sin y (− cosx)|π0 dy = 2

∫ π

0

sin y dy = 4.

(b)
∫∫
R
e−(x

2+y2) dA, R the unit disk in the xy-plane.
In polar coordinates, R is represented by the set {(r, θ)|r ≤ 1}, and the integral becomes

∫ 2π

0

∫ 1

0

e−r
2

r dr dθ =

∫ 2π

0

−1

2
e−r

2

∣∣∣∣
1

0

dθ = π
(
1− e−1

)
.

(c)
∫∫∫

R sin
(
x2 + y2 + z2

) 3
2 dV , R the unit ball in xyz-space.

In spherical polar coordinates, R is represented by the set {(r, θ, φ)|r ≤ 1}, and the integral becomes

∫ 2π

0

∫ π

0

∫ 1

0

sin r3 r2sin θdr dθ dφ = 2π

∫ π

0

sin θ

(
−1

3
cos r3

)∣∣∣∣
1

0

dθ

=
2π

3
(1− cos 1) (− cos θ)|π0 =

4π

3
(1− cos 1) .
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5. Consider the two-dimensional vector space of functions on the interval [0, 1]

V = {a sinπx+ b cosπx|a, b ∈ R}.

Let B = {sinπx, cos πx} ⊂ V .

(a) Prove that B is a basis for V . (Hint: Wronskian!)
The Wronskian of the functions sinπx and cosπx is given by

W (x) =

∣∣∣∣
sinπx cosπx
π cosπx −πsinπx

∣∣∣∣ = −π,

which is not zero on any interval. Thus the functions sinπx and cosπx are linearly independent on any open
interval, and hence on the interval [0, 1] itself, by the contrapositive of the proposition in the notes on the
Wronskian on the course website. Since they span the space V by definition, they must then be a basis for
V .

(b) Find the matrix representation [T ]B of the operator T in the basis B, for (i) T = d
dx ; (ii) T = d2

dx2 .
(i) We evaluate T on the basis elements:

T (sinπx) =
d

dx
sinπx = π cosπx, T (cosπx) = −πsinπx.

From this we see that (cf. the notes on linear algebra on the course website)

[T ]B =

(
0 −π
π 0

)
.

(ii) Again, we evaluate T on the basis elements:

T (sinπx) =
d

dx
π cosπx = −π2sinπx, T (cosπx) = −π2 cosπx.

From this we see that

[T ]B =

(
−π2 0
0 −π2

)
.

We note that this is the square of the matrix in (i), as it should be.

6. Consider the differential equation d2y
dx2 = −4y.

(a) Find the set of all solutions to this equation.

Writing the equation as d2y
dx2 + 4y = 0, we have the characteristic equation r2 + 4 = 0, which has the

imaginary roots r = ±2i. This means that (as we could have determined by inspection in this case) the
equation has solutions sin 2x, cos 2x; since (as we show in (b) in a moment) these are linearly independent,
the solution set is {asin 2x+ b cos 2x|a, b ∈ R}.

(b) Find a basis for this solution set. (You must prove that your answer is in fact a basis.)
We claim that {sin 2x, cos 2x} is a basis for the solution set to this equation. We know from the theory

of ordinary differential equations that the set of solutions to this equation is two-dimensional, so to show
this it suffices to show that {sin 2x, cos 2x} is linearly independent. This can be effected by computing its
Wronskian:

W (x) =

∣∣∣∣
sin 2x cos 2x
2 cos 2x −2sin 2x

∣∣∣∣ = −2,

so as in 5(a) above this set is indeed linearly independent and hence (as noted in part (a) of this problem)
a basis for the set of solutions to the equation.

10
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(c) (Optional) Can you find the set of all solutions to d2y
dx2 + 4y = sin 4x?

By the theory of ordinary differential equations, the general solution to this equation will be the sum of
a particular solution and the general solution to the corresponding homogeneous equation from (a), which
we already know. Now we note that

d2

dx2
sin 4x = −16sin4x,

so that if y = − 1
12 sin 4x,

d2y

dx2
+ 4y = − 1

12
(−16sin4x+ 4sin 4x) = sin 4x,

and the set of all solutions to d2y
dx2 + 4y = sin 4x is {− 1

12 sin 4x+ asin 2x+ b cos 2x|a, b ∈ R}.

7. Find all (a) local and (b) global maxima of f(x, y) = ey cosx on the rectangle [0, 2π]× [0, 1].
To find any local extrema, we compute the gradient and set it to zero:

∇ey cosx = −eysinxi + ey cosxj = 0.

Since ey 6= 0 for any y, this gives the system sinx = cosx = 0; but since sin 2x+cos2 x = 1, this is impossible.
Thus this function has no local extrema in the rectangle (or anywhere in the plane, for that matter).

To find global extrema, we thus need only consider the function on the boundary. Now if x = 0 or
x = 2π, we have f(x, y) = ey, which (on [0, 1]) has a minimum of 1 at y = 0 and a maximum of e at y = 1.
If y = 0 then f(x, y) = cosx, which has a maximum of 1 at x = 0 and a minimum of −1 at x = π, while if
y = 1 then f(x, y) = e cosx, which has a maximum of e at x = 0 and a minimum of −e at x = π. Putting all
of this together, we see that the global maximum of ey cosx is e, at the point (0, 1), and the global minimum
is −e, at (π, 1). (Only the global maximum was required for this problem; the author put in the solution for
the global minimum by mistake.)

11
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Summary:
• One of the main goals of this course is to understand how to write functions as series in a collection
of mutually orthogonal functions which are such that the original partial differential equation (or
whatever other problem we are dealing with) becomes simple.

• This bears some analogies to the process of diagonalising matrices and writing arbitrary vectors as
linear combinations of the eigenvectors of a matrix.

• This process – whether for matrices or for the differential operators which shall be our main concern
here – works best when we have an inner product, which gives us a way of generalising the notion of
projection and hence allows us to compute the coefficients in the series expansions mentioned above.

EXAMPLE. Consider the matrix from last time, A =

(
2 1
1 2

)
.1 We recall that this has eigenvalues 3 and 1

and corresponding eigenvectors e1 = 1√
2

(
1
1

)
and e2 = 1√

2

(
1
−1

)
, which are orthonormal. Now suppose

that we wish to solve the equation Ax = y, for some given vector y =

(
y1
y2

)
. Now since e1 and e2 span R2,

there are numbers a1 and a2 such that y = a1e1 + a2e2; in fact, we may write

y · e1 = (a1e1 + a2e2) · e1 = a1e1 · e1 + a2e2 · e1 = a2,

and similarly y · e2 = a2; thus

(1) y = (y · e1)e1 + (y · e2)e2.

Similarly, we may write x = b1e1 + b2e2; then the equation Ax = y becomes

A(b1e1 + b2e2) = b1Ae1 + b2Ae2 = 3b1e1 + b2e2 = a1e1 + a2e2.

Since {e1, e2} forms a basis for R2, we see that we must have 3b1 = a1, b2 = a2, i.e.,

x =
1

3
(y · e1)e1 + (y · e2)e2.

The main point here, though, is not this last formula, but rather that if we take what was originally a difficult
problem (solving a system of equations) and rewrite it using the eigenvectors e1 and e2, it becomes a very
simple problem. For the problems in partial differential equations which we wish to tackle, rewriting them
in terms of (what we shall term) eigenfunctions is often about the only real way to approach the problem
(at least if what we want is a formula for the solution, which is usually the case for us in this class).

COMMENTARY. To extend the above example to the problems in partial differential equations which we
wish to treat, we see that we need to extend the notion of dot product to functions, in such a way that
our expansion formulas will look like equation (1) above. The following is a particular example of such an
extension. (We shall have occasion to use others, but they will be closely related to this one.)

DEFINITION. Suppose that f, g : [a, b] → C are integrable2. We define their inner product to be the complex
number3

(f, g) =

∫ b

a

f(x)g(x) dx.

1In class I used a slightly different matrix,

(
1 2
2 1

)
. Either matrix can be used to make the points here.

2‘Integrable’ for us means that their Riemann integral exists, which in particular means that they are
bounded. It is enough to think of continuous or piecewise continuous functions for the moment.
3The integral here was motivated in the notes from last Thursday’s lecture. The complex conjugate here
can be motivated by observing that if z = α + iβ is a complex number, then zz = α2 + β2, which is the
square of the distance from (0, 0) to (α, β) in the plane; in other words,

√
zz represents the length of z when

considered as a vector in the plane.

12
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We also define the L2 norm4 of f to be

‖f‖ =

(∫ b

a

|f(x)|2 dx
) 1

2

,

where |f(x)| =
√
f(x)f(x) is the modulus of the complex number f(x).

PROPERTIES. The inner product defined above satisfies the following properties (see the review sheet on
linear algebra):

1. (αf + βg, h) = α(f, h) + β(g, h) for all α, β ∈ C and all integrable f, g, h.
2. (f, g) = (g, f) for all integrable f, g.
3. (f, f) ≥ 0 for all integrable f , and (f, f) = 0 if and only if f is zero except on a set of content zero5.
These can be proved directly from the definition of the inner product; for example, the first property

may be proved as follows:

(αf + βg, h) =

∫ b

a

(αf(x) + βg(x))h(x) dx

=

∫ b

a

αf(x)h(x) + βg(x)h(x) dx

= α

∫ b

a

f(x)h(x) dx+ β

∫ b

a

g(x)h(x) dx = α(f, h) + β(g, h).

As noted in the review sheet on linear algebra, the first and second properties show that (f, αg + βh) =
α(f, h) + β(g, h) (this can also be shewn more simply directly). We see that the inner product is linear in
the first argument and conjugate linear in the second.

BESSEL’S INEQUALITY. The inner product also satisfies the following: suppose that {e1, e2, . . .} is a collection
of pairwise orthonormal integrable functions; in other words, that

(ei, ej) =

{
0, i 6= j
1, i = j

.

Let f be any integrable function. Then we have

(2)
∑

i

|(f, ei)|2 ≤ ‖f‖2.

Intuitively, this may be understood as follows. If our above inner product works as desired, the quantities
(f, ei) will be the coefficients in the expansion of f in terms of the ei, or what amounts to the same thing,
the (scalar) projections of f along the ei; the above relation says that the sum of the squares of these
projections can be no greater than the square of the length of the function f itself. This can be understood
by considering the example in R2 of e1 = i, e2 = j, x = i+ 2j− k; in this case the left-hand expression will
be 12 + 22 = 5 while the right-hand will be 12 + 22 + (−1)2 = 6.

This example suggests something else: note that the inequality is strict because we did not include
enough vectors in our set – had we also defined e3 = k, then the left-hand side would have become 12+22+
(−1)2 = 6, the same as the right-hand side. Thus perhaps equality in (2) holds exactly when our collection
{e1, e2, . . .} has ‘enough functions’ in some sense – enough to write f as a series in the ei. This turns out to
be quite close to the truth, as we shall discuss on Thursday.

4It is possible to define Lp norms for all p ≥ 1. These are important in advanced analysis but we shall not
need them here.

13
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LOOKING FORWARD. Our goal, as stated multiple times, is to understand how to expand arbitrary functions
in series of suitable orthonormal sets of functions. We have seen that the trigonometric functions on appro-
priate intervals give orthogonal sets, and it turns out that basically all functions we shall be interested in
dealing with can be expanded in series of trigonometric functions; these are called Fourier series and are
the topic of chapter 1 in the textbook. However, later on in the course we shall be interested in series in
more general orthogonal sets, such as those arising from Bessel functions, Legendre polynomials, and spher-
ical harmonics. It turns out that all of these arise as solutions to ordinary differential equations obtained
by separating variables for one of our standard partial differential equations (Laplace’s equation, the heat
equation, and the wave equation) in different coordinate systems. In particular, the trigonometric functions
arise from separating variables for Laplace’s equation in rectangular coordinates, the Bessel functions arise
when doing so in cylindrical coordinates, and the Legendre polynomials and spherical harmonics arise when
doing so in spherical polar coordinates. Thus we shall first take some time to write down Laplace’s equation
in these three coordinate systems and discuss the kinds of ordinary differential equations which arise when
looking for their separated solutions. This will lead us to the topic of Sturm-Liouville problems, and general
expansions in terms of eigenfunctions of so-called self-adjoint differential operators. This will then allow us
to discuss expansions in the above-mentioned functions.

14
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Summary:
• Any integrable function can be expanded in a series of complete orthogonal functions, and the co-

efficient of the function ei is simply the inner product (f,ei)
(ei,ei)

, where the inner product is given by

(f, g) =
∫ b
a
f(x)g(x) dx.

• On the interval [0, 1], two complete orthogonal sets are {1, cos 2kπx, sin 2kπx|k ∈ Z, k > 0}.
• This allows us to determine the Fourier series of a function f by computing the inner products (f, 1),
(f, cos 2kπx), (f, sin 2kπx), as well as the lengths (1, 1), etc.

MORE LATER
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APM 346, Homework 2. Due Monday, May 20, at 6 AM EDT. To be marked completed/not completed.

1. Use the identity e3iθ =
(
eiθ
)3

(θ ∈ R) to find an expression for cos 3θ in terms of cos θ and sin θ.
We have

cos 3θ + isin 3θ = e3iθ =
(
eiθ
)3

= (cos θ + isin θ)3

= cos3 θ + 3 cos2 θ(isin θ) + 3 cos θ(isin θ)2 + (isin θ)3

= cos3 θ − 3 cos θsin 2θ + i(3 cos2 θsin θ − sin 3θ).

Since two complex numbers are equal if and only if their real and imaginary parts are equal, we see that

cos 3θ = cos3 θ − 3 cos θsin 2θ.

2. Find all numbers λ > 0 for which there is a nonzero function f on (0, 1) satisfying

f ′′ = −λ2f, f(0) = 0, f ′(1) = −f(1).

Also find the corresponding functions f . (Note: it is enough to find an equation which λ must satisfy. It is
in general not possible to solve this equation.)

The general solution to the given differential equation is (using x as the independent variable) f(x) =
asinλx+ b cosλx. The first boundary condition gives

f(0) = asin 0 + b cos 0 = b = 0,

so that we may write f(x) = asinλx. The second boundary condition then gives

f ′(1) = aλ cosλ = −f(1) = −asinλ.

Since we want f 6= 0 (note that this means that f and 0 are not the same function, i.e., that f is not
identically zero; it does not mean that there is no x for which f(x) = 0!), we cannot have a = 0; thus we
may cancel the a from this equation to obtain

λ = − tanλ.

Thus, if λ > 0 is any solution to this equation, then f(x) = asinλx will satisfy the given boundary value
problem for any a. (In principle, a could even be a complex number.)

3. (You need only do one of problems 3 and 4.) Suppose that An ∈ R, n = 0, 1, 2, . . ., Bn ∈ R,
n = 1, 2, . . ., are such that

x =
1

2
A0 +

∞∑

n=1

(An cos 2nπx+Bnsin 2nπx)

for x ∈ (0, 1). Find an expression for the An and Bn.
The set

{1} ∪ {cos 2nπx, sin 2nπx|n ∈ Z, n > 0}

is an orthogonal set, so we may calculate as follows, letting (f, g) =
∫ 1

0 f(x)g(x) dx denote the standard inner
product on functions:

1

2
A0 =

(x, 1)

(1, 1)

=

∫ 1

0
x dx

∫ 1

0 dx
=

1
2x

2
∣∣1
0

1
=

1

2
,
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so that A0 = 1, while if n > 0

An =
(x, cos 2nπx)

(cos 2nπx, cos 2nπx)

=

∫ 1

0

x cos 2nπxdx

∫ 1

0

cos2 2nπxdx

=

x
1

2nπ
sin 2nπx

∣∣∣∣
1

0

−
∫ 1

0

1

2nπ
sin 2nπxdx

∫ 1

0

1

2
+

1

2
cos 4nπxdx

=

1

4n2π2
cos 2nπx

∣∣∣∣
1

0

1

2

= 0,

where we have used the fact that the integral of cosine over any integer number of periods is zero, and that
cos 2nπ = 1, sin 2nπ = 0 for all integers n. Finally, we have

Bn =
(x, sin 2nπx)

(sin 2nπx, sin 2nπx)

=

∫ 1

0

xsin 2nπxdx

∫ 1

0

sin 22nπxdx

=

− 1

2πn
x cos 2πnx

∣∣∣∣
1

0

+

∫ 1

0

1

2πn
cos 2πnxdx

∫ 1

0

1

2
(1− cos 4πnx) dx

= − 1

πn
.

4. (You need only do one of problems 3 and 4.) Suppose that An ∈ C, n = 0, 1, 2, . . ., are such that

x =

∞∑

n=0

Ane
2inπx

for x ∈ (0, 1). Find an expression for the An.
Since {e2iπnx|n ∈ Z, n ≥ 0} is an orthonormal set, we may calculate as follows:

A0 = (x, 1) = 1,

while for n 6= 0,

An = (x, e2iπnx) =

∫ 1

0

xe−2iπnx dx

= − 1

2iπn
xe−2iπnx

∣∣∣∣
1

0

+

∫ 1

0

1

2iπn
e−2iπnx dx

= − 1

2iπn
+

1

4π2n2
e−2iπnx

∣∣∣∣
1

0

= − 1

2iπn
,

where we have used e2iπn = 1 for all integers n.
(Note. There was in fact a typographical error in the original problem, and the sum should have been

extended from −∞ to ∞; in other words, there is in fact no expansion of the form indicated in the problem
statement. Technically, though, this does not affect our ability to solve the problem; and anyway the above
calculation works for n < 0 just as well as for n > 0.)
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APM 346, Homework 3. Due Monday, May 27, at 6.05 AM EDT. To be marked completed/not completed.

1. Recall the following boundary-value problem on the interval [0, 1] from Homework 2:

f ′′ = −λ2f, f(0) = 0, f ′(1) = −f(1).

Show that if (λ1, f1) and (λ2, f2) are two solutions to this boundary-value problem, λ1, λ2 > 0, λ1 6= λ2,

then f1 and f2 are orthogonal with respect to the standard inner product (f, g) =
∫ 1

0
f(x)g(x) dx. (You may

use the solution posted on the course website, or work directly from the equation and boundary conditions
above.)

There are two ways of doing this problem. First, we know that we may write (letting i = 1, 2)

fi = aisinλix, λi = − tanλi.

Thus

(f1, f2) =

∫ 1

0

f(x)f2(x) dx =

∫ 1

0

a1a2sinλ1xsin λ2x dx = a1a2 ·
1

2
∈1
0 cos [(λ1 − λ2)x]− cos [(λ1 + λ2)x] dx

=
1

2
a1a2

[
sin [λ1 − λ2)x]

λ1 − λ2

∣∣∣∣
1

0

− sin [(λ1 + λ2)x]

λ1 + λ2

∣∣∣∣
1

0

]
=

1

2
a1a2

[
sin (λ1 − λ2)

λ1 − λ2
− sin (λ1 + λ2)

λ1 + λ2

]

=
1

2
a1a2

[
sinλ1 cosλ2 − cosλ1sinλ2

− tanλ1 + tanλ2
+

sinλ1 cosλ2 + cosλ1sinλ2
tanλ1 + tanλ2

]

=
1

2
a1a2

[
sinλ1 cosλ2 − cosλ1sinλ2

(−sinλ1 cosλ2 + cosλ1sinλ2)
1

cosλ1 cosλ2

+
sinλ1 cosλ2 + cosλ1sinλ2

(sinλ1 cosλ2 + cosλ1sinλ2)
1

cosλ1 cosλ2

]

=
1

2
a1a2 [− cosλ1 cosλ2 + cosλ1 cosλ2] = 0.

Alternatively, we may work directly from the equation. Since λ1 6= λ2, at least one of λ1, λ2 6= 0; we may
assume that λ1 6= 0 without loss of generality (since our inner product satisfies (f1, f2) = (f2, f1)). Then
(note that we may assume that f1 and f2 are real, but this is not really necessary; we do assume however
that λ is real, as we assumed in Homework 2)

∫ 1

0

f1(x)f2(x) dx = − 1

λ1

∫ 1

0

f ′′
1 (x)f2(x) dx = − 1

λ1

[
f ′
1(x)f2(x)

∣∣∣
1

0
−
∫ 1

0

f ′
1(x)f

′
2(x) dx

]

= − 1

λ1

[
f ′
1(x)f2(x)

∣∣∣
1

0
−
[
f1(x)f ′

2(x)
∣∣∣
1

0
−
∫ 1

0

f1(x)f ′′
2 (x) dx

]]

= − 1

λ1

[
f ′
1(x)f2(x)

∣∣∣
1

0
− f1(x)f ′

2(x)
∣∣∣
1

0
− λ2

∫ 1

0

f1(x)f2(x) dx

]
,

whence we see that, solving for
∫ 1

0 f1(x)f2(x) dx,

(
1− λ2

λ1

)∫ 1

0

f1(x)f2(x) dx = − 1

λ1

[
−f1(1)f2(1)− f1(1)

[
−f2(1)

]]
= 0,

where we have used the boundary conditions. Since λ1 6= λ2, this shows that (f1, f2) =
∫ 1

0 f1(x)f2(x) dx = 0,
as desired.
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2. Solve the following boundary-value problem on [0, 1]× [0, 1]:

∇2u = 0, f(x, 0) =

{
1, x ∈ [0, 12 )
0, x ∈ (12 , 1]

, f(x, 1) =

{
0, x ∈ [0, 12 )
1, x ∈ (12 , 1]

,

f(0, y) = 0, f(1, y) = 0.

(You may use the expansion of f(x, 0) given in the lecture notes.)

[Erratum: please read ‘u’ for ‘f ’ at each occurence in the foregoing. We apologise and hope this did not
cause too much confusion.]

We begin by looking for separated solutions: suppose that u(x, y) = X(x)Y (y); then we have

X ′′(x)
X(x)

+
Y ′′(y)
Y (y)

= 0,

whence as discussed in lecture we must have X ′′ = −λ2X , Y ′′ = λ2Y , for some constant λ (which will be

real since the boundary conditions force us to have X′′

X < 0, and which we may then take to be positive1).
These equations have solutions X = aλ cosλx + bλsinλx, Y = cλcoshλy + dλsinhλy. Thus we posit that
the full solution will have the form

u =
∑

λ

(aλ cosλx+ bλsinλx) (cλcoshλy + dλsinhλy) .

We may now apply the boundary conditions to determine λ and the coefficients in the above expansion.
First of all, we apply the homogeneous conditions:

u(0, y) =
∑

λ

aλ (cλcoshλy + dλsinhλy) = 0

whence we take aλ = 0;

u(1, y) =
∑

λ

bλsinλ (cλcoshλy + dλsinhλy) = 0,

whence we take λ = nπ, n ∈ Z, n > 0. Absorbing bλ by writing

αn = bnπcnπ, βn = bnπdnπ ,

we may now write

u =

∞∑

n=1

sinnπx (αncoshnπy + βnsinhnπy) .

We may now apply the other boundary conditions:

u(x, 0) =
∞∑

n=1

sinnπx (αn) =

{
1, x ∈ [0, 12 )
0, x ∈ (12 , 1]

We let h(x) denote the function on the right-hand side above. Since, as discussed in lecture, the set
{sinnπx|n ∈ Z, n > 0} is complete on [0, 1], and since it is also orthogonal2, we may calculate αn as
follows (exactly as was done in lecture):

αn =
(u, sinnπx)

sinnπx, sinnπx)
=

∫ 1

0 h(x)sinnπx dx∫ 1

0 sin 2nπxdx
=

∫ 1
2

0 sinnπxdx
∫ 1

0
1
2 (1− cos 2nπx) dx

=
− 1
nπ cosnπx

∣∣ 12
0

1
2

= − 2

nπ

[
cos

nπ

2
− 1
]
.

1It should be noted that in principle λ = 0 should also be considered. However, it is readily seen that the
solution for X in this case is of the form ax+ b, which cannot satisfy the boundary conditions at (0, y) and
(1, y) unless a = b = 0 and may thus be dropped.
2The instructor thinks he may have forgotten to demonstrate this point in class. It may be shewn easily as

follows:
∫ 1

0
sinnπxsinmπx = 1

2

[
sin [(n−m)πx]

n−m

∣∣∣
1

0
− sin [(n+m)πx]

n+m

∣∣∣
1

0

]
= 0.
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Finally, the last boundary condition gives

u(x, 1) =

∞∑

n=1

sinnπx (αncoshnπ + βnsinhnπ) = 1− h,

whence we have

αncoshnπ + βnsinhnπ =
(1− h, sinnπx)

sinnπx, sinnπx)
=

(1, sinnπx)− (h, sinnπx)

(sinnπx, sinnπx)

= 2

∫ 1

0

sinnπxdx − αn = − 2

nπ
cosnπx|10 − αn

= − 2

nπ
[(−1)n − 1]− 2

nπ

[
1− cos

nπ

2

]
= − 2

nπ

[
(−1)n − cos

nπ

2

]
,

whence

βn = −αn cothnπ−
2

nπsinhnπ

[
(−1)n − cos

nπ

2

]
= − 2

nπsinhnπ

[
coshnπ

(
1− cos

nπ

2

)
+ (−1)n − cos

nπ

2

]
.

Thus we have finally the grand expression3

u(x, y) =

∞∑

n=1

2

nπ

[(
1− cos

nπ

2

)
coshnπy +

1

sinhnπ

(
coshnπ

(
cos

nπ

2
− 1
)
+ cos

nπ

2
− (−1)n

)
sinhnπy

]

· sinnπx.

3. (a) Write x4 on (−1, 1) as a series of Legendre polynomials. (Hint: the series has only finitely many
terms. But you need to prove this!)

(b) (Optional) Is the series expansion from (a) valid outside of the interval (−1, 1)? Is this likely to
matter for our applications of Legendre polynomials?

(a) We have the first five Legendre polynomials (see p. 254 in the textbook)

P0(x) = 1, P1(x) = x, P2(x) =
3

2
x2 − 1

2
,

P3(x) =
5

2
x3 − 3

2
x, P4(x) =

35

8
x4 − 15

4
x2 +

3

8
.

Thus we may write x2 = 2
3

(
P2 +

1
2P0

)
, whence

x4 =
8

35

(
P4 +

15

4
x2 − 3

8
P0

)
=

8

35

(
P4 +

5

2

(
P2 +

1

2
P0

)
− 3

8
P0

)

=
8

35

(
P4 +

5

2
P2 +

7

8
P0

)
=

8

35
P4 +

4

7
P2 +

1

5
P0.

3This is typical of the kinds of solutions one obtains by separation of variables. We should get some
satisfaction out of our ability to construct such an expression! The author once read a biography of one Hugh
Nibley (“A Consecrated Life”, probably published by Deseret Book in 2002 or 2003, though the remaining
bibliographical details escape me at the moment) in which he is reported to have written to his mother during
training in meteorology (if my memory serves me correctly) in the US military prior to deployment in World
War II, expressing the following sentiment: “We have become quite the little mathematician, and work great
big problems sometimes passing within sight, almost, of the correct answer”! One of the author’s colleagues
at UC Berkeley expressed a similar sentiment regarding their common graduate quantum mechanics class,
that she was learning how to actually solve quantum mechancis problems. For those of you who go on to
study electrodynamics at the graduate level, the experience gained in producing solutions of this type will
be extremely useful.
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Alternatively, we may use the fact that the Legendre polynomials are orthogonal on the interval [−1, 1]
– since we have not yet discussed this we shall omit it for the moment. (The above calculation shows that
the expansion can have only finitely many terms.)

(b) [NB This was added when it was anticipated that we would be able to discuss the orthogonality of
the Legendre polynomials on [−1, 1] before this homework was due. In that case, the point was that the
expression in (a) would be derived using our general orthogonal function theory, in the which case it would
not be clear a priori that it would hold outside of [−1, 1]. To prove that it does hold everywhere, though,
it would be sufficient to note that polynomials equal on an interval are equal on the entire real line. This
is not relevant for our applications of Legendre polynomials, though, since (as we shall see shortly) we are
interested in Legendre polynomials of cos θ, and cos θ ∈ [−1, 1] for all θ.]
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Summary:
• When solving problems with boundary data specified on circles, cylinders, or spheres, it is useful to
work in coordinate systems adapted to the boundary surfaces at hand.

• The gradient in cylindrical coordinates is given by

∇f =
∂f

∂ρ
ρ+

1

r

∂f

∂φ
φ+

∂f

∂z
k,

and in spherical coordinates by

∇f =
∂f

∂r
r+

1

r

∂f

∂θ
θ+

1

rsin θ

∂f

∂φ
φ.

• The divergence in cylindrical coordinates of a vector field F = Fρρ+ Fφφ+ Fzk is given by

∂Fρ
∂ρ

+
1

ρ
Fρ +

1

ρ

∂Fφ
∂φ

+
∂Fz
∂z

,

and the divergence in spherical coordinates of a vector field F = Frr+ Fθθ+ Fφφ is given by

∂Fr
∂r

+
2

r
Fr +

1

r

∂Fθ
∂θ

+
1

r
cot θFθ +

1

rsin θ

∂Fφ
∂φ

.

• In cylindrical coordinates, Laplace’s equation becomes

∂2u

∂ρ2
+

1

ρ

∂u

∂ρ
+

1

ρ2
∂2u

∂φ2
+
∂2u

∂z2
= 0,

and in spherical coordinates,

∂2u

∂r2
+

2

r

∂u

∂r
+

1

r2
∂2u

∂θ2
+

cot θ

r2
∂u

∂θ
+

1

r2sin 2θ

∂2u

∂φ2
= 0.

• When we separate variables in Laplace’s equation in spherical coordinates, we get solutions u = RΘΦ,
where R, Θ, and Φ are of the following form:

R = arℓ + br−(ℓ+1), Θ = Pmℓ (cos θ), Φ = c cosmθ + dsinmθ,

where ℓ and m are nonnegative integers and Pmℓ is a Legendre function. The simplest case is when
m = 0, in the which case we write Θ = Pℓ(cos θ), where Pℓ is the Legendre polynomial of degree ℓ.

MOTIVATION. We have by now seen a few examples of the use of the separation-of-variables technique to
solve Laplace’s equation on a square. Exactly similar methods would work to solve it on a rectangle, and in
three (or even higher) dimensions we could solve it on a cube with exactly analogous techniques. Suppose
however that our boundary data were given on a circle, or a sphere – this would be a very different matter.
Thinking back to our general series solution to Laplace’s equation on the unit square,

u(x, y) =

∞∑

n=1

sinnπx (ansinhnπy + bncoshnπy) ,

if we were given boundary data on a circle, we would need to satisfy a requirement of the form

u(x,
√
1− x2) = f(x) =

∞∑

n=1

sinnπx
(
ansinhnπ

√
1− x2 + bncoshnπ

√
1− x2

)
,
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and now not only does it look hopeless to try to integrate this series against sinmπx, it seems pretty clear
that that is not even the right thing to try since now y depends on x rather than being constant, and it is
not at all clear that integrating against sinmπx will allow us to deduce the expansion coefficients an and bn.
Thus it seems that in cases like this something else is required. It turns out that the correct way forwards
is to do a change of variables and work in polar, cylindrical, or spherical coordinates. This is analogous to
how we change integrals to integrate over circular or spherical regions in multivariable calculus.

NOTE. The derivations of the expressions for the gradient and divergence below are rather technical. Since
in this class we only really need the end results of these derivations, i.e., the expressions for the Laplacian
in spherical and cylindrical coordinates, the derivations themselves are of secondary importance and may
be skipped without essential loss of continuity. They are given here for the sake of completeness, and also
because the author feels that the existence (at least) of the techniques demonstrated is worth knowing.

The main subject-matter of the course continues on p. 6 below.

GRADIENT IN GENERAL COORDINATE SYSTEMS. Let f : Rn → R be a differentiable function (one
can think of n = 2 or n = 3 if one likes). The gradient of f is defined to be the vector ∇f in Rn such that,
for any unit vector n, the rate of change of f in the direction n is equal to n · ∇f ; in other words, such that

(1) lim
h→0

f(x+ hn)− f(x)

h
= n · ∇f(x).

In rectangular coordinates in R3, the gradient has the well-known expression

∇f(x) = ∂f

∂x
i+

∂f

∂y
j+

∂f

∂z
k.

Now fix some point x ∈ Rn and suppose that γ : (−ǫ, ǫ) → Rn (for some ǫ > 0) is such that γ(0) = x,
γ′(0) = n (where γ′ denotes the derivative of γ with respect to its parameter). Then by the chain rule we
see that

d

dt
f(γ(t))

∣∣∣∣
t=0

=

n∑

i=1

∂f

∂xi

∣∣∣∣
x

dγi

dt

∣∣∣∣
t=0

= γ′(0) · ∇f(x) = n · ∇f(x);

in other words, to determine n · ∇f(x), we do not need to use the straight-line path in the definition in (1)
above; differentiating along any other curve which passes through the point in the correct direction with
unit speed (i.e., satisfying γ′(0) = n; unit speed means that |γ′(0)| = |n| = 1) will also do.

In particular, let us consider how to express the gradient in curvilinear coordinates. Suppose that
y1, . . . , yn is a set of coordinates on some (open) subset of Rn – this means that we have two sets of
functions (letting x1, . . . , xn denote the standard coordinates on Rn)

y1 = y1(x1, . . . , xn),

y2 = y2(x1, . . . , xn),

...

yn = yn(x1, . . . , xn),

x1 = x1(y1, . . . , yn),

x2 = x2(y1, . . . , yn),

...

xn = xn(y1, . . . , yn);

if we think of spherical coordinates on R3, for example (and readers who feel uncomfortable with the level of
generality are highly advised to think only of spherical or cylindrical coordinates in the following), we have

r =
√
x2 + y2 + z2,

θ = arctan

√
x2 + y2

z
,

φ = ± arctan
y

x
,

x = rsin θ cosφ,

y = rsin θsinφ,

z = r cos θ,

where the ± in the equation for φ is the normal ambiguity in determining φ from the ratio y
x .
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Let us now fix some point x0 ∈ Rn which has coordinates (y10 , y
2
0 , . . . , y

n
0 ). Now for each j = 1, 2, . . . , n

we have the curve

γj(t) =
(
x1(y10 , . . . , y

j
0 + t, . . . , yn0 ), x

2(y10 , . . . , y
j
0 + t, . . . , yn0 ), . . . , x

n(y10 , . . . , y
j
0 + t, . . . , yn0 )

)
,

which is just the curve obtained by holding all but the jth coordinate constant and letting the jth coordinate

change at unit speed. The unit tangent vector to this curve at t = 0,
γ′

j(0)

|γ′
j
(0)| , is called the unit coordinate

vector in the jth direction at the point x; we denote it by yj . It is not hard to see that the vector yj is the

unit normal to the surface yj = yj0 passing through the point x. Calculating the gradient in the y coordinate
system means representing ∇f in the basis {yj} at each point. For simplicity in these calculations, we shall
when convenient reparametrise the above curves by arclength and let γj(s) denote the j curve parametrised

by arclength s(t) =
∫ t
0 |γ′

j(t
′)|dt′; then we have simply yj =

dγj

ds .
For example, in spherical coordinates we have the three curves and unit vectors

γ1(t) = ((r0 + t)sin θ0 cosφ0, (r0 + t)sin θ0sinφ0, (r0 + t) cos θ0)

γ2(t) = (r0sin (θ0 + t) cosφ0, r0sin (θ0 + t)sin φ0, r0 cos(θ0 + t))

γ3(t) = (r0sin θ0 cos(φ0 + t), r0sin θ0sin (φ0 + t), r0 cos θ0)

r = sin θ0 cosφ0i+ sin θ0sinφ0j+ cos θ0k

θ = cos θ0 cosφ0i+ cos θ0sinφ0j− sin θ0k

φ = −sinφ0i+ cosφ0j

and the reparametrisation by arclength can be obtained by noting that γ1(t) = r0r+ tr, and hence is already
parametrised by arclength; that γ2(t) represents a circle of radius r0, so an arclength parameter is s = r0t;
and that γ3(t) represents a circle of radius r0sin θ0, so that an arclength parameter is s = r0sin θ0t, so that
finally we have the parametrisations by arclength –

γ1(s) = ((r0 + s)sin θ0 cosφ0, (r0 + s)sin θ0sinφ0, (r0 + s) cos θ0)

γ2(s) =

(
r0sin

(
θ0 +

s

r0

)
cosφ0, r0sin

(
θ0 +

s

r0

)
sinφ0, r0 cos

(
θ0 +

s

r0

))

γ3(s) =

(
r0sin θ0 cos

(
φ0 +

s

r0sin θ0

)
, r0sin θ0sin

(
φ0 +

s

r0sin θ0

)
, r0 cos θ0

)
.

The vectors {r, θ,φ} are seen to give an orthonormal basis for R3 for any values of θ0 and φ0.
Returning to our general picture, let us now assume that (as for the case of spherical and – it can be

shewn – cylindrical coordinates) the vectors yj are all mutually orthogonal (and hence orthonormal since
they have unit length by construction). Then we have simply

∇f(x0) = (y1 · ∇f(x0))y1 + · · ·+ (yn · ∇f(x0))yn.

Now by our work above, we have (since by the definition of arclength, we have ds
dt = |γ′

j |, so dt
ds = 1

|γ′
j
|)

yj · ∇f(x0) =
d

ds
(f(γj(s)))

∣∣∣∣
s=0

=
d

dt
(f(γj(t)))

∣∣∣∣
t=0

dt

ds

∣∣∣∣
s=0

=
1

|γ′
j(0)|

d

dt
(f(γj(t)))

∣∣∣∣
t=0

=
1

|γ′
j(0)|

n∑

i=1

∂f

∂xi
dγij
dt

∣∣∣∣∣
t=0

=
1

|γ′
j(0)|

n∑

i=1

∂f

∂xi
∂xi

∂yj

∣∣∣∣∣
x=x0

=
1

|γ′
j(0)|

∂f

∂yj

∣∣∣∣
(yi0)

.
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Applying this formula to the special case of spherical coordinates, we see first of all that (the derivatives
are with respect to t, not s)

|γ′
1(0)| = 1, |γ′

2(0)| = r0, |γ′
3(0)| = r0sin θ0.

Thus we obtain

y1 · ∇f(x0) = r · ∇f(x0) =
∂f

∂r
,

y2 · ∇f(x0) = θ · ∇f(x0) =
1

r

∂f

∂θ
,

y3 · ∇f(x0) = φ · ∇f(x0) =
1

rsin θ

∂f

∂φ
,

where all quantities are to be evaluated at the point (r0, θ0, φ0). Thus we have finally

∇f =
∂f

∂r
r+

1

r

∂f

∂θ
θ +

1

rsin θ

∂f

∂φ
φ.

Similarly, in cylindrical coordinates we have the three curves and unit vectors

γ1(t) = ((ρ0 + t) cosφ0, (ρ0 + t)sinφ0, z)

γ2(t) = (ρ0 cos (φ0 + t) , ρ0sin (φ0 + t) , z)

γ3(t) = (ρ0 cosφ0, ρ0sinφ0, z + t)

ρ = cosφ0i+ sinφ0j

φ = −sinφ0i+ cosφ0j

z = k

and
|γ′

1(0)| = 1, |γ′
2(0)| = ρ0, |γ′

3(0)| = 1,

so that

∇f =
∂f

∂ρ
ρ+

1

ρ

∂f

∂φ
φ+

∂f

∂z
k.

DIVERGENCE. For this section we shall work exclusively in R3. Recall that the divergence of a vector field
F = Fxi+ Fyj+ Fzk in R3 is defined by

divF =
∂Fx
∂x

+
∂Fy
∂y

+
∂Fz
∂z

,

and that we have the divergence theorem
∫∫∫

V

divFdV =

∫∫

∂V

F · ndS,

where n represents the outwards unit normal to the boundary ∂V of V .
We also note for future reference that, given a general coordinate system {yj} as above, the area element

in a surface of constant coordinate yj is given by

Aj := |γ′
i × γ′

k|,
where i and k are the two elements of {1, 2, 3} not equal to j. Thus, for example, in the case of spherical
coordinates (recalling the formula |A×B| = |A||B|sin θAB, where θAB is the angle between A and B, and
that the vectors γ′

j are all mutually orthogonal so sin θγ′
i
γ′

k
= 1 for all i and k, so that |γ′

i × γ′
j| = |γ′

i||γ′
j |;

this formula makes sense when we consider that we are taking the area of a small rectangle whose sides have
length |γ′

i| and |γ′
j |), the area elements in surfaces of constant r, θ, and φ are given respectively by

|γ′
2 × γ′

3| = r2| cos θ cosφi + cos θsinφj− sin θk|| − sin θsinφi+ sin θ cosφj|
= r2sin θ,

|γ′
1 × γ′

3| = |sin θ cosφi + sin θsinφj + cos θk|| − rsin θsinφi + rsin θ cosφj|
= rsin θ,

|γ′
1 × γ′

2| = |sin θ cosφi + sin θsinφj + cos θk||r cos θ cosφi+ r cos θsinφj− rsin θk|
= r.
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Let us now return to the case of a general coordinate system, but still assume it to be orthogonal
(meaning that the vectors yj are mutually orthogonal at all points of R3), pick some point x0 ∈ R3 with
coordinates (yi0), and apply the divergence theorem to the small curvilinear cube given by

V = [y10 , y
1
0 +∆y1]× [y20 , y

2
0 +∆y2]× [y30 , y

3
0 +∆y3].

Then, by the change-of-variables formula and the mean value theorem for integrals, there will be some point
(yi∗) in this cube such that ∫∫∫

V

divFdV = divF(yi∗)J∆y
1∆y2∆y3,

where J is the Jacobian of the coordinate transformation x 7→ y; we note that J = |γ′
1 · (γ′

2 × γ′
3) | =

|γ′
1||γ′

2||γ′
3|, since the vectors are all orthogonal.

Let us now consider the right-hand side of the divergence theorem. The cube given above has evidently
six faces; these can be grouped into three pairs, the treatment of each of which is analogous. Let us work
with the pair

{y10} × [y20 , y
2
0 +∆y2]× [y30 , y

3
0 +∆y3] ∪ {y10 +∆y1} × [y20 , y

2
0 +∆y2]× [y30 , y

3
0 +∆y3].

The unit normal vector on the second part of this pair will simply be the vector y1, while that on the first
will be (since we need the outer normal in the divergence theorem) −y1; thus the integral on the right-hand
side of the divergence theorem corresponding to these two surfaces is equal to (we let F j = yj · F)

∫ y20+∆y2

y20

∫ y30+∆y3

y30

F 1(y10 +∆y1, y2, y3)A1(y
1
0 +∆y1, y2, y3)dy3dy2

−
∫ y20+∆y2

y20

∫ y30+∆y3

y30

F 1(y10 , y
2, y3)A1(y

1
0 , y

2, y3)dy3dy2

=

∫ y20+∆y2

y20

∫ y30+∆y3

y30

(
F 1A1

)
(y10 +∆y1, y2, y3)−

(
F 1A1

)
(y10 , y

2, y3)dy2dy3

=

∫ y20+∆y2

y20

∫ y30+∆y3

y30

∂
(
F 1A1

)

∂y1

∣∣∣∣∣
(y10,y

2,y3)

∆y1 + o(∆y1)dy2dy3

=


 ∂

(
F 1A1

)

∂y1

∣∣∣∣∣
(y10,y

2
∗,y

3
∗)

∆y1 + o(∆y1)


∆y2∆y3,

where o(h) represents a quantity which satisfies

lim
h→0

o(h)

h
= 0,

and we have again used the mean value theorem for integrals. (Here, and below, in order to keep the notation
from becoming too cumbersome we shall use (yi∗) to denote any point that lies in the above cube; it may
represent multiple different points on the same line. This will not ultimately cause any troubles since we
will take a limit which forces (yi∗) → (yi0) at the end.) The other two pairs are treated similarly, giving rise
finally to the equation

divF(yi∗)J∆y
1∆y2∆y3 =


 ∂

(
F 1A1

)

∂y1

∣∣∣∣∣
(y10,y

2
∗,y

3
∗)

∆y1 + o(∆y1)


∆y2∆y3

+


 ∂

(
F 2A2

)

∂y2

∣∣∣∣∣
(y1∗,y

2
0,y

3
∗)

∆y2 + o(∆y2)


∆y1∆y3

+


 ∂

(
F 3A3

)

∂y3

∣∣∣∣∣
(y1∗,y

2
∗,y

3
0)

∆y3 + o(∆y3)


∆y1∆y2.
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If we now divide through by J∆y1∆y2∆y3 and take the limit as ∆y1,∆y2,∆y3 → 0,1 we obtain finally the
expression (since all points (yi∗) must go to (yi0) in this limit)

divF =
1

J

(
∂
(
F 1A1

)

∂y1
+
∂
(
F 2A2

)

∂y2
+
∂
(
F 3A3

)

∂y3

)
.

In particular, in spherical coordinates we have

J = r2sin θ, A1 = r2sin θ, A2 = rsin θ, A3 = r,

whence we obtain (writing F = Frr+ Fθθ+ Fφφ)

divF =
1

r2sin θ

(
∂
(
r2sin θFr

)

∂r
+
∂ (rsin θFθ)

∂θ
+
∂ (rFφ)

∂φ

)

=
∂Fr
∂r

+
2

r
Fr +

1

r

∂Fθ
∂θ

+
1

r
cot θFθ +

1

rsin θ

∂Fφ
∂φ

.

Similarly, for cylindrical coordinates we have the area elements

A1 = | − ρsinφi+ ρ cosφj||k| = ρ,

A2 = | cosφi + sinφj||k| = 1,

A3 = | cosφi + sinφj|| − ρsinφi + ρ cosφj| = ρ,

while J = r; thus we have the formula (writing F = Fρρ+ Fφφ+ Fzk)

divF =
1

ρ

(
∂ (ρFρ)

∂ρ
+
∂Fφ
∂φ

+
∂ (ρFz)

∂z

)

=
∂Fρ
∂ρ

+
1

ρ
Fρ +

1

ρ

∂Fφ
∂φ

+
∂Fz
∂z

.

Finally, putting all of this together with the expressions for the gradients derived above gives the following
expressions for the Laplacian in spherical and cylindrical coordinates:

∇2u =
∂2u

∂r2
+

2

r

∂u

∂r
+

1

r2
∂2u

∂θ2
+

cot θ

r2
∂u

∂θ
+

1

r2sin 2θ

∂2u

∂φ2
,

∇2u =
∂2u

∂ρ2
+

1

ρ

∂u

∂ρ
+

1

ρ2
∂2u

∂φ2
+
∂2u

∂z2
.

SEPARATION OF VARIABLES IN SPHERICAL COORDINATES. Consider now Laplace’s equation in
spherical coordinates,

(2)
∂2u

∂r2
+

2

r

∂u

∂r
+

1

r2
∂2u

∂θ2
+

cot θ

r2
∂u

∂θ
+

1

r2sin 2θ

∂2u

∂φ2
= 0.

As we did when treating Laplace’s equation in rectangular coordinates, we begin by seeking simple solutions
of the form

u = R(r)Θ(θ)Φ(φ),

1Note that there is one other subtle point which must be dealt with here, namely whether the quantities
o(∆y1)
∆y1 etc. go to zero uniformly in the other ∆yi. They will if we assume that the vector field F possesses

continuous second-order derivatives.
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in the hopes that the general solution can be expressed in a series of such solutions. Substituting this into
equation (2) and dividing by u, we obtain (here prime denotes differentiation with respect to the whatever
single variable the function depends on; e.g., R′ = dR

dr )

R′′

R
+

2

r

R′

R
+

1

r2

(
Θ′′

Θ
+ cot θ

Θ′

Θ
+

1

sin 2θ

Φ′′

Φ

)
= 0.

Now we see that of all the terms on the left-hand side, only Φ′′

Φ depends on φ; hence it must be constant.

(Somewhat more explicitly, note that we may solve the above equation for Φ′′

Φ , obtaining

Φ′′

Φ
= −sin 2θ

(
r2
R′′

R
+ 2r

R′

R
+

Θ′′

Θ
+ cot θ

Θ′

Θ

)
;

now the right-hand side of the above expression does not depend on φ, and hence neither can the left-
hand side, i.e., Φ′′

Φ is constant, as claimed.) We would like to know something about this constant before
proceeding further. Suppose that we are interested in solving Laplace’s equation on a ball (the interior of a
sphere): then the solution must be valid, continuous, and single-valued for all values of the angle φ. Since
increasing φ by 2π leaves us at the same point, out solution must be periodic in φ with angle 2π. Since Φ
is the only part of the solution depending on φ, this means that Φ must itself be periodic with period 2π.
Now we know that if Φ′′

Φ is positive, then Φ will be a linear combination of sinh and cosh, and hence will

not be periodic; thus Φ′′

Φ must be zero or negative. If it is zero, then it must be of the form a+ bφ; again,
φ is not periodic, and hence we must have b = 0, i.e., in this case Φ must be a constant. (This corresponds
to what is called an azimuthally symmetric solution; we shall have more to say about this when we discuss
Legendre’s equation and Legendre polynomials shortly.) Otherwise, Φ′′

Φ must be negative, and we may write
it as −m2 for some positive real number m. (Choosing m > 0 is simply a convention; we could as well have
chosen m < 0; but we cannot have both. Here we choose m > 0.) Thus Φ′′ = −m2Φ, which has as a general
solution Φm = am cosmφ+ bmsinmφ. Since Φm must have period 2π (general periodicity is not enough), we
must actually have m ∈ Z. Thus the φ dependence of our solution will be of the form am cosmφ+ bmsinmφ
(note that we could also have used the complex basis eimφ).2

Substituting Φ′′

Φ = −m2 back into Laplace’s equation, and multiplying by r2, we obtain

r2
R′′

R
+ 2r

R′

R
+

(
Θ′′

Θ
+ cot θ

Θ′

Θ
− m2

sin 2θ

)
= 0.

Again, the first of these two terms depends only on R, and the second depends only on Θ, which means (as
with Φ) that each of them must be constant. Let us let α3 denote the term in parentheses, so that we obtain
for R the equation

r2
R′′

R
+ 2r

R′

R
= −α,

or

r2R′′ + 2rR′ + αR = 0.

2As hinted above, and mentioned in somewhat greater detail in class, this form for Φ is contingent on the
region over which we are solving containing a full range of angles φ. Should we be solving only on a wedge, for
example, then not only would we no longer necessarily have m ∈ Z, we might actually need to consider also
the exponential solutions for Φ – at least in principle. In this case, we would need boundary conditions on the
constant-φ boundaries, much as we have boundary conditions on the constant-y and constant-x boundaries
in the problems we have done in rectangular coordinates. For the moment, though, to keep the discussion
simple, we shall stick with this form for Φ.
3It would be more natural to denote this constant by −α, but since the author was careless and denoted it
by α in the lecture, it seems prudent to keep that convention here. At any rate, as noted in lecture and as
will be pointed out shortly, α itself is not really the fundamental quantity; ℓ is much more fundamental.
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The form of this equation suggests that it should possess power-law solutions; thus let us try to find solutions
of the form R = rℓ, for some ℓ (which at present we know nothing about). Substituting this expression in
for R, we obtain

r2
(
ℓ(ℓ− 1)rℓ−2

)
+ 2r

(
ℓrℓ−1

)
+ αrℓ = ℓ(ℓ− 1)rℓ + 2ℓrℓ + αrℓ

= [ℓ(ℓ+ 1) + α] rℓ = 0,

from which we see that ℓ must satisfy the equation ℓ(ℓ+1) = −α. This is a quadratic equation with solutions

ℓ = −1

2
± 1

2
(1− 4α)

1
2 .

(Note that these may be complex.) From this we obtain also the result that if ℓ is one solution to ℓ(ℓ+1) = −α,
then −(ℓ+ 1) is the other solution. Thus in general we have the solution

Rℓ = aℓr
ℓ + bℓr

−(ℓ+1).

Repeated roots occur when α = 1
4 ; and if α > 1

4 the roots will be complex: while the expressions rℓ and

r−(ℓ+1) can still be defined in this case, they are not as simple. For reasons which shall become apparent when
we study Legendre’s equation in a moment, we are interested mostly in cases in which ℓ is a nonnegative
integer. Thus (as with our choice for m above) we shall for the moment restrict to this case. Thus we
consider only α which are of the form −ℓ(ℓ + 1) for some ℓ ∈ Z, ℓ ≥ 0. (It is because of this that we said
above that ℓ is more fundamental than α, so that our use of α instead of −α was not that important.)

Having solved the equations for Φ and R, let us now treat the equation for Θ. This is the most
interesting of them all and will introduce us to the field of orthogonal polynomials through the so-called
Legendre polynomials.

Setting α = −ℓ(ℓ+ 1), we see that we obtain for Θ the equation

(3) Θ′′ + cot θΘ′ +

(
ℓ(ℓ+ 1)− m2

sin 2θ

)
Θ = 0.

Unfortunately, as it stands there is no clear way to approach this equation, since while it is a second-order
linear ordinary differential equation it has variable coefficients. It turns out to be useful to make the change
of variables x = cos θ (here x does not refer to the Cartesian coordinate corresponding to the spherical
coordinate system we are using – that would be rsin θ cosφ); note that this implies that x ∈ [−1, 1]. For this
change of variables, the chain rule gives (for some function f)

df

dθ
=
df

dx

dx

dθ
= −sin θ

df

dx
,

d2f

dθ2
=

d

dθ

(
−sin θ

df

dx

)

= − cos θ
df

dx
− sin θ

(
−sin θ

d2f

dx2

)
= −x df

dx
+ (1− x2)

d2f

dx2
,

whence we see that equation (3) becomes, letting P (x) be the function of x corresponding to Θ(θ) (and since
cot θsin θ = cos θ = x in the second term in that equation)

(1− x2)
d2P

dx2
− x

dP

dx
− x

dP

dx
+

(
ℓ(ℓ+ 1)− m2

1− x2

)
P = (1 − x2)P ′′ − 2xP ′ +

(
ℓ(ℓ+ 1)− m2

1− x2

)
P = 0.

This equation is called Legendre’s equation, and the solutions for nonnegative integers ℓ and m are called
the associated Legendre functions. Since x = cos θ ∈ [−1, 1], it is an equation on [−1, 1].

Let us consider the special case m = 0; in this case there is no φ dependence and our solution is
azimuthally symmetric. The equation in this case is simply

(4) (1− x2)P ′′ − 2xP ′ + ℓ(ℓ+ 1)P = 0.
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We shall look for a solution P which has a power series expansion around x = 0; in other words, we look for
a solution

P =

∞∑

n=0

anx
n.

Substituting this expression in to the above equation, we obtain

0 =
∞∑

n=0

(1− x2)ann(n− 1)xn−2 − 2xnanx
n−1 + ℓ(ℓ+ 1)anx

n

=

∞∑

n=0

an+2(n+ 2)(n+ 1)xn − ann(n− 1)xn − 2nanx
n + ℓ(ℓ+ 1)anx

n

=
∞∑

n=0

(an+2(n+ 2)(n+ 1) + an (ℓ(ℓ+ 1)− n(n+ 1))) xn,

from which we obtain the recurrence relation

an+2 = an
n(n+ 1)− ℓ(ℓ+ 1)

(n+ 2)(n+ 1)
.

We see that this will determine all even coefficients a2k given a0, and all odd coefficients a2k+1 given a1; since
we started with a second-order differential equation, it is natural that we have two undetermined coefficients.
(Another way of looking at it is to think of a0 and a1 as being the coefficients in the linear combination
giving the general solution to the equation.) Moreover, if a0 = 0, then all even coefficients will vanish, and
if a1 = 0 then all odd coefficients will vanish.

We note something else about this recurrence relation: If n(n + 1) = ℓ(ℓ + 1) for some n, then an+2

and hence an+2k for all k > 0 will vanish. This means that if n(n + 1) = ℓ(ℓ + 1) for some odd integer n,
then there will be only finitely many odd-power terms in the power series, while if n(n + 1) = ℓ(ℓ + 1) for
some even integer n there will be only finitely many even-power terms in the power series. In either case,
by requiring the terms of opposite valence to vanish (i.e., setting a0 = 0 in the first case and a1 = 0 in the
second case), we obtain power series solutions which are finite – which is to say, polynomial solutions. These
are called the Legendre polynomials.

Let us be more specific. Suppose that ℓ = 2k for some k ∈ Z, k ≥ 0, and let a1 = 0. Then, as noted
above, all odd coefficients in the series will vanish. Moreover,

a2k+2 = a2k
2k(2k + 1)− ℓ(ℓ+ 1)

(2k + 2)(2k + 1)
= a2k

2k(2k + 1)− 2k(2k + 1)

(2k + 2)(2k + 1)
= 0,

and thus a2k+2j = 0 for all j ∈ Z, j > 0. Since all odd-order coefficients vanish, the power series will truncate
and we will be left with a polynomial of degree 2k = ℓ.

Similarly, suppose that ℓ = 2k + 1 for some k ∈ Z, k ≥ 0, and let now a0 = 0. Then all even terms
vanish; moreover, as before,

a2k+3 = a2k+1
(2k + 1)(2k + 2)− ℓ(ℓ+ 1)

(2k + 3)(2k + 2)
= a2k+1

(2k + 1)(2k + 2)− (2k + 1)(2k + 2)

(2k + 3)(2k + 2)
= 0,

so a2k+1+2j = 0 for all j ∈ Z, j > 0, and our power series truncates to give a polynomial of order 2k+1 = ℓ.
Thus we see that whenever ℓ is a nonnegative integer, equation (4) will have a solution which is a

polynomial of degree ℓ. It is determined up to an overall multiplicative factor. We denote by Pℓ(x) the
polynomial satisfying (4) and satisfying also Pℓ(1) = 1; this will fix the value of a0 (ℓ even) or a1 (ℓ odd),
which we left open above. Pℓ(x) is called the ℓth Legendre polynomial, or the Legendre polynomial of degree
ℓ.4

4Since our original equation was second-order, even in the case where ℓ is a nonnegative integer it will possess
another solution linearly independent of Pℓ(x); this would correspond to letting the other one of a0 or a1
equal something nonzero. Since it turns out that the set of Legendre polynomials is complete on the interval
[−1, 1], they are sufficient for our purposes at the moment.
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EXAMPLES. Let us compute the first few Legendre polynomials. If ℓ = 0, we seek a polynomial of degree
0, i.e., a constant polynomial, with P0(1) = 1; thus P0(x) = 1 for all x. If ℓ = 1, then we set a0 = 0 and
leave a1 undetermined for the moment; but then a3 = 0, so P1(x) = a1x and the normalisation condition
P1(1) = 1 implies that a1 = 1.

The case ℓ = 2 is a bit more interesting. In this case we set a1 = 1 and leave a0 undetermined; then we
have

a2 = a0
0(0 + 1)− 2(2 + 1)

(0 + 2)(0 + 1)
= −3a0,

while a4 and all higher-order coefficients vanish. Thus P2(x) = −3a0x
2 + a0, so P2(1) = −2a0 = 1 forces

a0 = − 1
2 and P2(x) =

3
2x

2 − 1
2 .

EXAMPLES OF SOLUTIONS TO LAPLACE’S EQUATION. Let us see how all of these results may be
pulled together to give some simple solutions to Laplace’s equation on the unit sphere.
(a) Solve the boundary-value problem on the unit boll {(r, θ, φ)|r < 1}:

∇2u = 0, u|r=1 = 1.

Since the boundary data and the region are both spherically symmetric, we anticipate that the solution
will be as well, meaning that we expect a solution depending only on r; this is equivalent to looking for a
separated solution with Θ and Φ both constant, which means (in the context of what we have just done)
that m = ℓ = 0. In this case, the equation for R becomes simply

r2R′′ + 2rR′ = 0,

and by our previous work this has general solution R = a+ b
r , and this will also be the form of our solution

u. Since we wish u to satisfy ∇2u = 0 everywhere on the interior of the unit sphere, u must in particular
be continuous and finite there, and thus we must have b = 0, so u = a is just a constant. The boundary
condition then gives a = 1, so the solution to this boundary-value problem is simply u = 1. (We could also
have obtained this by inspection.)
(b) Solve the boundary-value problem on the set {(r, θ, φ)|1 < r < 2}:

∇2u = 0, u|r=1 = 1, u|r=2 = 0.

In this case we still have a spherically symmetric region and spherically symmetric boundary data, so we
expect to obtain a spherically symmetric solution. By our work in part (a), we see immediately that we
must have u = a+ b

r for some constants a, b. In this case we can no longer immediately set b = 0 since the
point r = 0 (which is where the second term goes to infinity) is not in the region where we require ∇2u = 0.
This allows us to fit both boundary conditions, as follows. We have

u|r=1 = a+ b = 1

u|r+2 = a+
b

2
= 0,

from which we see easily that b = 2, a = −1, so u = −1 + 2
r is the solution to the boundary-value problem.

(c) Solve the boundary-value problem on the unit ball:

∇2u = 0, u|r=1 = cos θ.

In this case we no longer have spherical symmetry, though we do have azimuthal symmetry, meaning that
our solution will not depend on φ. In general, our approach to solving this type of problem is very similar to
our approach for solving boundary-value problems on a square: we suppose that our solution can be written
as a series of separated solutions, in this case

u(r, θ, φ) =

∞∑

ℓ=0

(
aℓr

ℓ + bℓr
−(ℓ+1)

)
Pℓ(cos θ);
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in the present case, as in (a), since we wish u to satisfy Laplace’s equation on the unit ball, we must set all
of the bℓ to zero (this is similar to how we used the boundary conditions to require that the coefficients of
all of the cosine terms vanished when we solved Laplace’s equation on the unit square, although the reason
is different). We then apply the remaining boundary condition:

u(1, θ, φ) =

∞∑

ℓ=0

aℓPℓ(cos θ) = cos θ,

and try to determine aℓ. We shall see soon that {Pℓ(x)|ℓ ∈ Z, ℓ ≥ 0} forms an orthogonal set on [−1, 1]; it is
also complete (though we shall not prove this at present), and thus for any reasonable boundary data u(1, θ)
it will always be possible to find coefficients aℓ satisfying the above equation – and moreover these coefficients
will be unique. At present it is sufficient to note that cos θ = P1(cos θ), so that we may take simply a1 = 1,
aℓ = 0, ℓ 6= 1 (note that this a1 is completely different from the a1 we had above when we investigated the
power series representation of Pℓ!). The final solution is then simply u = rP1(cos θ) = r cos θ = z.

Another way of looking at the above description of our method is as follows. Suppose that we are
solving on the unit ball and given boundary data Pℓ(cos θ) on the unit sphere. Then we know that the
corresponding radial solution is arℓ + br−(ℓ+1), but we reject the second term (i.e., set b = 0) since this
term is not continuous on the unit ball; thus our solution must be of the form arℓPℓ(cos θ), and since our
boundary data is Pℓ(cos θ) on the unit ball, we must have a = 1, and our solution is rℓPℓ(cos θ). (Were we
given the same boundary data, but on the ball {(r, θ, φ)|r ≤ r0}, then we would need arℓ0 = 1, so we would

set a = r−ℓ0 and our solution would be
(
r
r0

)ℓ
Pℓ(cos θ).) If our boundary data is a linear combination (or a

series) of Pℓ for different ℓ, then this method may be applied to each term in the linear combination, and
then sum the results to get the full solution. In the case where our boundary data is a series in the Pℓ, we
must use methods of orthogonal functions to determine the coefficients, as we did when solving Laplace’s
equation in rectangular coordinates. We shall discuss this in more detail later.

The moral of the story is: boundary data Pℓ(cos θ) gives rise to a solution of the form

(
arℓ + br−(ℓ+1)

)
Pℓ(cos θ),

with a and b to be determined from the other requirements in the problem, and general boundary data may
be treated by linearity. This is analogous to how the initial data sin kx leads to a solution sin kxe−k

2Dt to
the heat equation, as we discussed in the first week of class, or to how boundary data sinnπx leads to a
solution sinnπx (asinhnπy + bcoshnπy) to Laplace’s equation on the unit square.

For more complicated problems, such as those on Homework 4, variants and combinations of the above
methods may be used.
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APM 346, Homework 4. Due Monday, June 3, at 6.00 AM EDT. To be marked completed/not completed.

Consider the following boundary-value problem on [0, 1]× [0, 1]:

∇2u = 0 on (0, 1)× (0, 1), u(0, y) = 0, ux(1, y) = −u(1, y),
u(x, 0) = sinnπx, u(x, 1) = cosnπx,

where n ∈ Z, n > 0 is some fixed positive integer.

1. Determine all separated solutions satisfying the homogeneous boundary conditions (these are the
boundary conditions on x = 0 and x = 1 above).

We are looking for solutions of the form u(x, y) = X(x)Y (y); substituting this in to Laplace’s equation
gives as usual

X ′′(x)Y (y) +X(x)Y ′′(y) = 0,

whence dividing by u gives
X ′′

X
+
Y ′′

Y
= 0.

Since the first term depends only on x, and the second term only on y, the must individually be constant;
since the data on the top and bottom edges of the boundary is oscillatory in x, we take X to be the oscillatory
solution and Y to be the exponential one. Thus we have the equations

X ′′ = −λ2X, Y ′′ = λ2Y,

where we may take λ > 0. The boundary conditions on the left and right sides of the boundary give

u(0, y) = X(0)Y (y) = 0,

∂xu(1, y) = X ′(1)Y (y) = −X(1)Y (y),

and since we cannot have Y identically zero we must have X(0) = 0, X ′(1) = −X(1). Thus X must satisfy
the ordinary differential equation we have studied in Homework 2 and Homework 3; this means that we may
take (we shall write the arbitrary constants in Y , as we did in the boundary-value problem we did in lecture)
X = sinλx, where λ satisfies λ = − tanλ. We must also have Y = aλsinhλy + bλcoshλy.

2. Assuming that the functions of x appearing in the separated solutions in 1 form a complete set on
[0, 1], write out the general solution to ∇2u = 0 satisfying the first three boundary conditions above.

By Homework 3 we know that the set {sinλx|λ = − tanλ} is orthogonal on [0, 1], and we now assume
(per the statement of the problem) that it is complete. This means that we can write the whole solution as
a series in the separated solutions, i.e. (letting {λk}∞k=1 denote the set of solutions to λ = − tanλ – which is
easily seen to be discrete – )

u(x, y) =

∞∑

k=1

(aksinhλky + bkcoshλky) sinλkx,

whence

sinnπx = u(x, 0) =

∞∑

k=1

bksinλkx,

and by our general results about expansions in complete orthogonal sets,

bk =

∫ 1

0 sinnπxsinλkx dx∫ 1

0
sin 2λkx dx

=

1
2

[
1

nπ−λk
sin (nπ − λk)− 1

nπ+λk
sin (nπ + λk)

]

1
2 − sin 2λk

4λk

=
4nπ(−1)n+1sinλk

(n2π2 − λ2k)
(
2− sin 2λk

λk

) ,
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so that the general solution satisfying the first three boundary conditions is

u(x, y) =

∞∑

k=1


aksinhλky +

4nπ(−1)n+1sinλk

(n2π2 − λ2k)
(
2− sin 2λk

λk

)coshλky


 sinλkx.

3. Finally, determine the unique solution to the full boundary-value problem.
Finally, we must have (writing bk for the coefficient just given, for simplicity)

cosnπx = u(x, 1) =

∞∑

k=1

(aksinhλk + bkcoshλk) sinλkx,

whence as in 2 we have, by our general results about expansions in complete sets of orthogonal functions,

aksinhλk + bkcoshλk =
4

2− sin 2λk

λk

(∫ 1

0

cosnπxsinλkx dx

)

= − 2

2− sin 2λk

λk

(
1

nπ + λk
(cos (λk + nπ)− 1) +

1

λk − nπ
(cos (λk − nπ)− 1)

)

= − 2

2− sin 2λk

λk

((−1)n cosλk − 1)
2λk

λ2k − π2n2
,

whence using the result from 2 and solving for ak, we obtain

ak = − cothλk


 4nπ(−1)n+1sinλk

(n2π2 − λ2k)
(
2− sin 2λk

λk

)


 − 2(

2− sin 2λk

λk

)
sinhλk

2λk ((−1)n cosλk − 1)

λ2k − π2n2

=
4(

2− sin 2λk

λk

)
(n2π2 − λ2k) sinhλk

(nπ(−1)nsinλkcoshλk + λk ((−1)n cosλk − 1)) ,

and the final solution is given by the wonderful and marvelous expression

u(x, y) =

∞∑

k=1

(
4 (nπ(−1)nsinλkcoshλk + λk ((−1)n cosλk − 1))(

2− sin 2λk

λk

)
(n2π2 − λ2k) sinhλk

sinhλky

+
4nπ(−1)n+1sinλk

(n2π2 − λ2k)
(
2− sin 2λk

λk

)coshλky
)
sinλkx.

[NOTE. In 2 and 3, if you wish to use orthogonality of a certain set of functions, you must say how you know
it is orthogonal (for example, by citing a specific result you have seen earlier in the course, or by giving a
proof).

As noted above, orthogonality follows from Homework 3.]

The next two problems deal with Laplace’s equation in spherical coordinates.

4. Consider the boundary-value problem on the region given by {(r, θ, φ)|1 ≤ r ≤ 2}:

∇2u = 0, 1 < r < 2, u(r = 1) = 1, ur(r = 2) = −u(r = 2).

Using our work with the Laplace equation in class, find the solution to this problem. [Hint: it depends only
on r, not on θ or φ.]
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Since the boundary data depends only on r, we posit a solution of the form u = u(r); substituting this
into our expression for Laplace’s equation in spherical coordinates, we see that u must satisfy

u′′ +
2

r
u′ = 0,

and by our work with Laplace’s equation we see that we are looking for a separated solution with ℓ = m = 0,
which means that it must be of the form u = a+ b

r for some constants a and b. (This can also be obtained
directly from the above equation, without recourse to our more general work in class, of course.) The
boundary conditions then give

u(1) = a+ b = 1,

ur(2) = − b

r2

∣∣∣∣
r=2

= − b

4
= −u(2) = −a− b

2
,

whence we see that b = −4a, a = − 1
3 , b =

4
3 . Thus the solution is u = − 1

3 + 4
3r .

5. Consider the same problem as in 4, but with the second boundary condition replaced by u(r = 2) =
cos θ. Find the solution to this problem. [Hint: it can be written as a sum of two separated solutions.]

By the hint, we are looking for a solution which is a sum of two separated solutions. Now on the inner
boundary we have simply u = 1, which does not depend on either θ or φ and thus (as in fact we saw in
4) looks like the kind of condition which can be fit with a solution having m = ℓ = 0, while on the outer
boundary we have u = cos θ = P1(cos θ), which can be fit with a solution having m = 0, ℓ = 1. Thus we
look for a solution of the form

u(r, θ) = a0 +
b0
r

+

(
a1r +

b1
r2

)
cos θ

(remember that the general separated solution to Laplace’s equation with m = 0 is
(
arℓ + b

rℓ+1

)
Pℓ(cos θ)).

This expression satisfies Laplace’s equation on the given region (note that the region does not contain the
origin) by construction, so we need only determine the coefficients from the boundary conditions. On the
inner boundary we have

u(1, θ) = a0 + b0 + (a1 + b1) cos θ

= (a0 + b0)P0(cos θ) + (a1 + b1)P1(cos θ) = 1,

whence we see that (since the Pn(x) form an orthogonal set on [−1, 1] and hence are linearly independent)
we must have a0 + b0 = 1, a1 + b1 = 0. Similarly, on the outer boundary we have

u(2, θ) = a0 +
1

2
b0 +

(
2a1 +

1

4
b1

)
cos θ

=

(
a0 +

1

2
b0

)
P0(cos θ) +

(
2a1 +

1

4
b1

)
P1(cos θ) = P1(cos θ),

whence we have by the same logic that a0 +
1
2b0 = 0, 2a1 +

1
4b1 = 1. Putting all of these equations together,

we see that we have a0 = −1, b0 = 2, a1 = 4
7 , b1 = − 4

7 , so that the full solution is

u(r, θ) = −1 +
2

r
+

(
4

7
r − 4

7r2

)
cos θ.

(Those of you who have studied electrodynamics may recognise the last term – cos θ
r2 – as being the electrostatic

potential of an electric dipole.)
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Summary:
• We deduce additional properties of the Legendre polynomials introduced last week which enable us to
use them to solve boundary-value problems, and give a few examples.

• We then introduce the associated Legendre functions , give some of their properties, and indicate how
they are combined with the functions cosmφ and sinmφ which we saw last week to give a complete
orthonormal set on a sphere.

• We then indicate how all of this is used to solve general (nonsymmetric) boundary-value problems for
Laplace’s equation on a sphere.

LEGENDRE POLYNOMIALS. Recall that the Legendre polynomials were defined last time as solutions to
the differential equation

(
1− x2

) d2P
dx2

− 2x
dP

dx
+ ℓ(ℓ+ 1)P = 0

as follows: seeking a power series solution P =
∞∑
n=0

anx
n of the above equation results in the recurrence

relation for the coefficients

an+2 = an
n(n+ 1)− ℓ(ℓ+ 1)

(n+ 2)(n+ 1)
.

If ℓ ∈ Z, ℓ ≥ 0, this says that all an for n of the same parity1 as ℓ must eventually vanish. We then define the
degree-ℓ Legendre polynomial as follows: If ℓ is even, let Pℓ be the above power series solution with a1 = 0
and a0 chosen2 so that Pℓ(1) = 1; if ℓ is odd, let Pℓ be the above power series solution with a0 = 0 and a1
chosen so that Pℓ(1) = 1. Then we note the following properties:

• If ℓ is even, then Pℓ is a sum of even powers of x and is hence an even function; if ℓ is odd, then Pℓ is
a sum of odd powers of x and is hence an odd function.

• From this, Pℓ(−1) = (−1)ℓ, and Pℓ(0) = 0 if ℓ is odd. (Peℓ(0) for even ℓ will be found below.)
Next we shall derive some results about the Legendre polynomials which are very useful in manipulating

them. The proofs (except where noted) may be omitted without loss of continuity. Some of them are more
advanced than the general level of this course.

The first result, while it may look strange at first,3 is very useful (see the appendix for a similar result
for the trigonometric functions and its use):

PROPOSITION. For x ∈ [−1, 1] and |h| < 1
4 ,

(
1− 2xh+ h2

)− 1
2 =

∞∑

ℓ=0

hℓPℓ(x).

Proof. We note first that

1− 2|x||h|+ h2 ≤ 1− 2xh+ h2 ≤ 1 + 2|x||h|+ h2,

and since 0 ≤ |x| ≤ 1, this shows that

(1− |h|)2 ≤ 1− 2xh+ h2 ≤ (1 + |h|)2,
so in particular 1 − 2xh+ h2 ≥ 9

16 > 0 and the function above is well-defined, and also 2xh− h2 ≤ 7
16 <

1
2

and 2xh−h2 ≥ 1− (1+ |h|)2 > − 9
16 > −1; this last implies that for any fixed x in [−1, 1] the above function

can be expanded using the general binomial expansion theorem (exercise: prove this!)

(1 + h)α =

∞∑

n=0

(α)n
n!

hn,

1By ‘parity’ we mean the property of a nonnegative integer according to which it is odd or even; in other
words, two nonnegative integers are of the same parity if they are either both odd or both even.
2Note that a0 is effectively an overall multiplicative constant in this case since we have only even-order terms.
3Some readers may note the relationship this result bears to the multipole expansion in electrostatics. This
is not a coincidence!
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where |h| < 1 and (α)0 = 1, (α)n+1 = (α)n · (α − n) (so that, for example, (n)n = n!). In other words, for
fixed x ∈ [−1, 1] we may write

(
1− 2xh+ h2

)− 1
2 =

∞∑

n=0

1

n!

(
−1

2

)

n

(−1)n
(
2xh− h2

)n
;

by the standard theory of power series, the series on the left is uniformly and absolutely convergent also for
x ∈ [−1, 1], |h| < 1

4 , which means that we may reorder the terms as we wish. Doing so, we see easily that
we get an expansion of the form

(
1− 2xh+ h2

)− 1
2 =

∞∑

n=0

Hn(x)h
n,

where Hn(x) is a polynomial in x. The fact that the above series converges uniformly in h for fixed x means
that we may differentiate termwise with respect to h; since the original series may also be written in the
form

∑∞
n=0X(h)xn for some polynomial X of h, and this series will also converge uniformly in x for fixed

h,4 we may also differentiate with respect to x termwise. We shall show that Hn(x) = Pn(x), which will
establish the result in the proposition, by showing that it satisfies Legendre’s equation and has the correct
normalisation. (By the foregoing, Legendre’s equation has, up to normalisation, at most one polynomial
solution for each ℓ.)

To do this, let s(x, h) =
(
1− 2xh+ h2

)− 1
2 , and note that

∂s

∂x
= h

(
1− 2xh+ h2

)− 3
2 = hs3,

∂2s

∂x2
= 3h2s5.

Similarly, note that

∂

∂h
(hs) = s+ h(x− h)s3,

∂2

∂h2
(hs) = (x− h)s3 + 3h(x− h)2s5 + (x − 2h)s3,

whence we see that

(1− x2)
∂2s

∂x2
− 2x

∂s

∂x
= (1 − x2) · 3h2s5 − 2xhs3 = s5

(
3h2(1− x2)− 2xh(1− 2xh+ h2)

)

= s5
(
3h2 + h2x2 − 2xh− 2xh3

)

,

while
∂2

∂h2
(hs) = s5

(
3h(x− h)2 + (2x− 3h)(1− 2xh+ h2)

)

= s5
(
3h(h2 − 2xh+ x2) + 2x(1 − 2xh+ h2)− 3h(1− 2xh+ h2)

)

= s5
(
3hx2 + 2x− 4x2h+ 2h2x− 3h

)

= s5
(
−hx2 + 2x+ 2h2x− 3h

)
,

whence we see that

−h ∂2

∂h2
(hs) = (1 − x2)

∂2s

∂x2
− 2x

∂s

∂x
.

But by the power series expansion, we have

−h ∂
2

∂h2
(hs) = −h

∞∑

n=0

Hn(x)n(n + 1)hn−1 = −
∞∑

n=0

n(n+ 1)Hn(x)h
n,

4Note that we can allow x to lie in an open interval slightly larger than [−1, 1] without changing the foregoing
arguments, since |h| < 1

4 kept us well inside the radius of convergence of the binomial expansion theorem;
this justifies the uniform convergence just claimed.



APM346, 2019 June 4 – 6 Nathan Carruth

whence we see thatHn is a polynomial satisfying Legendre’s equation, as claimed. To check its normalisation,
set x = 1 in s; then we have

∞∑

n=0

Hn(1)h
n =

(
1− 2h+ h2

)− 1
2 =

1

1− h
,

which implies that Hn(1) = 1 for all n. Thus we must have Hn(x) = Pn(x) for x ∈ [−1, 1], as claimed.QED.

The function s in this result is called the generating function for the Legendre polynomials. From this
result the five identities given in class can be easily derived, as follows.

PROPOSITION. The Legendre polynomials satisfy the following identities (where n ∈ Z, n ≥ 0, and we set
P−1 = 0):

1. (n+ 1)Pn+1 − (2n+ 1)xPn + nPn−1 = 0.
2. P ′

n+1 − 2xP ′
n + P ′

n−1 = Pn.
3. xP ′

n − P ′
n−1 = nPn.

4. P ′
n+1 − P ′

n−1 = (2n+ 1)Pn.
5. (1 − x2)P ′

n = nPn−1 − nxPn.

Proof. We note that (letting, as above, s =
(
1− 2xh+ h2

)− 1
2 )

∂s

∂h
= (x − h)s3 = (x− h)(1− 2xh+ h2)−1s

=

∞∑

n=0

nPn(x)h
n−1,

whence we see that

(x− h)
∞∑

n=0

Pn(x)h
n =

∞∑

n=0

(xPn(x)− Pn−1)h
n = (x − h)s

= (1 − 2xh+ h2)

∞∑

n=0

nPn(x)h
n−1

=

∞∑

n=0

((n+ 1)Pn+1(x)− 2xnPn(x) + (n− 1)Pn−1(x)) h
n

(recall our convention that P−1 = 0; this was used twice in the above calculation) from which we obtain

xPn − Pn−1 = (n+ 1)Pn+1 − 2xnPn + (n− 1)Pn−1

(n+ 1)Pn+1 − (2n+ 1)xPn + nPn−1 = 0,

proving the first identity. Similarly, differentiating s with respect to x gives

∂s

∂x
= hs3 = h(1− 2xh+ h2)−1s

=

∞∑

n=0

P ′
nh

n,

whence we have (noting that this last series has no n = 0 term since P ′
0 = 0, so that we may advance its

index by 1)

hs =
∞∑

n=0

Pnh
n+1 = (1− 2xh+ h2)

∞∑

n=0

P ′
n+1h

n+1

=

∞∑

n=0

(
P ′
n+1 − 2xP ′

n + P ′
n−1

)
hn+1,
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from which the second identity easily follows. Now multiply the second identity by n + 1 and subtract it
from the derivative of the first identity to obtain

−(n+1)Pn = (n+1)P ′
n+1−(2n+1)xP ′

n−(2n+1)Pn+nP
′
n−1−

(
(n+ 1)P ′

n+1 − (2n+ 2)xP ′
n + (n+ 1)P ′

n−1

)

xP ′
n − (2n+ 1)Pn − P ′

n−1 = −(n+ 1)Pn

xP ′
n − P ′

n−1 = nPn,

which is the third identity. Adding twice the third identity to the second identity gives the fourth identity.
Finally, to obtain the fifth identity, note that adding the second and fourth identities gives 2P ′

n+1 − 2xP ′
n =

2(n+ 1)Pn, which, upon dividing by 2 and replacing n+ 1 by n, gives

P ′
n = xP ′

n−1 + nPn−1,

and thus, from the third identity,

(1− x2)P ′
n = P ′

n − x
(
P ′
n−1 + nPn

)
= −nxPn + nPn−1,

which is exactly the fifth identity. QED.

We also have the Rodrigues formula:

Pn(x) =
1

2nn!

dn

dxn
(x2 − 1)n.

We shall not prove this at the moment (it can be proved by expanding out (x2 − 1)n using the standard
binomial expansion theorem, differentiating term-by-term, showing that the resulting coefficients of the
powers of x satisfy the same recursion relation as the coefficients for the Legendre polynomials, and then
checking the normalisation at 1).

From the Rodrigues formula we may deduce the orthogonality property of the Legendre polynomials:

PROPOSITION. We have ∫ 1

−1

Pℓ(x)Pℓ′ (x) dx =

{
0, ℓ 6= ℓ′
2

2ℓ+1 , ℓ = ℓ′
.

Proof. Suppose that ℓ ≥ ℓ′; then we have, applying the Rodrigues formula and integrating by parts (it
can be shewn that the boundary terms all vanish)

∫ 1

−1

Pℓ(x)Pℓ′ (x) dx =
1

2ℓℓ!

1

2ℓ′ℓ′!

∫ 1

−1

dℓ

dxℓ
(x2 − 1)ℓ

dℓ
′

dxℓ′
(x2 − 1)ℓ

′
dx

= − 1

2ℓℓ!

1

2ℓ′ℓ′!

∫ 1

−1

dℓ−1

dxℓ−1
(x2 − 1)ℓ

dℓ
′+1

dxℓ′+1
(x2 − 1)ℓ

′
dx

= (−1)ℓ
1

2ℓℓ!

1

2ℓ′ℓ′!

∫ 1

−1

(x2 − 1)ℓ
dℓ

′+ℓ

dxℓ′+ℓ
(x2 − 1)ℓ

′
dx.

Now if ℓ′ 6= ℓ, then since ℓ ≥ ℓ′ we must have ℓ > ℓ′; thus ℓ′+ell > 2ℓ′, but since (x2−1)ℓ
′
is a polynomial of

degree 2ℓ′ this implies that dℓ
′+ℓ

dxℓ′+ℓ (x
2 − 1)ℓ

′
= 0 identically and the above integral must be zero, as claimed.

If ℓ′ = ℓ, then the foregoing derivative is simply the constant (2ℓ)!; finishing the proof requires integrating∫ 1

−1
(x2 − 1)ℓ dx, which requires the use of a trigonometric reduction formula and which we pass over for the

time being. QED.

The foregoing shows that the set {Pℓ|ℓ ∈ Z, ℓ ≥ 0} is an orthogonal set on [−1, 1]; it can be shewn
that it is complete. Thus any (suitably nice; e.g., piecewise continuous) function f on the interval [−1, 1]
can be expanded uniquely in a series

f(x) =

∞∑

ℓ=0

aℓPℓ(x),
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where by our work with general orthogonal complete sets at the start of the course we have the usual formula

aℓ =
(f, Pℓ)

(Pℓ, Pℓ)
=

2ℓ+ 1

2
(f, Pℓ).

We would now like to know how this helps us solve boundary-value problems. Suppose that we are
asked to solve Laplace’s equation in a spherical shell a < r < b, with azimuthally symmetric boundary data
given on the inner and outer spheres r = a and r = b. On the interior region, the solution will be given by
the general expression

u(r, θ) =

∞∑

ℓ=0

Pℓ(cos θ)
(
aℓr

ℓ + bℓr
−ℓ−1

)
.

It is instructive to compare this to the general expression

u(x, y) =

∞∑

n=1

sinnπx (ansinhnπy + bncoshnπy)

which we obtained for the solution to Laplace’s equation in the unit square with homogeneous Dirichlet data
on the two vertical boundaries (i.e., u(0, y) = u(1, y) = 0). As we did on the unit square, we now apply
the boundary conditions on the inner and outer spheres to fix the coefficients aℓ and bℓ. More concretely,
suppose that we are given u(a, θ) = f(θ), u(b, θ) = g(θ); then we may write

f(θ) =

∞∑

ℓ=0

Pℓ(cos θ)
(
aℓa

ℓ + bℓa
−ℓ−1

)
,

g(θ) =
∞∑

ℓ=0

Pℓ(cos θ)
(
aℓb

ℓ + bℓb
−ℓ−1

)
.

We would like to use the fact that Pℓ is complete on [−1, 1] in order to evaluate the coefficients of the above
series. This requires a little bit of work though since the series above are in terms of Pℓ(cos θ) while the
functions f and g are given in terms of θ itself. Note that since θ ∈ [0, π], we have cos θ ∈ [−1, 1], so that
(letting x = cos θ as before) we have cos−1 x = θ ∈ [0, π] for x ∈ [−1, 1]; this implies that we may expand
f(θ) = f(cos−1 x) and g(θ) = g(cos−1 x) in series of Pℓ(x) = Pℓ(cos θ) using the above formula. To do this,
we calculate

(f ◦ cos−1, Pℓ) =

∫ 1

−1

f(cos−1(x))Pℓ(x) dx

=

∫ π

0

f(θ)Pℓ(cos θ)sin θ dθ,

where we have changed variables in the integral in the last step. This shows that in an expansion of the form

f(θ) =

∞∑

ℓ=0

cℓPℓ(cos θ),

we have

cℓ =
2ℓ+ 1

2

∫ π

0

f(θ)Pℓ(cos θ)sin θ dθ.

Another way of saying this is that the functions Pℓ(cos θ) are orthogonal on the interval [0, π] with respect
to the inner product

(f, g) =

∫ π

0

f(θ)g(θ)sin θ dθ.
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Thus we obtain finally the system of equations

aℓa
ℓ + bℓa

−ℓ−1 =
2ℓ+ 1

2

∫ π

0

f(θ)Pℓ(cos θ)sin θ dθ,

aℓb
ℓ + bℓb

−ℓ−1 =
2ℓ+ 1

2

∫ π

0

g(θ)Pℓ(cos θ)sin θ dθ,

which when solved will give us aℓ and bℓ for all ℓ, from which the solution to the desired problem follows.
Other problems (for example, when the boundary data involves the derivatives ur) can be solved in a

similar way.
It is worthwhile pausing for a moment to note a general pattern here which will come up again in

the future: a given polynomial Pℓ(cos θ) on the boundary will give a solution varying like Pℓ(cos θ)r
ℓ or

Pℓ(cos θ)r
−ℓ−1 in the interior, and the ‘amount’ of a certain Legendre polynomial Pℓ in given boundary data

determines exactly the ‘amount’ of that polynomial in the final solution. In other words, if we think of the
coefficients in the expansions of f and g above in terms of Pℓ(cos θ) as being knobs we can turn, then it is
as if each knob corresponds to a particular type of behaviour of the full solution, and fixing boundary data
is equivalent to fixing the position of each knob. The specific way in which the knobs control the solution is
determined by solving the equations above.

FULL SOLUTIONS TO LAPLACE’S EQUATION. Let us now consider the problem of finding solutions
to Laplace’s equation in the absence of azimuthal symmetry. Recalling our results from applying separation
of variables to Laplace’s equation in spherical symmetry, we see that in this case Legendre’s equation is
replaced by the equation (still writing x = cos θ)

(
1− x2

) d2P
dx2

− 2x
dP

dx
+

(
ℓ(ℓ+ 1)− m2

1− x2

)
P = 0,

while if Pℓm is a solution to this equation, then the corresponding general separated solution to Laplace’s
equation is given by

Pℓm(cos θ)
(
aℓmr

ℓ + bℓmr
−ℓ−1

)
(cℓm cosmφ+ dℓmsinmφ) .

Solutions to this equation may be found by the following trick. We differentiate Legendre’s equation m
times: (

1− x2
)
P ′′′ − 4xP ′′ + (ℓ(ℓ+ 1)− 2)P ′ = 0

(
1− x2

)
P (4) − 6xP ′′′ + (ℓ(ℓ+ 1)− 2− 4)P ′′ = 0

(
1− x2

)
P (5) − 8xP (4) + (ℓ(ℓ+ 1)− 2− 4− 6)P ′′ = 0

...
(
1− x2

)
P (m+2) − 2(m+ 1)xP (m+1) + (ℓ(ℓ+ 1)−m(m+ 1))P (m) = 0,

since 2 + 4 + 6 + 8 + · · ·+ 2m = 2m(m+1)
2 = m(m+ 1). Thus

d

dx

((
1− x2

) d

dx

((
1− x2

)m
2 P (m)

))

=
d

dx

[(
1− x2

)m
2 +1

P (m+1) −mx
(
1− x2

)m
2 P (m)

]

=
(
1− x2

)m
2 +1

P (m+2) −m
(
1− x2

) 1
m P (m) +m2x2

(
1− x2

)m
2 −1

P (m)

− (m+m+ 2)
(
1− x2

)m
2 P (m+1)

=
(
1− x2

)m
2

[(
1− x2

)
P (m+2) − 2(m+ 1)xP (m+1) −

(
m− m2x2

1− x2

)
P (m)

]

=
(
1− x2

)m
2

[
m(m+ 1)− ℓ(ℓ+ 1)−m+

m2x2

1− x2

]
P (m) =

[
m2

1− x2
− ℓ(ℓ+ 1)

] (
1− x2

)m
2 P (m);
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comparison with the equation we are trying to solve shows that it has the solution

Pℓ,m(x) = (1− x2)
m
2 P

(m)
ℓ (x).

We call these the associated Legendre functions. The corresponding general separated solution to Laplace’s
equation is (as given above)

Pℓm(cos θ)
(
aℓmr

ℓ + bℓmr
−ℓ−1

)
(cℓm cosmφ+ dℓmsinmφ) .

It is worthwhile to pause for a moment to consider what these functions look like, and what the corre-
sponding solutions to Laplace’s equation look like. First, since Pℓ is a polynomial of degree ℓ, we see that

P
(m)
ℓ will vanish if m > ℓ; thus we require that m ≤ ℓ.5 Further, Pℓ,0 = Pℓ is just the ordinary Legendre

polynomial. The first few additional associated Legendre functions may be calculated as follows. It is in-

structive to evaluate them at cos θ (though we must bear carefully in mind that the derivatives in P
(m)
ℓ are

with respect to x, not θ!), noting that since θ ∈ [0, π], (1− cos2 θ)
1
2 = (sin 2θ)

1
2 = |sin θ| = sin θ.

P1,1(cos θ) = sin θ

P2,1(cos θ) = 3sin θ cos θ

P2,2(cos θ) = 3sin 2θ.

Thus we see that increasing m by one essentially trades a cos θ for a sin θ. Now the corresponding solutions
to Laplace’s equation on a ball (meaning that we disregard the r−ℓ−1 solutions) are of the form

P1,1(cos θ)r cosφ = sin θr cosφ = rsin θ cosφ = x

P2,1(cos θ)r
2 cosφ = 3r2sin θ cos θ cosφ = 3xz

P2,2(cos θ)r
2 cos 2φ = 3r2sin 2θ

(
cos2 φ− sin 2φ

)
= 3

(
x2 − y2

)
,

with similar expressions obtaining if the sinφ and sin 2φ solutions are used instead. The polynomials of the
form Pℓ,mr

ℓ cosmφ and Pℓ,mr
ℓsinmφ,6 which are all solutions to Laplace’s equation, are called harmonic

polynomials. As we shall see shortly, the set of all products of the form Pℓ,m cosmφ, Pℓ,msinmφ forms
a complete orthogonal set over the sphere; since on a sphere r is a constant, this implies that given any
polynomial on Rn and a sphere of radius r = a centred at the origin, there will be a harmonic polynomial
which agrees with the given polynomial on the sphere. This harmonic polynomial will then be the solution
to Laplace’s equation with boundary data equal to the given polynomial. This is an interesting branch of
mathematics but we shall not explore it in detail here.

We would now like to see how we can use the associated Legendre functions to solve boundary-value
problems for Laplace’s equation on a sphere. First, we note that the Pℓ,m, for constantm, form an orthogonal
set; in particular, we have the following result.

PROPOSITION. Let m ∈ Z, m ≥ 0, ℓ1, ℓ2 ∈ Z, ℓ1, ℓ2 ≥ m, ℓ1 6= ℓ2. Then

∫ 1

−1

Pℓ1,mPℓ2,m dx = 0.

[NOTE. By the same logic as we used above for the Legendre polynomials, in terms of θ the above orthog-
onality result becomes ∫ 1

−1

Pℓ1,m(cos θ)Pℓ2,m(cos θ)sin θ dx = 0.]

5This requirement might be familiar to those of you who have studied the theory of angular momentum in
quantum mechanics. What we are building here are parts of the angular momentum eigenfunctions in the
position representation.
6These may be handled simultaneously by using the complex form Pℓ,mr

ℓeimφ, in the which case the general
form becomes more transparent.
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Proof. We use a general method (which can also be applied to the Legendre polynomials themselves),
by showing that the differential operator

f 7→ Lf :=
d

dx

((
1− x2

) df
dx

)

is what is called self-adjoint , i.e., that if f, g ∈ C2, then (Lf, g) = (f, Lg). This may be shewn as follows:

(Lf, g) =

∫ 1

−1

[Lf ] (x) · g(x) dx =

∫ 1

−1

d

dx

((
1− x2

) df
dx

)
g(x) dx

=
(
1− x2

) df
dx
g(x)

∣∣∣∣
1

−1

−
∫ 1

−1

(
1− x2

) df
dx

dg

dx
dx

= − f(x)
(
1− x2

) dg
dx

∣∣∣∣
1

−1

+

∫ 1

−1

f(x)
d

dx

(
(1− x2)

dg

dx

)
dx

= (f, Lg),

as claimed. Now let m ∈ Z, m ≥ 0. It is clear that the operator f 7→ Mf := m2

1−x2 f also satisfies this
property, and hence so does the difference L′ = L −M . Now let Pℓ1,m and Pℓ2,m be as in the statement of
the proposition. Then we have L′Pℓ1,m = −ℓ1(ℓ1 + 1)Pℓ1,m and L′Pℓ2,m = −ℓ2(ℓ2 + 1)Pℓ2,m; thus

(L′Pℓ1,m, Pℓ2,m) = −ℓ1(ℓ1 + 1)(Pℓ1,m, Pℓ2,m)

= (Pℓ1,m, L
′Pℓ2,m) = −ℓ2(ℓ2 + 1)(Pℓ1,m, Pℓ2,m),

whence (Pℓ1,m, Pℓ2,m) = 0 since ℓ1 6= ℓ2. QED.

It may also be shewn that (see (4.2.25) in the textbook)

(1) (Pℓ,m, Pℓ,m) =
(ℓ+m)!

(ℓ−m)!

2

2ℓ+ 1
.

We now recall that the set
{1, cosmφ, sinmφ|m ∈ Z,m ≥ 1}

is a complete orthogonal set on [0, 2π] (while we may not have explicitly shewn this earlier, it follows readily
from what we have done). We claim that this, together with the above proposition, implies that

{Pℓ(cos θ)} ∪ {Pℓ,m(cos θ) cosmφ,Pℓ,m(cos θ)sinmφ|m ∈ Z,m ≥ 1}

is a complete orthogonal set on the sphere (i.e., on the set [0, π]× [0, 2π] with respect to the inner product

(f(θ, φ), g(θ, φ)) =

∫ π

0

∫ 2π

0

f(θ, phi)g(θ, φ)sin θ dφ dθ.

The orthogonality is simple to shew. We note first of all that if f(θ, φ) = f1(θ)f2(φ) and g(θ, phi) =
g1(θ)g2(φ), then the above inner product decomposes as follows:

(f, g) =

∫ π

0

f1(θ)g1(θ)sin θ dθ

∫ 2π

0

f2(φ)g2(φ) dφ;

in other words, it is simply the product of the inner products we have been using for functions of θ and φ.7

Thus
(Pℓ,m cosmφ,Pℓ′,m′ cosm′φ) = (Pℓ,m, Pℓ′,m′)(cosmφ, cosm′φ) = 0

7This is related to the fact that the space of functions on the sphere can be viewed as the tensor product
(in an appropriate sense: one needs to somehow close off the algebraic tensor product in an appropriate
topology, such as that given by the product inner product indicated above) of the spaces of functions on
[0, 2π] and [0, π].
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if m 6= m′, while if m = m′ it will be zero unless ℓ = ℓ′, in the which case it will be given by the normalisation
formula (1) above. An analogous result clearly holds if both of the cosine terms are replaced by sine, while
if one is replaced by sine then all of the inner products will be zero regardless of m. This shews that the set
above is an orthogonal set, as desired.

To see that it is complete (assuming that {Pℓ,m} and the sine/cosine basis are), we may proceed as
follows. Let f(θ, φ) be any suitable (e.g., piecewise continuous) function on the sphere. Then for each fixed
θ we may expand it in a series of sines and cosines, the coefficients of which will however depend on θ; in
other words, we may write8

f(θ, φ) =

∞∑

m=0

cm(θ) cosmφ+ dm(θ)sinmφ;

now since the Pℓ,m, for each m, form a complete set on [0, π], we may further expand each of the coefficients
cm, dm, obtaining

cm(θ) =

∞∑

ℓ=m

cℓ,mPℓ,m(cos θ),

dm(θ) =

∞∑

ℓ=m

dℓ,mPℓ,m(cos θ).

Thus we have finally

f(θ, φ) =
∞∑

m=0

∞∑

ℓ=m

Pℓ,m(cos θ) (cℓ,m cosmφ+ dℓ,msinmφ) ,

or, assuming that the series is sufficiently well-behaved that we may rearrange the order of the terms,

f(θ, φ) =

∞∑

ℓ=0

ℓ∑

m=0

Pℓ,m(cos θ) (cℓ,m cosmφ+ dℓ,msinmφ) ,

where by the orthogonality result above

cℓ,m =
(f, Pℓ,m(cos θ) cosmφ)

(Pℓ,m(cos θ) cosmφ,Pℓ,m(cos θ) cosmφ)

=
2ℓ+ 1

2π

(ℓ−m)!

(ℓ+m)!
(f, Pℓ,m(cos θ) cosmφ),

with an analogous formula for dℓ,m.
Our procedure for solving general problems involving Laplace’s equation on spherical shells is now clear:

we start out with the general series representation

∞∑

ℓ=0

ℓ∑

m=0

Pℓm(cos θ)
(
aℓmr

ℓ + bℓmr
−ℓ−1

)
(cℓm cosmφ+ dℓmsinmφ) ,

and then apply the boundary conditions, using formulas like the above for cℓ,m to determine equations for
the relevant coefficients (exactly as we did when solving Laplace’s equation on a square), to determine all of
the coefficients in the expansion. We then substitute back in to obtain the desired solution.

As we are well aware by now, this process in general produces very long expressions; also, the integrals
arising for general boundary data can be very difficult to evaluate. Some simple examples can be done by
exploiting the idea of harmonic polynomial mentioned earlier; we give one such example.

8Here and below, to avoid having to pull out the m = 0 term explicitly, we shall make the definition that
d0, etc., are all zero.
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EXAMPLE. Solve Laplace’s equation ∇2u = 0 on the unit ball with boundary data u|r=1 = cos θsin θsinφ+
sin 2θsinφ cosφ.

First of all, we note that since we are solving on the interior of a sphere, our solution must be continuous
at the origin, so the terms r−ℓ−1 cannot appear and we must have bℓ,m = 0 for all ℓ, m; we may thus absorb
the coefficients aℓ,m into the cℓ,m and dℓ,m. We could proceed by rewriting the above boundary data as a
linear combination of products of associated Legendre functions with functions cosmφ, sinmφ; this would
give

1

3
P2,1sinφ+

1

6
P2,2sin 2φ,

from which we would obtain the solution

1

3
P2,1r

2sinφ+
1

6
P2,2r

2sin 2φ.

Alternatively, we may note that on r = 1 the above expression is equal to the polynomial

zy + xy,

which satisfies Laplace’s equation everywhere through space; thus our solution is simply u = zy+ xy, as can
be verified from the first expression given above.
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APM 346, Homework 5. Due Monday, June 10, at 6.00 AM EDT. To be marked completed/not completed.

1. Solve the following boundary-value problem on the region {(r, θ, φ)|1 < r < 2}:

∇2u = 0, u|r=2 =

{
1, 0 ≤ θ < π

2
−1, π

2 < θ ≤ π
, ur|r=1 =

{
0, 0 ≤ θ < π

2
1, π

2 < θ ≤ π
.

[Hint: use Legendre polynomial identities to calculate
∫ 1

0
Pℓ(x) dx and

∫ 0

−1
Pℓ(x) dx.]

Since the boundary conditions are azimuthally symmetric (and since we are solving on a spherical shell,
which is an azimuthally symmetric region) we may write the general solution to Laplace’s equation as

u =
∞∑

ℓ=0

Pℓ(cos θ)
(
aℓr

ℓ + bℓr
−ℓ−1

)
.

Now at r = 2 we have

u|r=2 =

∞∑

ℓ=0

Pℓ(cos θ)

(
aℓ2

ℓ +
bℓ

2ℓ+1

)
=

{
1, 0 ≤ θ < π

2
−1, π

2 < θ ≤ π
.

If we write this in terms of x = cos θ ,it comes

u|r=2 =

∞∑

ℓ=0

Pℓ(x)

(
aℓ2

ℓ +
bℓ

2ℓ+1

)
=

{
−1, −1 ≤ x < 0
1, 0 < x ≤ 1

;

thus the orthogonality and normalisation properties of the Legendre polynomials give

aℓ2
ℓ +

bℓ
2ℓ+1

=
2ℓ+ 1

2

[∫ 0

−1

−Pℓ(x) dx +

∫ 1

0

Pℓ(x) dx

]
=

2ℓ+ 1

2

[∫ 1

0

[Pℓ(x) − Pℓ(−x)] dx
]
;

if ℓ is even this will vanish, since Pℓ will be an even function, while if ℓ is odd we have

aℓ2
ℓ +

bℓ
2ℓ+1

= (2ℓ+ 1)

∫ 1

0

Pℓ(x) dx.

Now we have the identity (from the lecture notes)

(2ℓ+ 1)Pℓ(x) = P ′
ℓ+1(x) − P ′

ℓ−1(x);

thus for ℓ odd, say ℓ = 2k + 1,

aℓ2
ℓ +

bℓ
2ℓ+1

= [Pℓ+1(1)− Pℓ−1(1)− (Pℓ+1(0)− Pℓ−1(0))] = − (Pℓ+1(0)− Pℓ−1(0)) ;

we shall show how to calculate this last expression shortly.
The second boundary condition (again working in terms of x = cos θ) gives

ur|r=1 =

∞∑

ℓ=0

Pℓ(cos θ) (ℓaℓ − (ℓ+ 1)bℓ) =

{
1, −1 ≤ x < 0
0, 0 < x ≤ 1

,

so

ℓaℓ − (ℓ + 1)bℓ =
2ℓ+ 1

2

∫ 0

−1

Pℓ(x) dx.
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If ℓ = 0 this is just 1
2 , while if ℓ > 0 is even it is 2ℓ+1

4

∫ 1

−1 Pℓ(x) dx = 0. If ℓ is odd, say again ℓ = 2k + 1, we
obtain

ℓaℓ − (ℓ+ 1)bℓ =
1

2
[Pℓ+1(0)− Pℓ−1(0)− (Pℓ+1(−1)− Pℓ−1(−1))] =

1

2
(Pℓ+1(0)− Pℓ−1(0)) ,

since Pℓ+1(−1) = (−1)ℓ+1 = (−1)ℓ−1 = Pℓ−1(−1). Thus for ℓ = 2k + 1 we have the system

aℓ2
ℓ +

bℓ
2ℓ+1

= − (Pℓ+1(0)− Pℓ−1(0))

ℓaℓ − (ℓ+ 1)bℓ =
1

2
(Pℓ+1(0)− Pℓ−1(0)) .

This is a system of two linear equations in two unknowns and may be solved by a number of methods;
perhaps the most systematic is to find the inverse of the coefficient matrix. We have the general formula
(when the determinant ad− bc is nonzero)

(
a b
c d

)−1

=
1

ad− bc

(
d −b
−c a

)
,

which in the present case gives

(
2ℓ 1

2ℓ+1

ℓ −(ℓ+ 1)

)−1

=
1

(ℓ + 1)2ℓ + ℓ
2ℓ+1

(
ℓ+ 1 1

2ℓ+1

ℓ −2ℓ

)
.

Thus (
aℓ
bℓ

)
=

1

(ℓ+ 1)2ℓ + ℓ
2ℓ+1

(
ℓ+ 1 1

2ℓ+1

ℓ −2ℓ

)(
−1
1
2

)
(Pℓ+1(0)− Pℓ−1(0))

=
2ℓ+1

(ℓ+ 1)22ℓ+2 + ℓ

(−(ℓ+ 1) + 1
2ℓ+2

−ℓ− 2ℓ−1

)
(Pℓ+1(0)− Pℓ−1(0)) .

Now we have the general formula (this was discussed in lecture)

P2k(0) =
(−1)k(2k − 1)!!

2kk!
;

thus

P2k+2(0)− P2k(0) =
(−1)k+1(2k + 1)!!

2k+1(k + 1)!
− (−1)k(2k − 1)!!

2kk!
=

(−1)k+1(2k − 1)!!

2kk!

(
2k + 1

2k + 2
+ 1

)

=
(−1)k+1(2k − 1)!!

2k+1(k + 1)!
(4k + 3),

and since in the above formula we have ℓ = 2k + 1, we have finally the expression

(
a2k+1

b2k+1

)
=

22k+2

(2k + 2)24k+4 + 2k + 1

(−2k − 2 + 1
22k+3

−2k − 1− 22k

)
(−1)k+1(2k − 1)!!

2k+1(k + 1)!
(4k + 3).

For ℓ even, ℓ > 0, we have the system

aℓ2
ℓ +

bℓ
2ℓ+1

= 0

ℓaℓ − (ℓ + 1)bℓ = 0,

which implies that aℓ = bℓ = 0 in this case; while for ℓ = 0 we have instead the system

a0 +
b0
2

= 0

−b0 =
1

2
,
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which implies that a0 = 1
4 , b0 = − 1

2 . Thus finally we obtain the solution

u =
1

4
− 1

2r
+

∞∑

k=0

P2k+1(cos θ)

[
2k+1(−1)k(2k − 1)!!(4k + 3)

[(k + 1)24k+4 + (2k + 1)] (k + 1)!

]

·
[(

2k + 2− 1

22k+3

)
r2k+1 +

(
2k + 1 + 22k

)
r−(2k+2)

]
.

2. Solve the following boundary-value problem on the region {(r, θ, φ)|r < 2}:

∇2u = 0, u|r=2 = x(1 + y).

(Here x = rsin θ cosφ and y = rsin θsinφ are the standard Cartesian coordinates corresponding to the given
spherical coordinate system.)

This problem is much easier than problem 1. First of all, there is a straightforward way and a tricky
way. We show the trick first. Since

∇2x(1 + y) = 0

for all x, y, z ∈ R3, we see that u = x(1 + y) satisfies Laplace’s equation on the given region; it also agrees
with the boundary data, and thus it must be the solution we seek.

The straightforward way is rather longer (though also very instructive in our general technique) and
goes as follows. Since we are solving on a region containing the origin, the general solution can be written as

u =
∞∑

ℓ=0

ℓ∑

m=0

Pℓ,m(cos θ)rℓ (cℓ,m cosmφ+ dℓ,msinmφ) .

Thus on the boundary r = 2 we have

u|r=2 =

∞∑

ℓ=0

ℓ∑

m=0

Pℓ,m(cos θ)2
ℓ (cℓ,m cosmφ+ dℓ,msinmφ)

= x(1 + y)|r=2 = 2sin θ cosφ+ 4sin 2θ cosφsinφ;

since (see the lecture notes)

P1,1(cos θ) = sin θ, P2,2(cos θ) = 3sin 2θ,

we see that this last expression may be written as

2P1,1(cos θ) cosφ+
2

3
P2,2(cos θ)sin 2φ.

Orthogonality of the set {Pℓ} ∪ {Pℓ,m cosmφ,Pℓ,msinmφ} then allows us to obtain

21c1,1 = 2, 22d2,2 =
2

3
,

with all other cℓ,m and dℓ,m vanishing. This gives c1,1 = 1, d1,1 = 1
6 , and finally

u = P1,1(cos θ)r cosφ+
1

6
P2,2r

2sin 2φ

= rsin θ cosφ+ r2sin 2θsinφ cosφ = x+ xy,

the same as we obtained by the previous method.
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Summary:
• By separating variables in Laplace’s equation in cylindrical coordinates, we derive Bessel’s equation,
and use it to derive the Taylor series expansion for Bessel functions on nonnegative integer order.

• We then discuss the orthogonality and completeness properties of these functions.
• Finally, we then use these Taylor series expansions to deduce differentiation and recursion relations for
the Bessel functions of nonnegative integer order, and say a few words about modified Bessel functions.

SEPARATION OF VARIABLES IN CYLINDRICAL COORDINATES. Recall (see the lecture notes for
the week of May 23) that the Laplacian in cylindrical coordinates (ρ, φ, z) (which is related to Cartesian
coordinates (x, y, z) by x = ρ cosφ, y = ρsinφ, z = z) is given by

∇2f(ρ, φ, z) =
∂2f

∂ρ2
+

1

ρ

∂f

∂ρ
+

1

ρ2
∂2f

∂φ2
+
∂2f

∂z2
.

We are interested (as usual) in solving the equation ∇2u = 0, on a region possessing cylindrical symmetry,
subject to certain conditions imposed on the boundary of that region. As before, we shall proceed by
looking first for separated solutions u = P (ρ)Φ(φ)Z(z),1 and then investigating whether the full solution
can be expressed as a series of solutions of this type.

Substituting this ansatz into Laplace’s equation and dividing by u as usual, we obtain the equation

(1)
1

P

d2P

dρ2
+

1

ρ

1

P

dP

dρ
+

1

ρ2
1

Φ

d2Φ

dφ2
+

1

Z

d2Z

dz2
= 0.

We note that the last term depends only on Z, and is moreover the only term on the left-hand side dependant

on Z, and must therefore be constant. Similarly, the term 1
Φ
d2Φ
dφ2 is the only term dependant on φ and must

therefore also be constant. To proceed further, we must (as for the case of spherical coordinates) know
something more about the region over which we wish to solve Laplace’s equation. Let us suppose that we
are interested in solving over a region which involves a full range of the angular variable φ (for example, a
cylinder {(ρ, φ, z)|ρ < a, b ≤ z ≤ c, 0 ≤ φ ≤ 2π}). Then, just as for spherical coordinates, u and therefore Φ

must be periodic in φ with period 2π. Now Φ satisfies the equation d2Φ
dφ2 = µΦ for some constant µ; requiring

Φ to be periodic forces µ ≤ 0, say µ = −m2, giving Φ = a cosmφ + bsinmφ for some a and b; further
requiring the period to be 2π gives m ∈ Z. We may take m ≥ 0 without loss of generality.2

The treatment of the constant corresponding to Z is more involved. To provide some context, we first
recall our treatment of Laplace’s equation on a square. Recall that in that case separated solutions of the
form u = X(x)Y (y) satisfied the equation

1

X

d2X

dx2
+

1

Y

d2Y

dy2
= 0,

from which it is easy to see that both terms must be constant, meaning that we must have X ′′ = µX ,
Y ′′ = −µY . The question then arises as to whether µ should be positive or negative (or 0, but we shall
not consider that case here). Clearly, µ > 0, say µ = m2, implies that we have the general solutions
Y = asinmy + b cosmy, X = csinhmx + bcoshmx, i.e., Y will be oscillatory while X will be exponential,
while µ < 0, say µ = −m2, implies the exact opposite: X = csinmx + b cosmx, Y = asinhmy + bcoshmy,
i.e., X will be oscillatory while Y will be exponential. For the boundary-value problems which we have
considered so far, we had conditions like X(0) = X(1) = 0, which forced us to choose X to be oscillatory

1Here P is the capital form of the Greek letter ρ, not the capital form of the English letter p.
2Note that if m = 0, the general solution for Φ is not a cosφ+ bsinmφ = a but rather a+ bφ; since φ is not
periodic as a function of φ, we must have b = 0, meaning that the solution is in fact just Φ = a for some
constant a. For notational simplicity we shall write Φ = a cosmφ+ bsinmφ as the general solution for all m,
even m = 0, with the implicit understanding that when m = 0 we shall always (for definiteness) take b = 0
(otherwise b would be undefined in this case). This device can be avoided by considering the complex basis
eimφ instead, but we shall not do that here.



APM346, 2019 June 11 – 13 Nathan Carruth

and hence Y to be exponential. Had we had instead conditions like Y (0) = Y (1) = 0, we would have been
forced to take instead Y to be oscillatory and hence X to be exponential.

It turns out that the same duality holds in the present case.3 Thus, depending on the given boundary
conditions, we may be forced to take Z to be oscillatory, in the which case P will be non-oscillatory; or we
may be forced to take P to be oscillatory, in the which case Z will be non-oscillatory. (In general, we will
have a sum of solutions, one of each type.) Without prejudicing the final result, then, let us write for the
moment

d2Z

dz2
= ǫλ2Z,

where λ ∈ R, λ ≥ 0, and ǫ = ±1.4 Substituting this and the equation for Φ into equation (1) above, we
obtain for P the equation

(2)
d2P

dρ2
+

1

ρ

dP

dρ
+

(
ǫλ2 − m2

ρ2

)
P = 0.

If λ = 0 this equation has the general solution (much as for the r-dependent factor in separated solutions in
spherical coordinates) P = arα+ + brα− , where α± are the solutions to α(α+2) = m2. In this case, we have
also Z = c+ dz, whence we obtain the general separated solution

u = (arα+ + brα−) (c+ dz) (e cosmφ+ fsinmφ) .

Suppose now that λ > 0, and define a new function Q : [0,∞) → R by Q(x) = P
(
x
λ

)
; equivalently, by

P (ρ) = Q(λρ). Substituting this into equation (2) above for P gives

0 = λ2Q′′(λρ) +
λ

ρ
Q′(λρ) +

(
ǫλ2 − m2

ρ2

)
Q(λρ)

= λ2
[
Q′′(λρ) +

1

λρ
Q′(λρ) +

(
ǫ− m2

λ2ρ2

)
Q(λρ)

]
,

whence we obtain, writing x = λρ,

d2Q

dx2
+

1

x

dQ

dx
+

(
ǫ− m2

x2

)
Q = 0.

When ǫ = 1 this is called (see [1], p. 38) Bessel’s equation for functions of order m. We now restrict to this
case for the moment; thus we consider the equation

(3)
d2Q

dx2
+

1

x

dQ

dx
+

(
1− m2

x2

)
Q = 0.

3You may wonder why this did not play so central a part in our treatment of Laplace’s equation in spherical
coordinates. In spherical coordinates, assuming we solve on a region which covers a full range of φ and θ,
we have natural boundary conditions on the corresponding factors of the separated solution Φ (identical to
that here) and Θ (that it be finite at both θ = 0 and θ = π, i.e., at both poles, or equivalently, on the
z-axis) which turned out to force both of them to be oscillatory. Thus the only remaining factor, R(r), was
forced to be the non-oscillatory (though not, we might note, in this case, exponential). This would not have
happened had we solved Laplace’s equation on a wedge, say for θ ∈

[
π
4 ,

3π
4

]
– in that case we would have

to consider (in general) both oscillatory and non-oscillatory solutions in the θ direction, which could lead to
oscillatory solutions in the r direction. [Note. You may recall that when we discussed the equation for R we
had a restriction on the separation constant (namely – see the lecture notes for the week of May 23, p. 8 –
α > 1

4 ); were this condition not satisfied, the solutions in the r direction could become oscillatory. We shall
not pursue this further here.]
4The observant reader may note that we could drop ǫ by letting λ be a complex number, with say ℜλ ≥ 0
for definiteness. It turns out that the so-called modified Bessel functions, which are the non-oscillatory
counterparts of the oscillatory Bessel functions to be derived presently, are obtained from the latter by just
this kind of transformation. We shall have more to say about all this below.
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We wish to derive a power-series representation for the solutions to this equation. To do this, it is convenient
to make another change of variables by setting Q(x) = xmq(x) for some function q; this gives

Q′ = mxm−1q + xmq′, Q′′ = m(m− 1)xm−2q + 2mxm−1q′ + xmq′′,

whence, upon substituting into equation (3), we obtain

0 = xmq′′ + 2mxm−1q′ +m(m− 1)xm−2q + xm−1q′ +mxm−2q + xmq −m2xm−2q

= xmq′′ + (2m+ 1)xm−1q′ +
(
m(m− 1) +m−m2

)
xm−2q + xmq

= xm
(
q′′ +

2m+ 1

x
q′ + q

)
,

whence finally

(4) q′′ +
2m+ 1

x
q′ + q = 0.

Now suppose that q can be expanded in a Taylor series about x = 0 as

q =

∞∑

n=0

anx
n;

substituting into equation (4) then gives

0 =
∞∑

n=0

n(n− 1)anx
n−2 + (2m+ 1)nanx

n−2 + anx
n

= (2m+ 1)a1x
−1 +

∞∑

n=2

n(n− 1)anx
n−2 + (2m+ 1)nanx

n−2 + an−2x
n−2

= (2m+ 1)a1x
−1 +

∞∑

n=0

xn ((n+ 1)(n+ 2)an+2 + (2m+ 1)(n+ 2)an+2 + an) ,

since the first two terms in the series on the first line vanish for n = 0 and n = 1 except for the (2m+1)a1x
−1

term. Since the final series above contains no terms with negative powers of x, the term (2m+1)a1x
−1 must

vanish, meaning that (since here m is a nonnegative integer) we must have a1 = 0. The series itself must
then vanish, which gives the recurrence relation

(n+ 2)(2m+ n+ 2)an+2 + an = 0,

an+2 = − 1

(n+ 2)(2m+ n+ 2)
an,

an = − 1

n(2m+ n)
an−2,

where in the last line we have simply replace n+2 by n everywhere. Since we have a1 = 0 by the foregoing,
this recurrence relation implies that an = 0 for all odd n, so that the power series for q only has even-order
terms. Moreover, inspection of the recurrence relation above shows that we have the general formula

a2k =
(−1)k(2m)!!

(2k)!!(2m+ 2k)!!
a0

=
(−1)k2mm!

2kk!2m+k(m+ k)!
a0 =

(−1)km!

4kk!(m+ k)!
a0,
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where as for odd numbers we define (2k)!! = (2k)(2k − 2) · · · 4 · 2 = 2kk!. (This formula may be proved by

mathematical induction as follows: when k = 0 the coefficient above is simply (−1)0m!
400!(m+0)! = 1, proving the

base case; supposing it holds for 2k − 2, we have

a2k = − 1

(2k)(2m+ 2k)

(−1)k−1m!

4k−1(k − 1)!(m+ k − 1)!
a0

=
(−1)km!

4kk(k − 1)!(m+ k)(m+ k − 1)!
a0

=
(−1)km!

4kk!(m+ k)!
c0,

proving that it holds for 2k as well, and hence for all indices.) As with our definition of the Legendre
polynomials, we are free to define a0; we set a0 = 1

2mm! , so that

a2k =
(−1)k

22k+mk!(m+ k)!
,

q =
∞∑

k=0

(−1)k

22k+mk!(m+ k)!
x2k,

Q = xmq =

∞∑

k=0

(−1)k

k!(m+ k)!

(x
2

)2k+m
.

This function represented by this series is called the Bessel function of order m and denoted Jm(x).

Pulling everything back together, then, we see that the solution of equation (2) with ǫ = 1 which has a
power series expansion about x = 0 is given by Jm(λρ). Now when ǫ = 1 we have for Z the equation

d2Z

dz2
= λ2Z,

which has the general solution Z = ccoshλz + dsinhλz. Thus the general separated solution to Laplace’s
equation in this case is

u = Jm(λρ) (a cosmφ+ bsinmφ) (ccoshλz + dsinhλz) .

We have already restricted m to be a nonnegative integer, but note that there is as yet no restriction on
λ. This is analogous to the situation we were in when solving Laplace’s equation in a square in rectangular
coordinates: the general solution was in terms of functions sinmx, cosmx, etc., where m was fixed only
by the boundary conditions in the x direction. Thus we expect λ to be fixed by the boundary conditions
obtaining in ρ. By requiring our solution to be regular at x = 0, we have already given one boundary
condition. Now consider the boundary condition u|ρ=a = 0; this gives for λ the equation

Jm(aλ) = 0.

It can be shewn that this equation has an infinite number of solutions. In the case a = 1, we label them
λm,i, i = 1, 2, . . .; in the case of general a, then, the correct values of λ are 1

aλm,i, i = 1, 2, . . .. Unfortunately,
unlike for sine and cosine, there is no explicit formula for the λm,i, so we shall have to be content with just
this notation. (It can be shewn – though we shall not do so here – that the zeroes are discrete (meaning
that they do not ‘pile up’, i.e., have no accumulation point), and that as i → ∞ for fixed m, the spacing
becomes constant (see [1], p. 506).)
ORTHOGONALITY AND COMPLETENESS. We would now like to know something about the orthogo-
nality and completeness properties of these Bessel functions. We first note one possible point of confusion
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which has not arisen in any of our previous studies. Legendre polynomials are complete in the sense that
any suitably well-behaved function on [−1, 1] can be expanded in a series

∞∑

ℓ=0

aℓPℓ(x);

similarly, associated Legendre functions Pℓm for fixed m are complete in the sense that any suitably well-
behaved function on [−1, 1] can be expanded in the analogous series

∞∑

ℓ=m

aℓPℓm(x).

This might lead us to expect that the completeness result for Bessel functions would state that any suitably
well-behaved function on some appropriate interval (perhaps their domain of definition, [0,∞)) can be
expanded in a series of the form

∞∑

m=0

amJm(x)

(this is termed a Neumann series). It turns out that various results of this form are true (see [1], Chapter
XVI). However, some reflection shows that they are not actually relevant for our current setting.5 Roughly,
this is because the index m is already ‘used’ in some sense by the orthogonal basis {cosmφ, sinmφ}. More
precisely, we expect that a general solution to the boundary-value problem we are looking at can be expressed
in the form

u =
∑

i

∞∑

m=0

Jm

(
1

a
λm,iρ

)
(am,i cosmφ+ bm,isinmφ)

(
cm,icosh

1

a
λm,iz + dm,isinh

1

a
λm,iz

)
.

Now since this series by construction satisfies the boundary condition u|ρ=a = 0, the only boundary conditions
we might have to fit are on surfaces of constant z, say z = L. Suppose for the sake of definiteness that we
were given the condition u|z=L = 1. Then we would need to find an expansion (on the interval [0, a], we
should note)

1 =
∑

i

∞∑

m=0

Jm

(
1

a
λm,iρ

)(
a′m,i cosmφ+ b′m,isinmφ

)

(the constants a′m,i and b′m,i will be related but not identical to the constants am,i and bm,i in the full
expansion). As before, we may think of fixing ρ and using orthogonality of the basis {cosmφ, sinmφ} to
determine which m-valeus are present; clearly, we have only m = 0. Thus we are left with the expansion
problem

1 =
∑

i

a′′0,iJm

(
1

a
λm,iρ

)
;

in other words, working the expansion out in the φ direction gets rid of the index m. (This is analogous to
what we did when considering expansions of functions on the sphere in terms of the basis {Pℓm(cos θ) cosmφ,
Pℓm(cos θ)sinmφ}, whereby we fixed θ and expanded in {cosmφ, sinmφ} to obtain functions cm(θ), dm(θ),
which were then expanded in a series of Pℓm(cos θ) with m fixed.) This result also points us in the direction
of the correct completeness result for Bessel functions in our current situation; namely, we expect that for
any nonnegative integer m, a suitably well-behaved function on the interval [0, a] will have an expansion of
the form

(5)

∞∑

i=1

aiJm

(
1

a
λm,iρ

)
,

5This is not to say that they are not useful for solving boundary-value problems – just that they are not
needed for the type of boundary-value problem we are investigating at the moment.
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where { 1
aλm,i}∞i=1 is the set of zeroes of Jm(ax) = 0. It turns out that this result is correct (though we shall

not prove it here); the expansion above is called a Fourier-Bessel series. (See [1], Chapter XVIII, especially
18.24.)6

Given the correctness of the above series expansion, we can determine the coefficients ai if we have
an appropriate orthogonality result for the functions Jm

(
1
aλm,iρ

)
on the interval [0, a]. We shall prove

an appropriate orthogonality result in the same way we proved orthogonality for the associated Legendre
functions; see the lecture notes for the week of June 4, pp. 7–8. We first rewrite Bessel’s equation as (here
P = Jm(λρ))

1

ρ

d

dρ

(
ρ
dP

dρ

)
− m2

ρ2
P = −λ2P.

Let us denote the operator on the left-hand side by L, meaning that we denote the entire left-hand side by
LP ; thus Bessel’s equation becomes simply the eigenvalue equation for L, LP = −λ2P . We will now show
that L is self-adjoint with respect to an appropriate inner product on [0, a]. For integrable functions f and
g on [0, a], let

(f, g) =

∫ a

0

ρf(ρ)g(ρ) dρ.

Now suppose that f and g satisfy the boundary condition f(a) = 0, g(a) = 0. Then7

(Lf, g) =

∫ a

0

ρ

(
1

ρ

d

dρ

(
ρ
df

dρ

)
− m2

ρ2
f

)
g dρ

=

∫ a

0

d

dρ

(
ρ
df

dρ

)
− m2

ρ
f(ρ)g(ρ) dρ

= −
∫ a

0

ρ
df

dρ

dg

dρ
+
m2

ρ
f(ρ)g(ρ) dρ

,

where we have performed an integration by parts and used the fact that g(a) = 0. Since this expression
(up to conjugation, which doesn’t matter when f and g are real as they are for us at this point) is clearly
symmetric in f and g, we conclude that

(Lf, g) = (f, Lg)

(alternatively, this can be shewn by performing another integration by parts, as was done when dealing with
associated Legendre functions). Now suppose that f(ρ) = Jm( 1aλm,iρ), g(ρ) = Jm( 1aλm,i′ρ), i 6= i′; then the
above equation gives (since f and g here clearly satisfy the boundary condition f(a) = g(a) = 0)

(Lf, g) = − 1

a2
λ2m,i(f, g) = (f, Lg)

= − 1

a2
λ2m,i′(f, g),

6Note that Neumann series and Fourier-Bessel series do not exhaust the possibilities for series expansions in
terms of Bessel functions; there are also, for example, Kapteyn series and Schlömilch series (see [1], Chapters
XVII and XIX), but we shall not discuss them here.
7We are eliding one subtle point, namely whether the function 1

ρf(ρ)g(ρ) is integrable on [0, a]. Since we are

interested in cases where f(ρ) = Jm(λρ), g(ρ) = Jm(λ′ρ) for some λ, λ′, and since Jm has a zero of order m
at ρ = 0 (i.e., Jm(ρ) = ρmq(ρ), where q(ρ) is finite at ρ = 0), for us these functions will be integrable when
f is as long as m 6= 0. But when m = 0 this term is not present in L. Thus the calculations below are valid
for the cases in which we are interested. [It would be good to see a fuller treatment of this point, but that
would be (a) most importantly, outside the expertise of the current author, and (b) probably beyond the
scope of the course.]
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whence (since λm,i 6= λm,i′ as i 6= i′) we must have (f, g) = 0, showing orthogonality with respect to the
given inner product. To calculate the expansion coefficients we need only the normalisation. This is found
to be (see [1], 18.24) ∫ a

0

ρJ2
m

(
1

a
λm,iρ

)
dρ =

1

2
a2J2

m+1 (λm,i) .

Thus we may finally write, in expansion (5) above,

ai =

(
f(ρ), Jm

(
1
aλm,iρ

))
(
Jm
(
1
aλm,iρ

)
, Jm

(
1
aλm,iρ

)) =
2

a2J2
m+1 (λm,i)

∫ a

0

ρf(ρ)Jm

(
1

a
λm,iρ

)
dρ.

We now indicate in general how all of this may be used to solve boundary-value problems. Suppose
that we are to solve Laplace’s equation on the cylinder {(ρ, φ, z)|ρ < a, 0 ≤ z ≤ b}, with the boundary
conditions

u|ρ=a = 0, u|z=0 = 0, u|z=b = f(ρ, φ).

The first condition allows us to conclude that the series will be of the form

u =
∞∑

m=0

∞∑

i=1

Jm

(
1

a
λm,iρ

)
(am,i cosmφ+ bm,isinmφ)

(
cm,icosh

1

a
λm,iz + dm,isinh

1

a
λm,iz

)
,

while the second condition then allows us to conclude (since cosh 0 = 1) that cm,i = 0 for all m, i; absorbing
dm,i into am,i and bm,i, we are left with the expansion

u =

∞∑

m=0

∞∑

i=1

Jm

(
1

a
λm,iρ

)
sinh

1

a
λm,iz (am,i cosmφ+ bm,isinmφ) .

We may now handle this expansion and the final boundary condition in an analogous way to how we handled
the expansion and condition

u =

∞∑

ℓ=0

ℓ∑

m=0

Pℓ,m(cos θ)rℓ (aℓ,m cosmφ+ bℓ,msinmφ) , u|r=a = f(θ, φ).

More specifically, we need to expand f(ρ, φ) in the basis {Jm
(
1
aλm,iρ

)
cosmφ, Jm

(
1
aλm,iρ

)
sinmφ}; we may

do this by first fixing some ρ, and then expanding along φ to obtain ρ-dependent coefficients

am(ρ) =
1

π

∫ 2π

0

f(ρ, φ) cosmφdφ, bm(ρ) =
1

π

∫ 2π

0

f(ρ, φ)sinmφdφ

for m > 0, while for m = 0 we have b0 = 0 by convention and

a0(ρ) =
1

2π

∫ 2π

0

f(ρ, φ) dφ.

(This separate formula for a0 was what the factor 1
2 on the constant term in the Fourier expansions we saw

earlier on in class was meant to solve, but we have not adopted that convention here.) This allows us to
write

f =

∞∑

m=0

am(ρ) cosmφ+ bm(ρ)sinmφ.

In order to write this as a series along the lines of that for u above, we must now expand am(ρ) and bm(ρ)
in series of {Jm

(
1
aλm,iρ

)
}, where now m is fixed and only i varies; this is exactly analogous to how we had
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to expand the coefficient functions am(θ) and bm(θ) in the basis {Pℓ,m(cos θ)}∞ℓ=m, with fixed m. This will
give expansions

am(ρ) =

∞∑

i=1

amiJm

(
1

a
λm,iρ

)
,

and similarly for bm(ρ). Equating coefficients then allows us to determine u, as usual.
DIFFERENTIATION FORMULAS AND RECURRENCE RELATIONS. In order to calculate the integrals
needed to find the coefficients in expansions such as those above, we need results on Bessel functions similar
to those we derived for the Legendre polynomials previously. We now take up this question.

PROPOSITION. The Bessel functions satisfy the following four identities:

1. Jm−1(x)− Jm+1(x) = 2J ′
m(x), m > 0; J ′

0(x) = −J1(x),
while for m > 0 we have

2. Jm−1(x) + Jm+1(x) =
2m
x Jm(x);

3. Jm−1(x) = J ′
m(x) + m

x Jm(x);
4. Jm+1(x) = −J ′

m(x) + m
x Jm(x);

5. d
dx (x

mJm(x)) = xmJm−1(x);

6. d
dx (x

−mJm(x)) = −x−mJm+1(x).

Proof. Recall the series expansion

Jm(x) =

∞∑

k=0

(−1)k

k!(m+ k)!

(x
2

)2k+m
.

Differentiating this expression term-by-term, we obtain

J ′
m(x) =

1

2

∞∑

k=0

(−1)k

k!(m+ k)!
(k +m+ k)

(x
2

)2k+m−1

,

where we have written 2k +m = k +m + k. We expand out these two series separately since they will be
useful in proving the second identity also. We see that

∞∑

k=0

(−1)k

k!(m+ k)!
k
(x
2

)2k+m−1

= −
∞∑

k=1

(−1)k−1

(k − 1)!(m+ 1 + (k − 1))!

(x
2

)2(k−1)+m+1

= −Jm+1(x),

where in the second sum we may start at k = 1 since the k = 0 term in the first sum clearly vanishes.
Similarly, we see that, for m > 0,

∞∑

k=0

(−1)k

k!(m+ k)!
(m+ k)

(x
2

)2k+m−1

=

∞∑

k=0

(−1)k

k!(m− 1 + k)!

(x
2

)2k+(m−1)

= Jm−1(x),

while if m = 0 then we have as before

∞∑

k=0

(−1)k

k!(m+ k)!
(m+ k)

(x
2

)2k+m−1

= −J1(x).

Thus we have, in particular, for m > 0,

J ′
m(x) =

1

2
(Jm−1(x)− Jm+1(x)) ,

while for m = 0
J ′
0(x) = −J1(x).
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This proves the first identity. For the second identity, note that, by the foregoing,

Jm−1(x) + Jm+1(x) =

∞∑

k=0

(−1)k

k!(m+ k)!
(m+ k − k)

(x
2

)2k+m−1

=
2m

x

∞∑

k=0

(−1)k

k!(m+ k)!

(x
2

)2k+m
=

2m

x
Jm(x).

The next two follow by adding and subtracting the first two; specifically,

Jm−1(x) =
1

2

(
2J ′

m(x) +
2m

x
Jm(x)

)
= J ′

m(x) +
m

x
Jm(x),

while

Jm+1(x) =
1

2

(
2m

x
Jm(x)− 2J ′

m(x)

)
= −J ′

m(x) +
m

x
Jm(x).

Finally, identites 3 and 4 give

d

dx
(xmJm(x)) = mxm−1Jm(x) + xmJ ′

m(x) = xm
(m
x
Jm(x) + J ′

m(x)
)
= xmJm−1(x),

d

dx

(
x−mJm(x)

)
= −mx−m−1Jm(x) + x−mJ ′

m(x) = x−m
(
−m
x
Jm(x) + J ′

m(x)
)
= −x−mJm+1(x).

This completes the proof. QED.

Identity 5 above gives rise, for example, to the following integral formula:

∫
xmJm−1(x) dx = xmJm(x) + C,

which may be used to calculate the coefficients in the expansion of xm in a Fourier-Bessel series in Bessel
functions of order m. This type of expansion is needed on Homework 6.

Finally, we say a few words about the case ǫ = −1, corresponding to oscillatory behaviour in the z
direction; explicitly, Z obeys the equation Z ′′ = −λ2Z, with general solution Z = a cosλz + bsinλz, while
P satisfies the equation

(6)
d2P

dρ2
+

1

ρ

dP

dρ
+

(
−λ2 − m2

ρ2

)
P = 0.

We recall that with ǫ = 1 the solution to this equation is given by

Jm(λρ) =

∞∑

k=0

(−1)k

k!(m+ k)!

(
λρ

2

)2k+m

.

Now it seems reasonable that replacing λ by iλ (where i =
√
−1) should give a solution to equation (6);

substituting in to the expression above, and dividing by im, we obtain the function

Im(λρ) =

∞∑

k=0

1

k!(m+ k)!

(
λρ

2

)2k+m

.

This function, known as a modified Bessel function of order m, is in fact a solution to equation (6) which
is moreover well-behaved (i.e., finite) at x = 0. The other linearly independent solution to equation (6) is
denoted Km(x) and will not be discussed here. Assuming that only the Im(λρ) factors occur in our separated
solutions, a general separated solution to Laplace’s equation in this case is of the form

Im(λρ) (a cosmφ+ bsinmφ) (c cosλz + dsinλz) .
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Inspecting and comparing the series expansions of Jm(x) and Im(x), we note the similarity between them
and the series for sinx and sinhx:

Jm(x) =

∞∑

k=0

(−1)k

k!(m+ k)!

(x
2

)2k+m
, Im(x) =

∞∑

k=0

1

k!(m+ k)!

(x
2

)2k+m
,

sinx =

∞∑

k=0

(−1)k

(2k + 1)!
x2k+1, sinhx =

∞∑

k=0

1

(2k + 1)!
x2k+1.

Thus we see that Jm(x) is the parallel for cylindrical coordinates of the oscillatory solution sinx in rectangular
coordinates, while Im(x) is the parallel for the non-oscillatory (in fact, exponential) solution sinhx. The
parallels between these pairs go even deeper, as can be seen from the derivative and recurrence identities
satisfied by Im(x) (see [1], 3.7); but we shall not go any deeper into these here.

The third practice problem for week 6 makes use of the functions Im(x).

REFERENCES
1. Watson, G. N. A Treatise on the Theory of Bessel Functions, 2nd ed. Cambridge: Cambridge University
Press, 1952.
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APM 346, Homework 6. Due Wednesday, June 19, at 6.00 AM EDT. To be marked completed/not completed.

1. Solve the following boundary-value problem on the region {(ρ, φ, z)|ρ < 1, 0 < z < 1} in cylindrical
coordinates:

∇2u = 0, u|ρ=1 = 0, u|z=0 = 0, u|z=1 = 1.

We know from class that the general solution to Laplace’s equation on the given region which satisfies
the first boundary condition u|ρ=1 = 0 is of the form

u(ρ, φ, z) =

∞∑

m=0

∞∑

i=1

Jm (λm,iρ) (ami cosmφ+ bmisinmφ) (cmicoshλm,iz + dmisinhλm,iz) ,

where {λm,i}∞i=1 is the set of all positive zeroes of Jm(x). It is now just a matter of determining the coefficients
in the above expansion which will make it satisfy the remaining boundary conditions. At z = 0, we have

uz=0 =

∞∑

m=0

∞∑

i=1

Jm (λm,iρ) (ami cosmφ+ bmisinmφ) cmi = 0;

thus (since {Jm (λm,iρ) cosmφ, Jm (λm,iρ) sinmφ} is a complete orthogonal set on [0, 1] × [0, 2π]) we must
have cmi = 0 for all m and all i. Then we may absorb the coefficients dmi into ami and bmi and write

u(ρ, φ, z) =

∞∑

m=0

∞∑

i=1

Jm (λm,iρ) (ami cosmφ+ bmisinmφ) sinhλm,iz.

At z = 1, then, we have

u|z=1 =

∞∑

m=0

∞∑

i=1

Jm (λm,iρ) (ami cosmφ+ bmisinmφ) sinhλm,i = 1.

Taking the inner product of this with functions cosmφ, sinmφ, m > 0, we have

0 = (1, cosmφ) =

∞∑

i=1

Jm (λm,iρ) (amiπ) sinhλm,i,

0 = (1, sinmφ) =

∞∑

i=1

Jm (λm,iρ) (bmiπ) sinhλm,i,

which gives (since {Jm (λm,iρ)}∞i=1 is a complete orthogonal set on [0, 1]) that ami = 0 and bmi = 0 for all
m > 0 and all i. Now b0i = 0 for all i by definition, so we are left simply with the condition

∞∑

i=1

a0iJ0 (λ0,iρ) sinhλ0,i = 1.

Using the orthogonality properties of the J0 (λ0,iρ), we conclude that

a0isinhλ0,i =
(1, J0 (λ0,iρ))

(J0 (λ0,iρ) , J0 (λ0,iρ))
=

2

J2
1 (λ0,i)

∫ 1

0

ρJ0 (λ0,iρ) dρ.

Now ∫
xJ0(x) dx = xJ1(x) + C,
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so ∫ 1

0

ρJ0 (λ0,iρ) dρ =
1

λ20,i

∫ λ0,i

0

xJ0(x) dx =
1

λ20,i
λ0,iJ1 (λ0,i) =

1

λ0,i
J1 (λ0,i) ,

and

a0i =
2

λ0,iJ1 (λ0,i) sinhλ0,i
,

so finally

u =

∞∑

i=1

2

λ0,iJ1 (λ0,i) sinhλ0,i
J0 (λ0,iρ) sinhλ0,iz.

2. The same as 1, except with the condition u|z=1 = 1 replaced by u|z=1 = ρ cosφ.
The first few steps are of course the same as problem 1; thus we may start from the series expansion

u(ρ, φ, z) =

∞∑

m=0

∞∑

i=1

Jm (λm,iρ) (ami cosmφ+ bmisinmφ) sinhλm,iz.

At z = 1 we now have

u|z=1 =
∞∑

m=0

∞∑

i=1

Jm (λm,iρ) (ami cosmφ+ bmisinmφ) sinhλm,i = ρ cosφ,

whence as before we may conclude that ami = 0, bmi = 0 for m 6= 1, all i, and also that b1i = 0, while

∞∑

i=1

a1iJ1 (λ1,iρ) sinhλ1,i = ρ.

Thus we have as in 1

a1isinhλ1,i =
(ρ, J1 (λ1,iρ))

(J1 (λ1,iρ) , J1 (λ1,iρ))
=

2

J2
2 (λ1,i)

∫ 1

0

ρ2J1 (λ1,iρ) dρ.

Now since ∫
x2J1(x) dx = x2J2(x) + C,

we have ∫ 1

0

ρ2J1 (λ1,iρ) dρ =
1

λ31,i
λ21,iJ2 (λ1,i) =

1

λ1,i
J2 (λ1,i) ,

so

a1i =
2

λ1,iJ2 (λ1,i) sinhλ1,i

and

u =
∞∑

i=1

2

λ1,iJ2 (λ1,i) sinhλ1,i
J1 (λ1,iρ) cosφsinh λ1,iz.
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Generalities; Laplace’s equation

If {eα} is a complete, orthogonal set with respect to an inner product (·, ·), then any f can be written

f =
∑

α aαeα, where aα = (f,eα)
(eα,eα) .

Laplace’s equation ∇2u = 0 has the following general series expansions as its solutions when solved in the
indicated regions and with the indicated boundary conditions:

Region and boundary conditions Series expansion, related complete orthogonal set, and inner product

{(x, y)|0 ≤ x ≤ 1, 0 ≤ y ≤ 1}
u|x=0 = u|x=1 = 0

u =

∞∑

n=0

sinnπx (ansinhnπy + bncoshnπy)

{sinnπx}∞n=1, (f(x), g(x)) =
∫ 1

0
f(x)g(x) dx

{(r, θ, φ)|r ≤ a}
azimuthally symmetric

u finite and single-valued

u =
∞∑

ℓ=0

aℓPℓ(cos θ)r
ℓ

{Pℓ(cos θ)}∞ℓ=0, (f(x), g(x)) =
∫ 1

−1 f(x)g(x) dx, (f(θ), g(θ)) =
∫ π
0 f(θ)g(θ)sin θ dθ

{(r, θ, φ)|a ≤ r ≤ b}
azimuthally symmetric

u finite and single-valued

u =

∞∑

ℓ=0

Pℓ(cos θ)
(
aℓr

ℓ + bℓr
−(ℓ+1)

)

{Pℓ(cos θ)}∞ℓ=0, (f(x), g(x)) =
∫ 1

−1 f(x)g(x) dx, (f(θ), g(θ)) =
∫ π
0 f(θ)g(θ)sin θ dθ

{(ρ, φ, z)|ρ ≤ a, 0 ≤ z ≤ z0}
azimuthally symmetric

u|ρ=a = 0, u finite

u =

∞∑

i=1

J0

(
λ0i
a
ρ

)(
aicosh

λ0i
a
z + bisinh

λ0i
a
z

)

{J0
(
λ0i
a
ρ

)
}∞i=1, (f(ρ), g(ρ)) =

∫ a
0 f(ρ)g(ρ)ρ dρ

λmi, m ∈ Z, m ≥ 0, i ∈ Z, i ≥ 1 denotes the ith positive zero of Jm(x)

{(r, θ, φ)|a ≤ r ≤ b}
u finite and single-valued

u =

∞∑

ℓ=0

ℓ∑

m=0

Pℓm(cos θ) (aℓm cosmφ+ bℓmsinmφ)
(
cℓmr

ℓ + dℓmr
−(ℓ+1)

)

{Pℓm(cos θ) cosmφ,Pℓm(cos θ)sinmφ|ℓ ∈ Z, ℓ ≥ 0,m ∈ Z, 0 ≤ m ≤ ℓ}
(f(θ, φ), g(θ, φ)) =

∫ π
0

∫ 2π

0
f(θ, φ)g(θ, φ)sin θ dφ dθ

{(ρ, φ, z)|ρ ≤ a, 0 ≤ z ≤ z0}
u|ρ=a = 0, u finite

u =

∞∑

m=0

∞∑

i=1

Jm

(
λmi
a
ρ

)
(ami cosmφ+ bmisinmφ)

(
cmicosh

λmi
a
z + dmisinh

λmi
a
z

)

{Jm
(
λmi
a
ρ

)
cosmφ, Jm

(
λmi
a
ρ

)
sinmφ|m ∈ Z,m ≥ 0, i ∈ Z, i ≥ 1}

(f(ρ, φ), g(ρ, φ)) =
∫ a
0

∫ 2π

0
f(ρ, φ)g(ρ, φ)ρ dφ dρ

λmi, m ∈ Z, m ≥ 0, i ∈ Z, i ≥ 1 denotes the ith positive zero of Jm(x)

In all cases, solving Laplace’s equation proceeds as follows:
1. Determine the correct coordinate system and boundary conditions (including azimuthal symmetry

or lack thereof).
2. Assuming this corresponds to an entry in the above table, write down the corresponding general

series expansion.
3. Apply the remaining boundary conditions to this series and equate the result to the given boundary

data to determine the expansion coefficients.

For the first four examples above, the boundary data is essentially one-dimensional, so that only one set of
integrals occurs in step 3. In the last two examples, the expansion part of step 3 can be split into two steps,
as follows:

3.1. Expand in φ for fixed θ (resp. ρ) to obtain θ- (resp. ρ-) dependent coefficients am, bm.
3.2. Expand am and bm in the basis {Pℓm(cos θ)}∞ℓ=m (resp. {Jm

(
λmi

ρ
a

)
}∞i=1; both of these are complete

orthogonal sets) to obtain the final expansion coefficients aℓm, bℓm (resp. ami, bmi).
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Special functions: equations and properties

Associated Legendre functions. These are solutions Pℓm(x), ℓ ∈ Z, ℓ ≥ 0, m ∈ Z, 0 ≤ m ≤ ℓ to the equation
(
1− x2

) d2P
dx2

− 2x
dP

dx
+

(
ℓ(ℓ+ 1)− m2

1− x2

)
P = 0

which are finite at x = 0. For fixed m, the set {Pℓm(x)}∞ℓ=m is complete and orthogonal on the interval [−1, 1]

with respect to the inner product (f(x), g(x)) =
∫ 1

−1
f(x)g(x) dx; equivalently, {Pℓm(cos θ)}∞ℓ=m is complete

and orthogonal (in θ) on the interval [0, π] with respect to the inner product (f(θ), g(θ)) =
∫ π
0 f(θ)g(θ)sin θ dθ.

They have normalisation∫ 1

−1

P 2
ℓm(x) dx =

∫ π

0

P 2
ℓm(cos θ)sin θ dθ =

(ℓ +m)!

(ℓ −m)!

2

2ℓ+ 1
.

The first few for m > 0 are as follows. (For m = 0, see the Legendre polynomials below.)

P1,1(cos θ) = sin θ, P2,1(cos θ) = 3sin θ cos θ, P2,2(cos θ) = 3sin 2θ.

The associated Legendre functions satisfy the following relation:

Pℓm(x) =
(
1− x2

)m
2
dm

dxm
Pℓ,0(x).

Legendre polynomials. When m = 0, the associated Legendre functions Pℓ,0(x) are polynomials and denoted
by Pℓ(x). By the foregoing, they satisfy the equation

(
1− x2

) d2P
dx2

− 2x
dP

dx
+ ℓ(ℓ+ 1)P = 0

and form a complete orthogonal set on [−1, 1] with respect to the above-given inner product, with normali-
sation ∫ 1

−1

P 2
ℓ (x) dx =

∫ π

0

P 2
ℓ (cos θ)sin θ dθ =

2

2ℓ+ 1
.

The first few are as follows:

P0(x) = 1, P1(x) = x, P2(x) =
3

2
x2 − 1

2
.

They satisfy the following recursion and differentiation relations:

(n+ 1)Pn+1 − (2n+ 1)xPn + nPn−1 = 0, P ′
n+1 − 2xP ′

n + P ′
n−1 = Pn, xP ′

n − P ′
n−1 = nPn,

P ′
n+1 − P ′

n−1 = (2n+ 1)Pn, (1− x2)P ′
n = nPn−1 − nxPn.

Pℓ(x) is an odd or even function as ℓ is odd or even. Thus Pℓ(0) = 0 if ℓ is odd.

Bessel functions. These are solutions Jm(x), m ∈ Z, m ≥ 0 to the equation

d2J

dx2
+

1

x

dJ

dx
+

(
1− m2

x2

)
J = 0

which are finite at x = 0. It can be shewn that each Jm(x) has infinitely many zeroes, and we denote the
ith positive zero of Jm by λmi, i = 1, 2, . . .. It can be shewn that the spacing between zeroes approaches a
constant value when i → +∞, but there is no closed-form formula for them. Jm(x) has the Taylor series
expansion

Jm(x) =

∞∑

k=0

(−1)k

k!(m+ k)!

(x
2

)2k+m
.

For any positive number a and any m ≥ 0, the set {Jm
(
λmi

ρ
a

)
}∞i=1 is complete orthogonal on the interval

[0, a] with respect to the inner product (f(ρ), g(ρ)) =
∫ a
0
f(ρ)g(ρ)ρ dρ. They have normalisation∫ a

0

J2
m

(
λmi

ρ

a

)
ρ dρ =

1

2
a2J2

m+1 (λmi) .

The Bessel functions cannot be expressed in any simple way in terms of elementary functions. They satisfy
the relations (m > 0)

J ′
0(x) = −J1(x),

Jm−1(x) − Jm+1(x) = 2J ′
m(x), Jm−1(x) + Jm+1(x) =

2m

x
Jm(x), Jm−1(x) = J ′

m(x) +
m

x
Jm(x),

Jm+1(x) = −J ′
m(x) +

m

x
Jm(x),

d

dx
(xmJm(x)) = xmJm−1(x),

d

dx

(
x−mJm(x)

)
= −x−mJm+1(x).
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Summary:
• We introduce the modified Bessel functions Im in greater detail, and show how they can be used to
solve certain boundary-value problems for Laplace’s equation on a cylinder.

• We then show how to use Jm and Im together to solve the most general kind of boundary-value
problem for Laplace’s equation on a cylinder.

• We show how to solve Laplace’s equation on a rectangular prism using rectangular coordinates in
three dimensions, and point out that the most general problem requires using three separate series.

• We then give a brief introduction to the eigenvalue problem for the Laplacian, including why it is
useful.

MODIFIED BESSEL FUNCTIONS. Recall that Laplace’s equation in cylindrical coordinates is given by

∂2u

∂ρ2
+

1

ρ

∂u

∂ρ
+

1

ρ2
∂2u

∂φ2
+
∂2u

∂z2
= 0,

while substituting in the separated u = P (ρ)Φ(φ)Z(z) and dividing by u gives the equation

P ′′

P
+
P ′

ρP
+

1

ρ2
Φ′′

Φ
+
Z ′′

Z
= 0,

from which we see that we must have both Φ′′

Φ and Z′′

Z constant. If we are considering problems on the

whole range [0, 2π] of φ, then Φ must be periodic with period 2π, and this means that Φ′′

Φ = −m2 for some

m ∈ Z, m ≥ 0. This leaves the question as to what Z′′

Z is. Previously we considered the case where Z′′

Z > 0
and then showed that this together with the boundary condition u|ρ=1 = 0 gave rise to solutions for P of
the form Jm(λmiρ), where λmi is the ith zero of Jm. At the end of the last set of lecture notes (June 11 –

13), we gave a brief discussion of the case where Z′′

Z < 0. We would now like to treat this in greater detail.

Thus suppose that Z′′

Z = −µ2, where we may assume µ ≥ 0. This means that Z(z) = c cosµz + dsinµz
for some constants c and d, and that P satisfies the equation

P ′′ +
1

ρ
P ′ −

(
µ2 +

m2

ρ2

)
P = 0.

We see that this is formally the same as the equation satisfied by Jm(λρ), but with λ = iµ. This suggests
that a solution to this equation which is well-behaved at 0 is

P (ρ) = Jm(iµρ).

However, we have so far only defined Jm for real values of the independent variable, so it is not clear a priori
what this expression should mean. Recall though that we defined Jm via the power series

Jm(x) =

∞∑

k=0

(−1)k

k!(m+ k)!

(x
2

)2k+m
,

which converges for all real x. It can be shown that this power series also converges for all complex x also,
and thus we define Jm(x) for any complex number x to be equal to the sum of the above power series. (This
is analogous to how we used the power series expansion ex =

∑∞
n=0

xn

n! to define ex when x is a complex
number; in the case x = iθ, that gives rise to the formula eiθ = cos θ+ isin θ, cf. the review sheet on complex
numbers.) Thus the solution above is

P (ρ) = Jm(iµρ) =

∞∑

k=0

(−1)k

k!(m+ k)!

(
iµρ

2

)2k+m

=

∞∑

k=0

(−1)k

k!(m+ k)!
i2k+m

(µρ
2

)2k+m
=

∞∑

k=0

(−1)k

k!(m+ k)!
(−1)kim

(µρ
2

)2k+m

= im
∞∑

k=0

1

k!(m+ k)!

(µρ
2

)2k+m
.
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Since it is convenient to have functions of a real variable take real values, we drop the factor of im and define
the modified Bessel function of degree m to be

Im(x) = i−mJm(ix) =

∞∑

k=0

1

k!(m+ k)!

(x
2

)2k+m
.

It is useful to note the similarity between the pair Jm(x), Im(x) and the pair sinx, sinhx; see the notes for
June 11 – 13, p. 10 for discussion.

Given the foregoing, then, we see that the general separated solution to Laplace’s equation on a cylinder
(well-behaved at ρ = 0) in the case where Z′′

Z = −µ2 is given by1

Im(µρ)(α cosmφ cosµz + β cosmφsinµz + γsinmφ cosµz + δsinmφsinµz). (1)

We now face the problem of determining which values for µ are appropriate. Recall that when dealing with
the case Z′′

Z = λ2 > 0, the values for λ were determined by the boundary condition u|ρ=a = 0, which forced

Jm(λa) = 0, which meant that λa = λmi for some i (where λmi, again, is the ith zero of Jm), or λ = λmi

a .
This suggests that in the present case µ should be determined by a boundary condition in z.2 We now give
an example to show which kinds of boundary-value problems make use of separated solutions of the foregoing
type.
EXAMPLE. Solve on {(ρ, φ, z)|ρ < 1, 0 < z < 1}:

∇2u = 0, u|z=0 = u|z=1 = 0, uρ=1 = 1.

Since we have the conditions u|z=0 = u|z=1 = 0, we see that the solution must be oscillatory in the
z-direction, so that we must use the above form of separated solution, i.e., our general solution will be a
series in solutions of the type in equation (1). Applying the z boundary conditions u|z=0 = u|z=1 = 0 gives
c = 0, sinµ = 0, so µ = nπ, where n ∈ Z and we may take n > 0 (this is exactly the same as what we did
to implement the boundary conditions u|x=0 = u|x=1 = 0 when we solved Laplace’s equation in rectangular
coordinates earlier on in the course). Thus the general solution to Laplace’s equation on the above region
which satisfies the first two boundary conditions above will be (absorbing d into a and b)

u =

∞∑

n=1

∞∑

m=0

Im(nπρ)(anm cosmφ+ bnmsinmφ)sinnπz.

We note that {cosmφsinnπz, sinmφsinnπz|n,m ∈ Z,m ≥ 0, n > 0} is a complete orthogonal set on
{(φ, z)|φ ∈ [0, 2π], z ∈ [0, 1]} with respect to the inner product

(f(φ, z), g(φ, z)) =

∫ 2π

0

∫ 1

0

f(φ, z)g(φ, z) dz dφ;

this can be shewn exactly as was done for the set {Pℓm cosmφ,Pℓmsinmφ|m, ℓ ∈ Z,m ≥ 0, ℓ ≥ m} previously
(by first expanding in φ, obtaining z-dependent coefficients, and then expanding each of these coefficients in
a series in sinnπz, for example). The relevant normalisation integrals are

(cosmφsinnπz, cosmφsinnπz) =

∫ 2π

0

cos2mφdφ

∫ 1

0

sin 2nπz dz =
π

2
,

(sinmφsinnπz, sinmφsinnπz) =

∫ 2π

0

sin 2mφdφ

∫ 1

0

sin 2nπz dz =
π

2
.

1See the example below for a discussion of this form, which is more general than the form we have been
using for separated solutions.
2Note that this is in accordance with how we have determined separation constants so far: they are deter-
mined by boundary conditions in the oscillatory directions, not in the nonoscillatory ones.
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We now need only to determine anm and bnm by implementing the final boundary condition u|ρ=1 = 1. This
gives

∞∑

n=1

∞∑

m=0

Im(nπ)(anm cosmφ+ bnmsinmφ)sinnπz = 1;

by our general results on expansions in complete orthogonal sets, we may write

anmIm(nπ) =
(1, cosmφsinnπz)

(cosmφsinnπz, cosmφsinnπz)
=

2

π

∫ 2π

0

∫ 1

0

cosmφsinnπz dz dφ

=
2

π

∫ 2π

0

cosmφdφ

∫ 1

0

sinnπz dz =

{
2
nπ (1− (−1)n), m = 0

0, m 6= 0
,

bnmIm(nπ) =
(1, sinmφsinnπz)

(sinmφsinnπz, sinmφsinnπz)
=

2

π

∫ 2π

0

∫ 1

0

sinmφsinnπz dz dφ = 0,

where we have used orthogonality of the set {cosmφ, sinmφ|m ∈ Z,m ≥ 0} together with the fact that

cos 0 · φ = cos 0 = 1 and the integral
∫ 1

0 sinnπz dz = 1
nπ (1 − (−1)n). Thus our final solution is given by

(noting that 1− (−1)n = 0, n even, 2, n odd)

u =
4

π

∞∑

k=0

1

2k + 1

I0((2k + 1)πρ)

I0((2k + 1)π)
sin (2k + 1)πz.

The above method can clearly be used with any problem of the form

∇2u = 0, u|z=0 = u|z=1 = 0, u|ρ=1 = f(φ, z),

for suitably well-behaved functions f(φ, z). Should we be working on a cylinder like {(ρ, φ, z)|ρ < a, 0 < z <
b}, the only difference would be that we would take µ = nπ

b instead of µ = nπ. The a factor would only show
up in the coefficients, not in the separation constants (just as, when we solved problems with u|ρ=1 = 0, the
length of the cylinder did not show up in the separation constants, only the radius). We now consider how
to treat still more general problems.

GENERAL BOUNDARY VALUE PROBLEMS ON A CYLINDER. We shall proceed by means of an
example.
EXAMPLE. Solve on {(ρ, φ, z)|ρ < 2, 0 < z < 3}:

∇2u = 0, u|z=0 = 0, u|z=3 = ρ2 cos 2φ, u|ρ=2 = zφ.

This problem does not look quite exactly like anything we have encountered before. By this point we
have had a great deal of experience solving problems of the form

∇2u = 0, u|z=0 = 0, u|z=3 = ρ2 cos 2φ, u|ρ=2 = 0, (2)

and in the previous example we saw how to solve problems like

∇2u = 0, u|z=0 = u|z=3 = 0, u|ρ=2 = zφ, (3)

but the current problem is not of either of these forms: actually it looks rather like a mix of the two! It turns
out that this is exactly the key to solving it, too: since the equation ∇2u = 0 is linear and homogeneous,
the sum of any two solutions is still a solution; thus if we let u1 denote the solution to problem (2) and u2
the solution to problem (3), then u = u1 + u2 will still solve ∇2u = 0, and a moment’s thought shows that
it satisfies all of the boundary conditions of the original problem.

[We pause to note that this is a very general technique. As we have had occasion to note multiple
times, when solving Laplace’s equation we must have at least one direction which is not oscillatory. But
nonoscillatory functions do not form complete orthogonal sets, so this means that there will be at least
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one part of the boundary on which we cannot specify arbitrary boundary data (and must in general have
homogeneous boundary data). We can solve general problems with nonhomogeneous boundary data on all
boundaries using the above method: split the problem up into multiple (in three dimensions we never need
more than 3) subproblems, each of which has nonhomogeneous data on at most one set of boundaries; if this
is done correctly, so that the nonhomogeneous data do not add on top of each other when the solutions are
added, the sum of the solution to each subproblem will be the solution to the original problem, just as here.]

Let us consider first problem (2):

∇2u1 = 0, u1|z=0 = 0, u1|z=3 = ρ2 cos 2φ, u|ρ=2 = 0.

We see that the general solution satisfying the third boundary condition will be of the form

u1 =

∞∑

m=0

∞∑

n=1

Jm

(
λmn
2
ρ

)
(amn cosmφ+ bmnsinmφ)

(
cmncosh

λmn
2
z + dmnsinh

λmn
2
z

)
.

Before proceeding we pause to indicate another way of writing out this sum which is more convenient in cases
where we have inhomogeneous data on both ends of the cylinder (here, where we have u1|z=0 = 0, it does
not make that much difference). This comes from noting that sometimes it can be hard or even impossible
to determine the individual quantities amn, bmn, etc.: what we obtain naturally are various products of these
quantities, e.g., amncmn, etc.. (This impossibility of determining the individual factors in these products is
the reason why we constantly speak of ‘absorbing’ (e.g.) dmn into amn and bmn, etc..) However, a moment’s
thought shows that we actually don’t care about the individual quantities either: the only things that matter
for the solution are exactly the products amncmn, etc., which we are able to calculate. Thus it makes sense
to get rid of unknowable and irrelevant quantities and write out the sum only in terms of knowable and
relevant ones. Further, since we typically think of expanding in φ first, it makes sense to write the series in
such a way that the cosφ terms and sinφ terms are clearly separated. Thus instead of the above form, we
consider the alternate form

u1 =

∞∑

m=0

∞∑

n=1

Jm

(
λmn
2
ρ

)[(
αmncosh

λmn
2
z + βmnsinh

λmn
2
z

)
cosmφ

+

(
γmncosh

λmn
2
z + δmnsinh

λmn
2
z

)
sinmφ

]
.

This is exactly equivalent to the above form, with the definitions

αmn = amncmn, βmn = amndmn, γmn = bmncmn, δmn = bmndmn,

and moreover it is exactly these four quantities which can be determined uniquely in terms of the boundary
data.

With this expression in hand, we may now determine the coefficients from the boundary data, as follows
(recall that the normalisation for Jm

(
λmn

2 ρ
)
is (Jm

(
λmn

2 ρ
)
, Jm

(
λmn

2 ρ
)
) = 1

22
2J2
m+1 (λmn) = 2J2

m+1 (λmn)):

0 = u1|z=0 =

∞∑

m=0

∞∑

n=1

Jm

(
λmn
2
ρ

)
[αmn cosmφ+ γmnsinmφ] ,

αmn =
1

2πJ2
m+1 (λmn)

(0, Jm

(
λmn
2
ρ

)
cosmφ) = 0,

γmn =
1

2πJ2
m+1 (λmn)

(0, Jm

(
λmn
2
ρ

)
sinmφ) = 0,
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a result we could also have obtained by inspection (though it is important to remember the logic that goes
behind it). The other boundary condition then gives

0 = u1|z=1 =

∞∑

m=0

∞∑

n=1

Jm

(
λmn
2
ρ

)[
βmnsinh

λmn
2

cosmφ+ δmnsinh
λmn
2

sinmφ

]
,

βmnsinh
λmn
2

=
1

2πJ2
m+1 (λmn)

(
ρ2 cos 2φ, Jm

(
λmn
2
ρ

)
cosmφ

)
=

{
(ρ2,Jm( λmn

2 ρ))
2J2

m+1(λmn)
, m = 2,

0, m 6= 2
,

δmnsinh
λmn
2

=
1

2πJ2
m+1 (λmn)

(
ρ2 cos 2φ, Jm

(
λmn
2
ρ

)
sinmφ

)
= 0,

where we have used orthogonality of the set {cosmφ, sinmφ}. Now we may calculate further (making the
change of variables x = λ2n

2 ρ)

(
ρ2, J2

(
λ2n
2
ρ

))
=

∫ 2

0

ρ2J2

(
λ2n
2
ρ

)
ρ dρ =

16

λ42n

∫ λ2n

0

x3J2(x) dx =
16

λ42n
x3J3(x)

∣∣∣∣
λ2n

0

=
16J3 (λ2n)

λ2n
,

whence we have

β2nsinh
λ2n
2

=
8

λ2nJ3 (λ2n)
,

β2n =
8

λ2nsinh
λ2n

2 J3 (λ2n)
,

and finally

u1 =
∞∑

n=1

8

λ2nsinh
λ2n

2 J3 (λ2n)
J2

(
λ2n
2
ρ

)
sinh

λ2n
2
z cos 2φ.

We now turn to problem (3). In this case, as shewn in the previous example, the general solution
satisfying the first two boundary conditions will be of the form

u2 =

∞∑

m=0

∞∑

n=1

Im(nπρ) (amn cosmφ+ bmnsinmφ) sin
nπ

3
z.

The final boundary condition gives

zφ = u2|ρ=2 =
∞∑

m=0

∞∑

n=1

Im(2nπ) (amn cosmφ+ bmnsinmφ) sin
nπ

3
z.

As before, we may calculate the coefficients amn and bmn using our general formula for coefficients in
orthogonal expansions, viz. (assuming for the moment that m > 0) –

amnIm(2nπ) =
2

3π

(
zφ, cosmφsin

nπ

3
z
)
=

2

3π

∫ 2π

0

∫ 3

0

zφ cosmφsin
nπ

3
z dz dφ

=
2

3π

∫ 2π

0

φ cosmφdφ

∫ 3

0

zsin
nπ

3
z dz

=
2

3π

(
1

m
φsinmφ+

1

m2
cosmφ

)∣∣∣∣
2π

0

(
− 3

nπ
z cos

nπ

3
z +

9

n2π2
sin

nπ

3
z

)∣∣∣∣
3

0

= 0,

bmnIm(2nπ) =
2

3π

(
zφ, sinmφsin

nπ

3
z
)
=

2

3π

∫ 2π

0

∫ 3

0

zφsinmφsin
nπ

3
z dz dφ

=
2

3π

∫ 2π

0

φsinmφdφ

∫ 3

0

zsin
nπ

3
z dz

=
2

3π

(
− 1

m
φ cosmφ+

1

m2
sinmφ

)∣∣∣∣
2π

0

(
− 3

nπ
z cos

nπ

3
z +

9

n2π2
sin

nπ

3
z

)∣∣∣∣
3

0

= (−1)n
36

πmn
,



APM346, 2019 July 2 – 4 Nathan Carruth

while for m = 0 we have b0n = 0 by definition and

a0nI0(2nπ) =
1

3π

(
zφ, sin

nπ

3
z
)
=

1

3π

1

2
φ2
∣∣∣∣
2π

0

(
− 3

nπ
z cos

nπ

3
z +

9

n2π2
sin

nπ

3
z

)∣∣∣∣
3

0

=
4π

3
(−1)n+1 9

nπ
= (−1)n+1 12

n
.

This gives finally

a0n = (−1)n+1 12

nI0(2nπ)
, amn = 0, m 6= 0,

b0n = 0, bmn = (−1)n
36

πmnIm(2nπ)
, m 6= 0,

and hence the solution

u2 =

∞∑

n=1

(−1)n+1 12

nI0(2nπ)
I0(nπρ)sin

nπ

3
z +

∞∑

m=1

∞∑

n=1

(−1)n
36

πmnIm(2nπ)
Im(nπρ)sinmφsin

nπ

3
z.

Thus we obtain as the final solution to our original problem

u =
∞∑

n=1

8

λ2nsinh
λ2n

2 J3 (λ2n)
J2

(
λ2n
2
ρ

)
sinh

λ2n
2
z cos 2φ+

∞∑

n=1

(−1)n+1 12

nI0(2nπ)
I0(nπρ)sin

nπ

3
z

+

∞∑

m=1

∞∑

n=1

(−1)n
36

πmnIm(2nπ)
Im(nπρ)sinmφsin

nπ

3
z.

LAPLACE’S EQUATION IN THREE-DIMENSIONAL RECTANGULAR COORDINATES. In three-
dimensional rectangular coordinates, Laplace’s equation has the form

∇2u =
∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2
= 0.

We attempt to solve this by the method of separation of variables. Thus we look for solutions of the form
u = X(x)Y (y)Z(z); substituting in and dividing by u, we obtain

X ′′

X
+
Y ′′

Y
+
Z ′′

Z
= 0. (4)

By standard arguments (X
′′

X depends only on x, and nothing else on the left-hand side depends on x, and
analogously for the remaining terms) we have that there must be constants µ1, µ2, µ3 such that

X ′′ = µ1X, Y ′′ = µ2Y, Z ′′ = µ3Z.

Note that we have not yet attempted to determine the signs of these constants. Substituting in to equation
(4), we have

µ1 + µ2 + µ3 = 0.

Thus we see that at least one of µ1, µ2, µ3 must be positive and at least one must be negative. (We ignore
for the moment the case where all of them are zero.) Which are positive and which are negative depends on
the type of problem we wish to solve. We shall indicate the general method for determining this by means
of a specific example.
EXAMPLE. Solve on {(x, y, z)|x, y, z ∈ [0, 1]}:

∇2u = 0, u|x=0 = u|x=1 = u|z=0 = u|z=1 = 0, u|y=0 = 0, u|y=1 = 1.
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We begin by looking for separated solutions of ∇2u = 0 which satisfy the homogeneous boundary
conditions; thus we look for solutions X(x)Y (y)Z(z) which satisfy X(0) = X(1) = Z(0) = Z(1) = 0. Now it
can be shewn that any linear combination of sinh and cosh can vanish at at most one point (I should have
given the proof a long time ago; it is very simple: if acoshx + bsinhx = 0, then letting α = 1

2 (a + b) and
β = 1

2 (a− b), we have

αex + βe−x = 0

αe2x + β = 0

e2x = −β
α
,

which has at most one real solution x (and none if βα > 0)). Similarly, any linear function can vanish at at
most one point. This implies that neither X nor Z can be a linear combination of sinh and cosh, nor can
they be linear; since X and Z are either linear combinations of sinh and cosh (when µi > 0), or are linear
(when µi = 0), or are linear combinations of sin and cos (when µi < 0), the latter case must obtain. This

implies that X′′

X and Z′′

Z must both be negative, i.e., that µ1 = −λ21, µ3 = −λ23 for some λ1, λ3 > 0. Hence
we must have µ2 > 0, say µ2 = λ22, λ2 > 0. The equation µ1 + µ2 + µ3 = 0 then gives

λ22 = λ21 + λ23.

(This illustrates the general procedure for determining when we take µi > 0 and when we take µi < 0:
the µi corresponding to coordinates which have homogeneous boundary data at both ends will be negative,
while the remaining one will be positive. If we have inhomogeneous data along more than one coordinate
direction, we should split the problem up into multiple subproblems as we did in the previous example.)

The general separated solution is thus

cosλ1x(α cosλ3zcoshλ2y + β cosλ3zsinhλ2y + γsinλ3zcoshλ2y + δsinλ3zsinhλ2y)

+ sinλ1x(α
′ cosλ3zcoshλ2y + β′ cosλ3zsinhλ2y + γ′sinλ3zcoshλ2y + δ′sinλ3zsinhλ2y).

Now X(0) = X(1) = 0 implies that α = β = γ = δ = 0, λ1 = nπ, exactly as we found when we solved
Laplace’s equation on a rectangle; similarly, now, Z(0) = Z(1) = 0 implies that α′ = β′ = 0, λ3 = mπ. Thus
the general separated solution satisfying the first four boundary conditions is of the form

sinnπxsinmπz
(
acosh yπ

√
n2 +m2 + bsinh yπ

√
n2 +m2

)
,

and the general solution will be a series in these solutions, i.e.,

u =

∞∑

n=1

∞∑

m=1

sinnπxsinmπz
(
anmcosh yπ

√
n2 +m2 + bnmsinh yπ

√
n2 +m2

)
.

The boundary conditions in y now give

0 = u|y=0 =

∞∑

n=1

∞∑

m=1

sinnπxsinmπz(anm),

whence we see that (since, similarly to what we mentioned in the first example above, {sinnπxsinmπz|n,m ∈
Z, n,m > 0} is a complete orthogonal set on [0, 1]× [0, 1] with respect to the standard inner product, with
normalisation constant (sinnπxsinmπz, sinnπxsinmπz) = 1

4 )

anm = 4(0, sinnπxsinmπz) = 0.

(We could have implemented this condition at the level of the separated solutions, and written our original
series for u without the cosh term; we have proceded this way in order to emphasise that when the boundary
data on one side of the cube are inhomogeneous, the direction perpendicular to that side (here, y) should be
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treated differently than the other sides. In particular, the full procedure as illustrated here would allow us to
also treat the case where the boundary data at y = 0 were not homogeneous, and this could not in general
be implemented at the level of the separated solution.) Similarly, the other boundary condition gives

1 = u|y=1 =

∞∑

n=1

∞∑

m=1

bnmsinnπxsinmπzsinhπ
√
n2 +m2,

whence we obtain

bnmsinhπ
√
n2 +m2 = 4(1, sinnπxsinmπz) = 4

∫ 1

0

∫ 1

0

sinnπxsinmπz dx dz

= 4

∫ 1

0

sinnπxdx

∫ 1

0

sinmπz dz =
4

nm
(1− (−1)n)(1 − (−1)m),

which is 0 if either of n or m is even and 16
nm when both are odd. Thus we have

b2k+1,2ℓ+1 =
16

(2k + 1)(2ℓ+ 1)sinhπ
√
(2k + 1)2 + (2ℓ+ 1)2

and finally the solution

u =

∞∑

k=0

∞∑

ℓ=0

16

(2k + 1)(2ℓ+ 1)sinhπ
√

(2k + 1)2 + (2ℓ+ 1)2
sin (2k + 1)πxsin (2ℓ+ 1)πzsinh yπ

√
(2k + 1)2 + (2ℓ+ 1)2.

(The example I did in class was actually much simpler than this, involving just a single separated
solution as the final answer. I didn’t realise I was doing a different problem until I was almost finished
typing it up though – and anyway it doesn’t hurt to see another (and more complicated!) example.)

EIGENFUNCTIONS OF THE LAPLACIAN. The next topics which we wish to treat are Green’s functions,
the heat equation, and the wave equation (though we may take some time off to talk about Fourier transforms
at some point). The study of all of these, especially of the first two, benefit from a knowledge of the
eigenfunctions of the Laplacian, so we now turn to that topic. First we give an example from linear algebra
as motivation. (See also the examples we gave related to diagonalisation in the first week or two of the
course.)
EXAMPLE. Let A be an n× n matrix, and x and y be column vectors of length n. Consider the equation
Ax = y. If we know the inverse matrix A−1, then we can solve this by writing x = A−1y. In general, though,
finding the inverse of a matrix is hard. If A were diagonal, though, it would be easy, since the inverse of a
diagonal matrix

D =




d1 0 0 · · · 0
0 d2 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · dn




is

D =




d−1
1 0 0 · · · 0
0 d−1

2 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · d−1
n


 .

More abstractly, suppose that {e1, . . . , en} were a basis of eigenvectors for the matrix A; suppose also that
A is symmetric, so that this set can be taken to be orthogonal.

[This can be shewn in an analogous fashion to how we showed that the Legendre polynomials and Bessel
functions formed orthogonal sets. For simplicity we work with the standard real inner product. Symmetry
of A means that for any vectors v and w, we have

(v,Aw) =

n∑

i=1

vi(Aw)i =

n∑

i=1

n∑

j=1

viAijwj =

n∑

i=1

n∑

j=1

viAjiwj = (Av,w),
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so if ei and ej are eigenvectors corresponding to distinct eigenvalues, say λi and λj , then we may write

(ei, Aej) = λj(ei, ej) = (Aei, ej) = λi(ei, ej),

so (λj − λi)(ei, ej) = 0 and (ei, ej) = 0 since λi 6= λj . (In the event that ei and ej belong to the same
eigenvalue, they can be taken orthogonal by applying the Graham-Schmidt process if needed.)]

Then we can write

y =

n∑

i=1

(y, ei)

(ei, ei)
ei,

x =
n∑

i=1

xiei,

whence the system Ax = y becomes
n∑

i=1

λixiei =

n∑

i=1

(y, ei)

(ei, ei)
ei.

Since {ei} is a basis, this implies that λixi =
(y,ei)
(ei,ei)

, so

xi =
1

λi

(y, ei)

(ei, ei)
,

x =

n∑

i=1

1

λi

(y, ei)

(ei, ei)
.

Note that this procedure did not require us to invert any matrix; in fact, the computations involved were
nothing more than the taking of inner products and multiplication and division. (Finding the eigenvectors
of A, of course, is highly nontrivial, so this method is not necessarily any faster overall at solving a single
system.)

The idea behind this example may be applied to, among other things, the study of a generalisation
of Laplace’s equation called Poisson’s equation. So far we have only studied the homogeneous equation
∇2u = 0; however, there are many cases (such as, for example, when one has a source of heat inside a region
and wishes to find the equilibrium temperature distribution, or when one has a nonzero charge density inside
a region and wishes to find the electrostatic potential) when one wishes to solve an equation of the form
∇2u = f for some function f . Generally one still has boundary conditions which u is also required to satisfy.
Suppose now that there were a complete orthogonal set of (nonzero) functions {ei}, where i is an abstract
index, such that ∇2ei = Λiei, and such that each ei satisfied the relevant boundary conditions. Then we
would be able to expand the function f as

f =
∑

i

(f, ei)

(ei, ei)
ei,

and also any potential solution u as

u =
∑

i

uiei.

Substituting both of these into the equation ∇2u = f , we obtain

∑

i

Λiuiei =
∑

i

(f, ei)

(ei, ei)
ei;

since the set {ei} is orthogonal and does not contain 0, this implies that for each i

Λiui =
(f, ei)

(ei, ei)
. (5)
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If Λi 6= 0 for all i, then we may solve this for ui and then substitute in to the expansion u =
∑

i uiei to obtain
a series expansion for the solution u to Poisson’s equation in the functions ei, much as we have been doing
for solutions to Laplace’s equation (though the eigenfunctions ei may well be different from the orthogonal
bases we have used so far). If Λi = 0 for some i then things are more complicated. From equation (5) it
is evident that in this case there can be no solution (at least, not one expressible as a series in the {ei}) if
(f, ei) 6= 0. If, however, we happen to have (f, ei) = 0 whenever Λi = 0, then clearly there will still be a
solution; though it is not necessarily unique, since the ui will not be determined by equation (5). We may
obtain a unique solution by requiring ui = 0 for such i. Thus we see that the equation ∇2u = f will have
a unique solution if we restrict both f and u to lie in the space of functions which are orthogonal to all
eigenfunctions of ∇2 with zero eigenvalues. We shall probably have more to say on this point later.

Let us assume for the moment, for simplicity, that none of the eigenvalues are zero (or that we have
restricted f and u as just indicated, and then restricted i to run over the eigenfunctions corresponding to
nonzero eigenvalues). Then we may write the solution u as

u =
∑

i

1

Λi

(f, ei)

(ei, ei)
ei;

now if our inner product (f, ei) were given by an integral, say (writing things schematically for generality)
(f, ei) =

∫
D fei dx

′, then we may express this equation as follows (formally interchanging summation and
integration):

u(x) =
∑

i

ei(x)
1

Λi(ei, ei)

∫

D

f(x′)ei(x′) dx
′ =

∫

D

(∑

i

ei(x)ei(x′)
(ei, ei)

1

Λi

)
f(x′) dx′.

A function G(x, x′) such as that in the parentheses above is called a Green’s function for the given boundary-
value problem. We shall study such functions systematically starting next week. The above expression gives
(at least formally) the Green’s function in terms of the eigenfunctions and eigenvalues of the Laplacian for
the given boundary conditions.

[The formula above has a formal analogue in linear algebra as well. We may write the formula as

u(x) =

∫

D

G(x, x′)f(x′) dx′.

Now the solution to an equation Ax = y can be written as

xi =
∑

j

A−1
ij yj ;

if we think of i as corresponding to x, j as corresponding to x′, and
∑

as corresponding to
∫
, then we

see that in some sense G corresponds to
(
∇2
)−1

; i.e., the integral operator given above involving G is an
‘inverse’ to the Laplacian.]

Another place where the eigenfunctions of ∇2 are useful is in studying the heat equation ∂u
∂t = ∇2u.

Suppose that we are interested in studying this equation subject to certain boundary conditions on u (which
are constant in time), and suppose that we have a complete orthogonal set of eigenfunctions {ei} for the
Laplacian ∇2 subject to these boundary conditions. Then we could write for each time t, as before,

u(t,x) =
∑

i

ui(t)ei(x),

and substituting this into the heat equation gives∑

i

u′i(t)ei =
∑

i

Λiui(t)ei,

whence we have u′i(t) = Λiui(t), i.e., the system completely decouples, exactly as we discussed in the first
couple weeks of class. This last equation has solution ui(t) = ui,0e

Λit, and thus our solution u is

u =
∑

i

ui,0e
Λitei,

where the constants ui,0 are to be determined from the initial condition u|t=0, exactly as we determine
coefficients in orthogonal expansions for Laplace’s equation using boundary conditions. We shall go over all
of this in more detail later on in the course.
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APM 346, Homework 7. Due Monday, July 8, at 6.00 AM EDT. To be marked completed/not completed.

1. Solve on {(ρ, φ, z)|ρ < 2, 0 ≤ z ≤ 3}:

∇2u = 0, u|ρ=2 = 0, u|z=0 = ρ cosφ, u|z=3 = ρsinφ.

We have the general series expansion (as introduced in class on Thursday; this form for the expansion
turns out to be much more convenient for this particular problem than the one we have been using)

u =

∞∑

m=0

∞∑

i=1

Jm

(
1

2
λmiρ

)(
αmi cosmφcosh

1

2
λmiz + βmi cosmφsinh

1

2
λmiz

+ γmisinmφcosh
1

2
λmiz + δmisinmφsinh

1

2
λmiz

)
,

where as usual λmi denotes the ith positive zero of Jm. At z = 0, this gives

∞∑

m=0

∞∑

i=1

Jm

(
1

2
λmiρ

)
(αmi cosmφ+ γmisinmφ) = ρ cosφ,

whence we see that γmi = 0 for all m, i, while αmi = 0 unless m = 1, and in this case

∞∑

i=1

α1iJ1

(
1

2
λ1iρ

)
= ρ,

whence

α1i =
2

22J2
2 (λ1i)

∫ 2

0

ρ2J1

(
1

2
λ1iρ

)
dρ =

1

2J2
2 (λ1i)

(
2

λ1i

)3 ∫ λ1i

0

x2J1(x) dx

=
4

λ31iJ
2
2 (λ1i)

λ21iJ2 (λ1i) =
4

λ1iJ2 (λ1i)
.

At z = 3 we have

∞∑

m=0

∞∑

i=1

Jm

(
1

2
λmiρ

)(
αmi cosmφcosh

3

2
λmi + βmi cosmφsinh

3

2
λmi + δmisinmφsinh

3

2
λmi

)
= ρ2sinφ,

whence we see that αmicosh
3
2λmi + βmisinh

3
2λmi = 0 for all m, i, which gives βmi = 0 for m 6= 1 and

β1i = − coth 3
2λ1i

4
λ1iJ2

2 (λ1i)
; also δmi = 0 for m 6= 1, while

∞∑

i=1

δ1isinh
3

2
λ1iJ1

(
1

2
λ1iρ

)
= ρ,

whence we see from the above calculation for α1i that

δ1i =
4

λ1iJ2 (λ1i) sinh
3
2λ1i

.

Thus finally

u =

∞∑

i=1

J1

(
1

2
λ1iρ

)[(
cosh

1

2
λ1iz − coth

3

2
λ1isinh

1

2
λ1iz

)
cosφ+

sinh 1
2λ1iz

sinh 3
2λ1i

sinφ

]
4

λ1iJ2 (λ1i)
.
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[It is worth noting how the quantity in parentheses interpolates between cosφ at z = 0 and sinφ at z = 3:
the coefficients of cosφ and sinφ are exactly those linear combinations of cosh 1

2λ1iz and sinh 1
2λ1iz which

are 1 at z = 0 and z = 3 and 0 at z = 3 and z = 0, respectively. In both cases, the remaining coefficient is
exactly that needed for the ρ part to come out to ρ.]

2. Solve on {(ρ, φ, z)|ρ < 1, 0 ≤ z ≤ 1}:

∇2u = 0, u|z=0 = u|z=1 = 0, u|ρ=1 =

{
−φ, 0 < φ < π,
φ, π < φ < 2π

.

In this case we have the general series expansion

u =
∞∑

m=0

∞∑

n=1

Im(nπρ) (amn cosmφ+ bmnsinmρ) sinnπz.

Thus

a0nI0(nπ) =
1

π

∫ 1

0

sinnπz

[∫ π

0

−φdφ+

∫ 2π

π

φdφ

]
dz =

1

π

(
− 1

nπ
cosnπz

∣∣∣∣
1

0

)(
−pi

2

2
+

1

2

(
4π2 − π2

))

=
1

n
(1− (−1)n) ,

while b0i = 0 by definition and for m > 0

amnIm(nπ) =
2

π

∫ 1

0

[∫ π

0

−φ cosmφsinnπz dφ+

∫ 2π

π

φ cosmφsinnπz dφ

]
dz

=
2

π

∫ 1

0

sinnπz

[
− φ

m
sinmφ− 1

m2
cosmφ

∣∣∣∣
π

0

+
φ

m
sinmφ+

1

m2
cosmφ

∣∣∣∣
2π

π

]
dz

=
2

π

∫ 1

0

sinnπz

[
1

m2
(1− (−1)m) +

1

m2
(1− (−1)m)

]
dz =

4

nπ2m2
(1− (−1)m) (1− (−1)n) ,

and

bmnIm(nπ) =
2

π

∫ 1

0

[∫ π

0

−φsinmφsinnπz dφ+

∫ 2π

0

φ cosmφsinnπz dφ

]
dz

=
2

π

∫ 1

0

sinnπz

[
φ

m
cosmφ− 1

m2
sinmφ

∣∣∣∣
π

0

− φ

m
cosmφ+

1

m2sinmφ

∣∣∣∣
2π

π

]
dz

=
2

nπ2
(1− (−1)n)

[ π
m
(−1)m −

( π
m

(2− (−1)m)
)]

= − 4

mnπ
(1− (−1)n) (1− 1(−1)m) ,

so finally

u =
∞∑

n=1

1

n
(1− (−1)n)

I0(nπρ)

I0(nπ)
sinnπz

+

∞∑

m=1

∞∑

n=1

Im(nπρ)

Im(nπ)

(
4

nmπ
(1− (−1)n) (1− (−1)m)

)[
2

mπ
cosmφ− sinmφ

]
sinnπz.

3. Solve on {(ρ, φ, z)|ρ < 1, 0 ≤ z ≤ 1}:

∇2u = 0, u|z=0 = ρ2 cos 2φ, u|z=1 = ρ2sin 2φ, u|ρ=1 =

{
−φ, 0 < φ < π,
φ, π < φ < 2π

.



APM 346 (Summer 2019), Homework 7 solutions.

[Hint: This is basically just problems 1 and 2 combined.]
We decompose this problem as u = u1 + u2, where u1 is the solution to problem 2 and u2 satisfies on

{(ρ, φ, z)|ρ < 1, 0 ≤ z ≤ 1}

∇2u2 = 0, u2|ρ=1 = 0, u2|z=0 = ρ2 cos 2φ, u2|z=1 = ρ2sin 2φ.

This has solution

u2 =

∞∑

m=0

∞∑

n=1

Jm (λmiρ)

(
αmi cosmφcoshλmiz + βmi cosmφsinhλmiz

+ γmisinmφcoshλmiz + δmisinmφsinh λmiz

)
.

Now at z = 0

u2 =
∞∑

m=0

∞∑

n=1

Jm (λmiρ) (αmi cosmφ+ γmisinmφ) = ρ2 cos 2φ,

so just as in problem 1 we see that γmi = 0 for all m and all i, while αmi = 0 for m 6= 2 and we have after a
standard calculation [we have done this calculation a number of times by this point, but on a test I would
expect you to write it out anyway!]

α2i =
2

J2
3 (λ2i)

∫ 1

0

ρ3J2 (λ2i) dρ =
2

λ2iJ3 (λ2i)
.

Similarly, at z = 1

u2 =

∞∑

m=0

∞∑

n=1

Jm (λmiρ) (αmi cosmφcoshλmi + βmi cosmφsinhλmi + δmisinmφsinhλmi) = ρ2sin 2φ,

so αmicoshλmi + βmisinhλmi = 0 for all m and all i, meaning that βmi = 0 for m 6= 2 while

β2i = − cothλmi
2

λ2iJ3 (λ2i)
,

and δmi = 0 for m 6= 2 while

δ2isinhλ2i =
2

J2
3 (λ2i)

∫ 1

0

ρ3J2 (λ2i) dρ =
2

λ2iJ3 (λ2i)
,

giving

δ2i =
2

λ2iJ3 (λ2i) sinhλ2i
,

so

u2 =

∞∑

i=1

J2 (λ2iρ)

(
2

λ2iJ3 (λ2i)

)[
(coshλ2iz − cothλ2isinhλ2iz) cos 2φ+

sinhλ2iz

sinhλ2i
sin 2φ

]

[note again how the coefficients on cos 2φ and sin 2φ interpolate between 0 and 1, exactly as with the solution
in problem 1!] and finally

u = u1 + u2 =

∞∑

i=1

J2 (λ2iρ)

(
2

λ2iJ3 (λ2i)

)[
(coshλ2iz − cothλ2isinhλ2iz) cos 2φ+

sinhλ2iz

sinhλ2i
sin 2φ

]

+
∞∑

n=1

1

n
(1− (−1)n)

I0(nπρ)

I0(nπ)
sinnπz

+

∞∑

m=1

∞∑

n=1

Im(nπρ)

Im(nπ)

(
4

nmπ
(1− (−1)n) (1− (−1)m)

)[
2

mπ
cosmφ− sinmφ

]
sinnπz.
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4. [Optional. This problem requires knowledge of basic complex function theory. I am only putting it here
because I think it is exceptionally cool and can’t resist.] Solve on {(ρ, φ, z)|ρ < 1, 0 ≤ z ≤ 1}:

∇2u = 0, u|ρ=1 = 0, u|z=0 = 0, u|z=1 = cos (ρ cosφ) cosh (ρsinφ) .

[Hint: can you recognise the boundary datum at z = 1 as the real part of an analytic function of x + iy?
Try writing out the power series of that function and solving the above problem term-by-term in that power
series, noting that x+ iy = ρeiφ.]

[Sketch.] We note that x+ iy = ρ cosφ+ iρsinφ = ρeiφ, so

cos(x+ iy) = cosx cos iy − sinxsin iy = cosxcosh y + isinxsinh y = cos (ρ cosφ) cosh (ρ cosφ) + · · ·

=

∞∑

n=0

(−1)n

(2n)!
(x+ iy)2n =

∞∑

n=0

(−1)n

(2n)!

(
ρeiφ

)2n
=

∞∑

n=0

(−1)n

(2n)!
ρ2ne2inφ

=

∞∑

n=0

(−1)n

(2n)!
ρ2n (cos 2nφ+ isin 2nφ) ,

so

cos (ρ cosφ) cosh (ρsinφ) = ℜ cos(x+ iy) =

∞∑

n=0

(−1)n

(2n)!
ρ2n cos(2n+ 1)φ.

Now the general solution to ∇2u = 0 on the given region satisfying the first two boundary conditions is

u =

∞∑

m=0

∞∑

i=1

Jm(λmiρ) (ami cosmφ+ bmisinmφ) sinhλmiz;

applying the boundary condition at z = 1 then gives

∞∑

m=0

∞∑

i=1

Jm(λmiρ) (ami cosmφ+ bmisinmφ) sinhλmi =

∞∑

n=0

(−1)n

(2n)!
ρ2n cos 2nφ.

From this we easily see that bmi = 0 for all m, i, while ami = 0 when m is odd. If m = 2n for some n ∈ Z,
n ≥ 0, then we obtain

a2n,isinhλ2n,i =
(−1)n

(2n)!

2

J2
2n+1(λ2n,i)

∫ 1

0

ρ2nJ2n(λ2n,iρ)ρ dρ =
(−1)n2

(2n)!λ2n,iJ2n+1(λ2n,i)
,

a2n,i =
(−1)n2

(2n)!λ2n,iJ2n+1(λ2n,i)sinhλ2n,i
,

and

u =

∞∑

n=0

∞∑

i=1

(−1)n2

(2n)!λ2n,iJ2n+1(λ2n,i)sinhλ2n,i
J2n(λ2n,iρ) cos 2nφsinhλ2n,iz.
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Summary:
• We calculate the eigenfunctions and eigenvalues of the Laplacian on the unit cube.
• We then give examples of how to use these eigenfunctions and eigenvalues to solve Possion’s equation
and the heat equation on this cube.

[NOTE. These lecture notes do not cover all of the material discussed in lecture but are rather of a summary
form, intended to indicate the main points related to problems in rectangular coordinates and also to give
the two examples. They will be supplemented later by additional information, particularly concerning the
eigenfunctions of the Laplacian in cylindrical coordinates.]

EIGENFUNCTIONS AND EIGENVALUES OF THE LAPLACIAN ON THE UNIT CUBE. Throughout
the rest of these lecture notes we shall denote the unit cube in R3 by

Q = {(x, y, z)|0 ≤ x, y, z ≤ 1}.

Now consider the following problem: determine all functions u : Q → R not identically zero and all real
numbers λ such that

∇2u = λu, u|∂Q = 0.

We attempt to solve this by applying separation of variables. Thus let u = X(x)Y (y)Z(z); substituting this
into the equation ∇2u = λu and dividing through by u, we obtain

X ′′

X
+
Y ′′

Y
+
Z ′′

Z
= λ.

We see from this that all three of the quantities X′′

X , Y
′′

Y and Z′′

Z must be constants. The next step is clearly
to try to determine whether they are positive or negative. This is determined by the boundary conditions.
In our case, the boundary conditions give

u|x=0,1 = u|y=0,1 = uz=0,1 = 0;

in terms of X , Y , and Z, these become

X(0) = X(1) = 0, Y (0) = Y (1) = 0, Z(0) = Z(1) = 0.

Thus we see that each of the functions X , Y and Z must be oscillatory, meaning that each of X
′′

X , Y
′′

Y and
Z′′

Z must be negative. Let us work with X first. We may write X′′

X = −µ2, where at this point all we know
is that µ ∈ R (and we may take µ > 0: µ 6= 0 since the only solution if µ = 0 that satisfies the boundary
conditions would be X = 0 which would give u = 0). Thus

X = a cosµx+ bsinµx;

X(0) = 0 gives a = 0, while X(1) = 0 then gives (since b 6= 0 as b = 0 implies that X = 0, hence u = 0)
µ = ℓπ, ℓ ∈ Z, ℓ > 0. Similarly, we find that

Y = sinmπy, Z = sinnπz,

m, n ∈ Z, m,n > 0. Thus we have for u

u = sin ℓπxsinmπysinnπz,

ℓ,m, n ∈ Z, ℓ,m, n > 0. The corresponding eigenvalue is clearly

λ =
X ′′

X
+
Y ′′

Y
+
Z ′′

Z
= −ℓ2π2 −m2π2 − n2π2 = −π2

(
ℓ2 +m2 + n2

)
.
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We shall denote the above function by eℓmn(x, y, z) and the above eigenvalue (if needed) by −λ2ℓmn (changing
the notation slightly); thus we have

eℓmn(x, y, z) = sin ℓπxsinmπysinnπz, −λ2ℓmn = −π2
(
ℓ2 +m2 + n2

)
.

Here we have ℓ,m, n ∈ Z, ℓ,m, n > 0.
Let us pause to consider the properties of the set of eigenfunctions here. We note that the set {sin ℓπx|ℓ ∈

Z, ℓ > 0} is complete on [0, 1], and similarly for the sets {sinmπy|m ∈ Z,m > 0} and {sinnπz|n ∈ Z, n > 0}.
Now let f : Q → R be any suitably well-behaved (for example, piecewise continuous) function on Q. Then
we may expand successively as follows:

f(x, y, z) =

∞∑

ℓ=1

fℓ(y, z)sin ℓπx

=

∞∑

ℓ=1

( ∞∑

m=1

fℓm(z)sinmπy

)
sin ℓπx

=
∞∑

ℓ=1

( ∞∑

m=1

[ ∞∑

n=1

fℓmnsinnπz

]
sinmπy

)
sin ℓπx

=

∞∑

ℓ,m,n=1

fℓmnsin ℓπxsinmπysinnπz,

where

fℓ(y, z) = 2

∫ 1

0

f(x, y, z)sin ℓπx dx

fℓm(z) = 2

∫ 1

0

fℓ(y, z)sinmπy dy = 4

∫ 1

0

∫ 1

0

f(x, y, z)sin ℓπxsinmπy dx dy

fℓmn = 2

∫ 1

0

fℓm(z)sinnπz dz = 8

∫ 1

0

∫ 1

0

∫ 1

0

f(x, y, z)sin ℓπxsinmπysinnπz dx dy dz,

or in other words

fℓmn =
(f, eℓmn)

(eℓmn, eℓmn)
,

where we use the inner product

(f, g) =

∫∫∫

Q

f(x, y, z)g(x, y, z)dV.

The foregoing is exactly what we would expect were the set {eℓmn} a complete orthogonal set on Q, and it
turns out that this is the case. The foregoing is the closest we shall probably get to showing that the set is
complete; orthogonality can be shewn as follows:

(eℓmn, eℓ′m′n′) =

∫ 1

0

∫ 1

0

∫ 1

0

eℓmn(x, y, z)eℓ′m′n′(x, y, z)dV

=

∫ 1

0

∫ 1

0

∫ 1

0

sin ℓπxsinmπysinnπzsin ℓ′πxsinm′πysinn′πz dx dy dz

=

∫ 1

0

sin ℓπxsin ℓ′πx dx
∫ 1

0

sinmπysinm′πy dy
∫ 1

0

sinnπzsinn′πz dz,

which is easily seen to be 1
8 in case ℓ = ℓ′, m = m′, and n = n′, and to be zero if any of these equalities fails

to hold. This means that the set {eℓmn} is orthogonal on Q, as claimed, with normalisation constant 1
8 (in

accord with the expansion formula above).
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SOLVING POISSION’S EQUATION ON THE UNIT CUBE. The general idea behind this procedure has
been explained already (see the notes for July 2 – 4). We shall illustrate it in this specific case with the
following example.

Example. Solve the following problem on Q:

∇2u = (1− x2)(1− y2)(1 − z2), u|∂Q = 0.

By our general method, the first step is to expand the right-hand side of the equation above in the above
complete orthogonal set. To do this, we first calculate the following integral (ℓ ∈ Z, ℓ > 0):

∫ 1

0

(1− x2)sin ℓπx dx = −(1− x2)
cos ℓπx

ℓπ

∣∣∣∣
1

0

−
∫ 1

0

(2x)
cos ℓπx

ℓπ
dx =

1

ℓπ
− 2

ℓπ

∫ 1

0

x cos ℓπx dx

=
1

ℓπ
− 2

ℓπ

[
x
sin ℓπx

ℓπ

∣∣∣∣
1

0

−
∫ 1

0

sin ℓπx

ℓπ
dx

]

=
1

ℓπ
+

2

ℓ2π2

(
−cos ℓπx

ℓπ

∣∣∣∣
1

0

)
=

1

ℓπ
+

2

ℓ3π3

(
1− (−1)ℓ

)
.

Thus we see that the expansion coefficients for the function f = (1− x2)(1− y2)(1 − z2) are

fℓmn = 8

∫ 1

0

∫ 1

0

∫ 1

0

(1 − x2)(1 − y2)(1− z2)uℓmn dx dy dz

= 8

∫ 1

0

∫ 1

0

∫ 1

0

(1 − x2)(1 − y2)(1− z2)sin ℓπxsinmπysinnπz dx dy dz

= 8

∫ 1

0

(1− x2)sin ℓπx dx

∫ 1

0

(1− y2)sinmπy dy

∫ 1

0

(1− z2)sinnπz dz

= 8

(
1

ℓπ
+

2

ℓ3π3

(
1− (−1)ℓ

))( 1

mπ
+

2

m3π3
(1− (−1)m)

)(
1

nπ
+

2

n3π3
(1− (−1)n)

)
.

Now suppose that u is a solution to the given problem, and let the expansion coefficients for u be uℓmn, so
that

u =

∞∑

ℓ,m,n=1

uℓmnsin ℓπxsinmπysinnπz.

Substituting this into the equation ∇2u = (1− x2)(1− y2)(1− z2), and assuming that we may differentiate
term-by-term, we obtain

∇2u =

∞∑

ℓ,m,n=1

uℓmn(−λ2ℓmn)sin ℓπxsinmπysinnπz

=
∞∑

ℓ,m,n=1

8

(
1

ℓπ
+

2

ℓ3π3

(
1− (−1)ℓ

))( 1

mπ
+

2

m3π3
(1− (−1)m)

)(
1

nπ
+

2

n3π3
(1− (−1)n)

)

· sin ℓπxsinmπysinnπz.
Since {sin ℓπxsinmπysinnπz} is a complete orthogonal set on Q, the coefficients in these two sums must be
equal; thus we obtain

uℓmn = −8
(

1
ℓπ + 2

ℓ3π3

(
1− (−1)ℓ

)) (
1
mπ + 2

m3π3 (1− (−1)m)
) (

1
nπ + 2

n3π3 (1− (−1)n)
)

π2(ℓ2 +m2 + n2)
,

whence finally we have the solution

u =

∞∑

ℓ,m,n=1

−8
(

1
ℓπ + 2

ℓ3π3

(
1− (−1)ℓ

)) (
1
mπ + 2

m3π3 (1− (−1)m)
) (

1
nπ + 2

n3π3 (1− (−1)n)
)

π2(ℓ2 +m2 + n2)

· sin ℓπxsinmπysinnπz.
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SOLVING THE HEAT EQUATION ON THE UNIT CUBE. We now consider a different problem which
can also be treated using the above eigenfunctions for the Laplacian on the unit cube. We recall that early
on in the course we derived the heat equation

∂u

∂t
= ∇2u,

which describes the time evolution of the temperature distribution of an object, and also other physical
processes. We would like to learn how to solve this equation. First of all we must consider the question of
what forms of initial or boundary data are appropriate. First we briefly recall what we know about ordinary
differential equations: To solve a first-order ordinary differential equation, it suffices to know one piece of
information, such as the value of the unknown function at some point (typically the initial point); to solve a
second-order ordinary differential equation, we need to know two different pieces of information, such as the
value of the function and its derivative at the initial point, or the value of the function at the end points.
We have seen this latter situation play out in our study of Laplace’s equation: in order to find a solution
to Laplace’s equation, we need to know something about the function on the boundary of the region we
are considering; for example, its value over the whole boundary. (If we think back to the case of Laplace’s
equation on a cube, we see that this corresponds to the case in ordinary differential equations of giving the
value of the function at the endpoints.) Now the heat equation is second-order in its spatial derivatives (just
like Laplace’s equation), but it is first-order in time. Thus we anticipate that we shall need to be given
boundary data at each time of a sort similar to that we are given for Laplace’s equation, while we also need
to be given some kind of initial data. Since we are basically evolving the value of the function at each point
in space, it seems reasonable to suspect that we may need to give as initial data the value of the function
u at each point of Q, at some initial time (typically taken to be t = 0). We shall now give an example to
indicate how this is done.

First a word about notation. A solution to the heat equation on Q is a function of four variables, three
spatial ones and one temporal one, which we denote as x, y, z and t, respectively, so that a solution is written
u = u(t, x, y, z). We assume further that we are interested in finding the function u for all positive times,
given its value at t = 0; thus we solve the heat equation on the region (0,+∞)×Q.

Example. Solve the following problem on (0,+∞)×Q:

∂u

∂t
= ∇2u, u|t=0 = xyz, u|(0,+∞)×∂Q = 0.

(Here u|t=0 = xyz is the initial data discussed above, while u|(0,+∞)×∂Q = 0 is the boundary data. Note that
we do not need to give any ‘boundary data’ for the future in t; thus, if we consider (0,+∞)× Q as a long
rectangular prism, then we are given data only on the bottom and sides, not on the top. This is because the
heat equation is only first-order in time.) For each t, we may expand the function u(t, x, y, z) in the basis
{eℓmn} as

u(t, x, y, z) =

∞∑

ℓ,m,n=1

uℓmn(t)eℓmn =

∞∑

ℓ,m,n=1

uℓmn(t)sin ℓπxsinmπysinnπz.

Substituting this into the above equation, and assuming that we may differentiate term-by-term (and that
the expansion coefficients uℓmn(t) are differentiable), we obtain

u′ℓmn = −π2(ℓ2 +m2 + n2)uℓmn.

This equation can be solved easily to obtain

uℓmn(t) = uℓmn(0)e
−π2(ℓ2+m2+n2)t

(that the multiplicative constant is in fact uℓmn(0) may be seen by setting t = 0 in both sides of the above
equation). Thus, to determine uℓmn(t), and hence to determine the desired series expansion for u, it suffices
to determine the expansion coefficients uℓmn(0) for the initial data xyz. Now

∫ 1

0

xsin ℓπx dx = −xcos ℓπx
ℓπ

∣∣∣∣
1

0

+
1

ℓπ

∫ 1

0

cos ℓπx dx =
(−1)ℓ+1

ℓπ
,
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whence we see that the expansion coefficients uℓmn(0) are

uℓmn(0) = 8
(−1)ℓ+1

ℓπ

(−1)m+1

mπ

(−1)n+1

nπ
= −8

(−1)ℓ+m+n

π3ℓmn
,

so

uℓmn(t) = −8
(−1)ℓ+m+n

π3ℓmn
e−π

2(ℓ2+m2+n2)t

and the solution to our problem is

u(t, x, y, z) =

∞∑

ℓ,m,n=1

−8
(−1)ℓ+m+n

π3ℓmn
e−π

2(ℓ2+m2+n2)tsin ℓπxsinmπysinnπz.

A WORD ABOUT BOUNDARY CONDITIONS. So far we have considered various different kinds of
boundary conditions without giving them names. Generally, the types of boundary conditions one considers
for Laplace’s equation (hence, for the spatial boundary conditions in the heat equation) on some region D
are the following:

• Dirichlet: u|∂D = f .
• Neumann: (∇u · n)|∂D = g.
• Robin: (au+ b∇u · n)|∂D = h.

Here n indicates the outer unit normal to the region D at its boundary.
One may also consider more general conditions (for example, Dirichlet over part of the boundary and

Neumann over another part), which we may then term mixed boundary conditions.
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APM 346, Homework 8. Due Monday, July 15, at 6.00 AM EDT. To be marked completed/not completed.

Using our derivation of the eigenfunctions and eigenvalues of the Laplacian in class, solve the following
problems.

1. Write out a series expansion for the solution to the following problem on Q = {(x, y, z)|0 ≤ x, y, z ≤ 1}:

∇2u = χ(x)χ(y)χ(z), u|∂Q = 0,

where ∂Q is the boundary of the cube Q and

χ(x) =

{
0, 0 ≤ x < 1

2
1, 1

2 < x ≤ 1
.

We note the following integral:

∫ 1

0

χ(x)sin ℓπx dx =

∫ 1

1
2

sin ℓπx dx = −cos ℓπx

ℓπ

∣∣∣∣
1

1
2

=
(−1)ℓ+1

ℓπ
+

cos 1
2ℓπ

ℓπ

=

{
1
ℓπ , ℓ odd

1
ℓπ

(
(−1)

ℓ
2 − 1

)
, ℓ even

.

There is no convenient way to simplify a triple sum over a product of three versions of this last quantity, so
we shall use the second-to-last line instead in the formulæ below. Thus we write

∫ 1

0

∫ 1

0

∫ 1

0

χ(x)χ(y)χ(z)sin ℓπxsinmπxsinnπxdx dy dz

=
1

π3ℓmn

(
(−1)ℓ+1 + cos

1

2
ℓπ

)(
(−1)m+1 + cos

1

2
mπ

)(
(−1)n+1 + cos

1

2
nπ

)
,

whence we may write

χ(x)χ(y)χ(z) =

∞∑

ℓ,m,n=1

8

π3ℓmn

(
(−1)ℓ+1 + cos

1

2
ℓπ

)(
(−1)m+1 + cos

1

2
mπ

)(
(−1)n+1 + cos

1

2
nπ

)

· sin ℓπxsinmπysinnπz.

From our general technique, if we denote the coefficients in the above series by χℓχmχn, then the coefficients
uℓmn in the series expansion for u will be given by

uℓmn = − 1

π2(ℓ2 +m2 + n2)
χℓχmχn,

whence the solution for u will be

u =

∞∑

ℓ,m,n=1

− 8

π5ℓmn(ℓ2 +m2 + n2)

[(
(−1)ℓ+1 + cos

1

2
ℓπ

)(
(−1)m+1 + cos

1

2
mπ

)(
(−1)n+1 + cos

1

2
nπ

)

· sin ℓπxsinmπysinnπz
]
.
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2. Write out a series expansion for the solution to the following problem on Q × (0,+∞), where Q is as in
problem 1:

∂u

∂t
= ∇2u, u|∂Q = 0, u|t=0 = sinπxsin πy,

where we denote an arbitrary point in Q× (0,+∞) by (x, y, z, t).
We proceed similarly to question 1 and first calculate the expansion coefficients for the nonhomogeneous

boundary term sinπxsin πy. Since

∫ 1

0

sin ℓπxsinπx dx =

{
1
2 , ℓ = 1
0, ℓ 6= 1

and ∫ 1

0

sinnπz dz = − 1

nπ
cosnπz

∣∣∣∣
1

0

=
1

nπ
(1− (−1)n) ,

we see that

∫ 1

0

∫ 1

0

∫ 1

0

sinπxsin πysin ℓπxsinmπysinnπz dx dy dz =

{
1

4nπ (1− (−1)n) , ℓ = m = 1
0, otherwise

,

whence

sinπxsin πy =

∞∑

k=0

4

(2k + 1)π
sinπxsinπysin (2k + 1)πz.

We note that the eigenvalue corresponding to the kth term in the above sum is −π2(2 + (2k + 1)2) (since
the kth term corresponds to the (ℓ,m, n) term in the original sum with ℓ = m = 1 and n = 2k + 1). Thus
the solution to our original problem is simply

u =

∞∑

k=0

4

(2k + 1)π
sinπxsin πysin (2k + 1)πze−π

2(2+(2k+1)2)t.
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Summary:
• We use the eigenfunctions and eigenvalues of the Laplacian on a cylinder, derived last week, to solve
a problem involving Poisson’s equation on a cylinder.

• We then derive the eigenfunctions and eigenvalues of the Laplacian on the unit ball.
• We give a method for solving Poisson’s equation and the heat equation with inhomogeneous boundary
conditions, and give an example in spherical coordinates.

EXAMPLE. Solve the following problem on the cylinder C = {(ρ, θ, z)|ρ < 1, 0 < z < 1}:

∇2u = zρ2 cos 2φ, u|∂C = 0.

From last time, we know that the eigenfunctions of the Laplacian on C are

enmi =

{
Jm (λmiρ) cosmφsinnπz
Jm (λmiρ) sinmφsinnπz

with corresponding eigenvalues
λnmi = −λ2mi − n2π2.

Thus we must expand the function zρ2 cos 2φ in this basis. To do this, we compute as follows:

(
zρ2 cos 2φ, Jm (λmiρ) cosmφsinnπz

)
=

∫ 1

0

∫ 1

0

∫ 2π

0

zρ2 cos 2φJm (λmiρ) cosmφsinnπz dφ dz ρdρ

=

∫ 1

0

zsinnπz dz

∫ 1

0

ρ3Jm (λmiρ) dρ

∫ 2π

0

cos 2φ cosmφdφ,

which is seen to be zero when m 6= 2, while when m = 2 it becomes

(−1)n+1

nπ

J3 (λmi)

λmi
π,

whence the coefficient of Jm (λmiρ) cosmφsinnπz in the expansion of zρ2 cos 2φ when m 6= 2 is zero, while
when m = 2 it is

1
nπ (−1)n+1 J3(λ2i)

λ2i
π

1
2 · 1

2J
2
3 (λ2i) · π

=
4(−1)n+1

nπλ2iJ3 (λ2i)
.

A similar calculation shows immediately that the coefficient of Jm (λmiρ) sinmφsinnπz is zero, since cos 2φ
is orthogonal to sinmφ for all m. Thus we have finally

zρ2 cos 2φ =

∞∑

n=1

∞∑

i=1

4(−1)n+1

nπλ2iJ3 (λ2i)
J2 (λ2iρ) sinnπz cos 2φ.

Given this, the solution to our original problem is almost immediate: we assume as usual that we have an
expansion of the form

u(ρ, θ, z) =

∞∑

n=1

∞∑

m=0

∞∑

i=1

Jm (λmiρ) sinnπz (cnmi cosmφ+ dnmisinmφ) ;

then, assuming that we may differentiate term-by-term, we have, since both Jm (λmiρ) cosmφsinnπz and
Jm (λmiρ) sinmφsinnπz are eigenfunctions of the Laplacian with the same eigenvalue λnmi = −λ2mi −n2π2,

∇2u =
∞∑

n=1

∞∑

m=0

∞∑

i=1

(
−λ2mi − n2π2

)
Jm (λmiρ) sinnπz (cnmi cosmφ+ dnmisinmφ)

=

∞∑

n=1

∞∑

i=1

4(−1)n+1

nπλ2iJ3 (λ2i)
J2 (λ2iρ) sinnπz cos 2φ,
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whence we see that dnmi = 0 for all n, m, i, while cnmi = 0 for all n and i unless m = 2 and

cn2i = − 4(−1)n+1

nπλ2iJ3 (λ2i) (λ22i + n2π2)
,

so that finally we have the solution

u(ρ, θ, z) =

∞∑

n=1

∞∑

i=1

4(−1)n

nπλ2iJ3 (λ2i) (λ22i + n2π2)
J2 (λ2iρ) sinnπz cos 2φ.

EXAMPLE. Solve the following problem on (0,+∞)× C:

∂u

∂t
= ∇2u, u|t=0 = zρ2 cos 2φ, u|(0,+∞)×∂Q = 0.

From the previous example, we have the expansion

zρ2 cos 2φ =

∞∑

k=0

∞∑

i=1

8

(2k + 1)πλ2iJ3 (λ2i)
J2 (λ2iρ) sin (2k + 1)πz cos 2φ.

Expanding u as

u =

∞∑

n=1

∞∑

m=0

∞∑

i=1

Jm (λmiρ) sinnπz (cnmi(t) cosmφ+ dnmi(t)sinmφ)

and substituting this into the heat equation ∂u
∂t = ∇2u as before, we see that

∞∑

n=1

∞∑

m=0

∞∑

i=1

Jm (λmiρ) sinnπz (c
′
nmi(t) cosmφ+ d′nmi(t)sinmφ)

=

∞∑

n=1

∞∑

m=0

∞∑

i=1

(
−λ2mi − n2π2

)
Jm (λmiρ) sinnπz (cnmi(t) cosmφ+ dnmi(t)sinmφ) ,

whence equating coefficients of like terms gives the equations

c′nmi = −
(
λ2mi + n2π2

)
cnmi

d′nmi = −
(
λ2mi + n2π2

)
dnmi.

(1)

Now the initial condition gives

∞∑

n=1

∞∑

m=0

∞∑

i=1

Jm (λmiρ) sinnπz (cnmi(0) cosmφ+ dnmi(0)sinmφ)

=

∞∑

n=1

∞∑

i=1

4 (1− (−1)n)

nπλ2iJ3 (λ2i)
J2 (λ2iρ) sinnπz cos 2φ,

so

cnmi(0) =

{
0, m 6= 2,

4(1−(−1)n)
nπλ2iJ3(λ2i)

, m = 2

dnmi(0) = 0,

whence the system (1) gives dnmi(t) = 0 for all n, m, i and all t, while cnmi(t) = 0 for all t unless m = 2
and finally

cn2i(t) =
4 (1− (−1)n)

nπλ2iJ3 (λ2i)
e−(λ

2
2i+n

2π2)t,
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so that the solution to our original problem is finally

u(ρ, θ, z) =

∞∑

n=1

∞∑

i=1

4 (1− (−1)n)

nπλ2iJ3 (λ2i)
e−(λ

2
2i+n

2π2)tJ2 (λ2iρ) sinnπz cos 2φ

=

∞∑

k=0

∞∑

i=1

8

(2k + 1)πλ2iJ3 (λ2i)
e−(λ

2
2i+(2k+1)2π2)tJ2 (λ2iρ) sin (2k + 1)πz cos 2φ.

EIGENVALUES AND EIGENFUNCTIONS FOR THE LAPLACIAN ON THE UNIT BALL. We now
turn our attention to the task of finding the eigenfunctions and eigenvalues of the Laplacian on the unit ball
with homogeneous1 Dirichlet boundary conditions. In other words, let B = {(r, θ, φ)|r < 1} denote the unit
ball in spherical coordinates, and consider the problem

∇2u = λu, u|∂B = 0.

We approach this problem as before, by separating variables; thus we set

u(r, θ, φ) = R(r)Θ(θ)Φ(φ),

and recalling that in spherical coordinates the Laplacian is given by

∂2u

∂r2
+

2

r

∂u

∂r
+

1

r2
∂2u

∂θ2
+

cot θ

r2
∂u

∂θ
+

1

r2sin 2θ

∂2u

∂φ2

we obtain, substituting into ∇2u = λu and dividing by u

R′′

R
+

2

r

R′

R
+

1

r2
Θ′′

Θ
+

cot θ

r2
Θ′

Θ
+

1

r2sin 2θ

Φ′′

Φ
= λ. (2)

Since only the quantity Φ′′

Φ depends on φ, this quantity must be constant. Considerations identical to
those used when solving Laplace’s equation in spherical and cylindrical coordinates and when finding the
eigenvalues of the Laplacian in cylindrical coordinates show that we must in fact have Φ′′

Φ = −m2, where
m ∈ Z, m ≥ 0, which has solutions {hi = cosmφ, Φ = sinmφ (the latter only for m > 0). Substituting this
back into equation (2) above, we obtain

λ =
R′′

R
+

2

r

R′

R
+

1

r2
Θ′′

Θ
+

cot θ

r2
Θ′

Θ
− m2

r2sin 2θ

=
R′′

R
+

2

r

R′

R
+

1

r2

(
Θ′′

Θ
+ cot θ

Θ′

Θ
− m2

sin 2θ

)
;

as when we solved Laplace’s equation in spherical coordinates (see notes for May 23 – 30), this implies
that the quantity in parentheses above is constant. By analogy with what we did there, we set it equal to
−ℓ(ℓ+ 1), where ℓ ∈ Z, ℓ ≥ 0. Then Θ must satisfy the equation

Θ′′ + cot θΘ′ +

(
ℓ(ℓ+ 1)− m2

sin 2θ

)
Θ = 0,

whence we see that Θ(θ) = Pℓm(cos θ), as when solving Laplace’s equation. We are thus left only with the
following equation for R:

R′′

R
+

2

r

R′

R
− 1

r2
ℓ(ℓ+ 1) = λ,

R′′ +
2

r
R′ +

(
−λ− ℓ(ℓ+ 1)

r2

)
R = 0.

1Since eigenvalue problems must of necessity be linear, it makes no sense to ask for an eigenfunction of the
Laplacian satisfying inhomogeneous boundary conditions; or at any rate, while one could certainly write out
the equations, it is hard to see how the resulting solutions could be of use.
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As it stands, this is close to Bessel’s equation (see notes for June 11 – 13, p. 2, Equation (2))

P ′′ +
1

ρ
P ′ +

(
λ2 − m2

ρ2

)
P = 0,

but it is not identical. We may transform it into Bessel’s equation by the following method. Let S = r
1
2R,

so that R = r−
1
2S; then we have

R′ = −1

2
r−

3
2S + r−

1
2S′,

R′′ =
3

4
r−

5
2S − r−

3
2S′ + r−

1
2S′′,

whence we see that

0 = R′′ +
2

r
R′ +

(
−λ− ℓ(ℓ+ 1)

r2

)
R

=

(
3

4
r−

5
2S − r−

3
2S′ + r−

1
2S′′

)
+

2

r

(
−1

2
r−

3
2S + r−

1
2S′
)
+

(
−λ− ℓ(ℓ+ 1)

r2

)
r−

1
2S

= r−
1
2

(
S′′ +

(
−r−1 +

2

r

)
S′ +

(
3

4
r−2 − 1

r2
− λ− ℓ(ℓ+ 1)

r2

)
S

)

= r−
1
2

(
S′′ +

1

r
S′ +

(
−λ− ℓ(ℓ+ 1) + 1

4

r2

)
S

)
= r−

1
2

(
S′′ +

1

r
S′ +

(
−λ−

(
ℓ+ 1

2

)2

r2

)
S

)
,

so that S must satisfy the equation

S′′ +
1

r
S′ +

(
−λ−

(
ℓ+ 1

2

)2

r2

)
S = 0.

Now the boundary condition u|∂B = 0 means that R must satisfy R(1) = 0; since S = r
1
2R, this implies

that S(1) = 0 also. Thus S cannot be a modified Bessel function, which implies that we must have λ < 0
and (up to a multiplicative constant) S = Jℓ+ 1

2
(
√
λr). Again, S(1) = 0 implies that

√
λ = κℓi for some i,

where κℓi denotes the ith positive zero of Jℓ+ 1
2
(x) (thus, if we were to extend our earlier notation and let

λνi denote the ith positive zero of Jν(x) for any real ν ≥ 0, we have κℓi = λℓ+ 1
2 ,i

; this latter expression is

the notation which we used in class). We thus obtain that up to a multiplicative constant

R = r−
1
2Jℓ+ 1

2
(κℓir) .

It turns out to be convenient to take the multiplicative constant to be
√

π
2 . The resulting functions are

called spherical Bessel functions and are denoted by jℓ, ℓ ∈ Z, ℓ ≥ 0; explicitly,

jℓ(x) =

√
π

2x
Jℓ+ 1

2
(x).

We thus obtain finally that the eigenfunctions for the Laplacian on the unit ball are

emℓi =

{
jℓ (κℓir)Pℓm(cos θ) cosmφ
jℓ (κℓir)Pℓm(cos θ)sinmφ

,

with corresponding eigenvalue
λmℓi = −κ2ℓi.

We note that the eigenvalue does not depend on m (though it does depend on both ℓ and i).
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We now derive the orthogonality properties of the jℓ. First, we note without proof that the Bessel
functions Jν satisfy the same orthogonality relations as the Jm for all real (not just integer) ν ≥ 0, namely

∫ 1

0

xJν (λνix)Jν (λνjx) dx =

{
0, i 6= j

1
2J

2
ν+1 (λνi) , i = j

.

From this we may derive the orthogonality property of the spherical Bessel functions, as follows:

∫ 1

0

x2jℓ (κℓix) jℓ (κℓjx) dx =
π

2
√
κℓiκℓj

∫ 1

0

xJℓ+ 1
2

(
λℓ+ 1

2 ,i
x
)
Jℓ+ 1

2

(
λℓ+ 1

2 ,j
x
)
dx

=

{
0, i 6= j

π
4λ

ℓ+1
2
,i
J2
ℓ+ 1

2+1

(
λℓ+ 1

2 ,i

)
, i = j ,

whence we see that {jℓ (κℓix)} is an orthogonal set on the interval [0, 1] with the normalisation integral

∫ 1

0

x2j2ℓ (κℓix) dx =
π

4λℓ+ 1
2 ,i

J2
ℓ+ 1

2+1

(
λℓ+ 1

2 ,i

)
=

1

2



√

π

2λℓ+ 1
2 ,i

Jℓ+1+ 1
2

(
λℓ+ 1

2 ,i

)



2

=
1

2
j2ℓ+1 (κℓi) .

From this it follows, as before, that {emℓi} is a complete orthogonal set on the unit ball B with respect to
the inner product

(f(r, θ, φ), g(r, θ, φ)) =

∫ 1

0

∫ π

0

∫ 2π

0

f(r, θ, φ)g(r, θ, φ) dφ sin θdθ r2dr

=

∫ 1

0

∫ π

0

∫ 2π

0

f(r, θ, φ)g(r, θ, φ)r2sin θ dφ dθ dr.

(Note that the quantity r2sin θ dφ dθ dr is just the volume element dV in spherical coordinates; in other
words, the integral above is simply

∫∫∫
B fgdV .) This allows us to solve Poisson’s equation and the heat

equation on B, as we did with the unit cube Q and the cylinder C before.

EXAMPLE. Solve the following problem on B:

∇2u = rsin θsinφ, u|∂B = 0.

We begin, as usual, be expanding the function on the right-hand side in the basis of eigenfunctions
{emℓi} appropriate to the problem; thus we write

rsin θsinφ =

∞∑

m=0

∞∑

ℓ=m

∞∑

i=1

jℓ (κℓir)Pℓm(cos θ) (amℓi cosmφ+ bmℓisinmφ) ,

where

bmℓi =
(rsin θsinφ, jℓ (κℓir)Pℓm(cos θ)sinmφ)

(jℓ (κℓir)Pℓm(cos θ)sinmφ, jℓ (κℓir)Pℓm(cos θ)sinmφ)

amℓi =
(rsin θsinφ, jℓ (κℓir)Pℓm(cos θ) cosmφ)

(jℓ (κℓir)Pℓm(cos θ) cosmφ, jℓ (κℓir)Pℓm(cos θ) cosmφ)
.

Since (sinφ, cosmφ) = 0 for all m, we see that we have amℓi = 0 for all m, ℓ, i; similarly, bmℓi = 0 for all ℓ
and i unless m = 1, in the which case we may compute (recalling that {Pℓm(x)}∞ℓ=m is a complete orthogonal
set on [−1, 1] for all m ≥ 0, and that P11 = sin θ)

(rsin θsin φ, jℓ (κℓir)Pℓ1(cos θ)sinφ) =

∫ 1

0

∫ π

0

∫ 2π

0

rsin θsinφjℓ (κℓir)Pℓ1(cos θ)sinφdφ sin θdθ r
2dr

=

∫ 1

0

r3jℓ (κℓir) dr

∫ π

0

sin θPℓ1(cos θ)sin θ dθ

∫ 2π

0

sin 2φdφ
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which is zero unless ℓ = 1, while if ℓ = 1 it is (using the normalisation
∫ 1

−1 P
2
ℓm(x) dx = (ℓ+m)!

(ℓ−m)!
2

2ℓ+1 , which in

our case becomes
∫ 1

−1
P 2
11(x) dx = 4

3 , and remembering that κ1i = λ 3
2 ,i

)

4π

3

∫ 1

0

r3j1 (κ1ir) dr =
4π

3

√
π

2κ1i

∫ 1

0

r
5
2J 3

2

(
λ 3

2 ,i
r
)
dr

=
4π

3

√
π

2κ1i

J 5
2

(
λ 3

2 ,i

)

λ 3
2 ,i

=
4π

3κ1i
j2 (κ1i)

whence using the normalisation integrals for j1, P11, and sinφ we obtain

b11i =
2

κ1ij2 (κ1i)
,

while bmℓi = 0 unless m = ℓ = 1. (Note the similarity of the above form to that derived for ordinary
(nonspherical) Bessel functions when expanding expressions like ρm on a cylinder.) Thus we have finally the
expansion

rsin θsinφ =

∞∑

i=1

2

κ1ij2 (κ1i)
j1 (κ1ir) sin θsinφ.

Writing now

u =
∞∑

m=0

∞∑

ℓ=m

∞∑

i=1

jℓ (κℓir)Pℓm(cos θ) (cmℓi cosmφ+ dmℓisinmφ) ,

we see that

∇2u =

∞∑

m=0

∞∑

ℓ=m

∞∑

i=1

−κ2ℓijℓ (κℓir)Pℓm(cos θ) (cmℓi cosmφ+ dmℓisinmφ) ;

equating this to the expansion for the function rsin θsinφ obtained above gives, as usual, cmℓi = − 1
κ2
ℓi

amℓi = 0

for all m, ℓ, i, while dmℓi = − 1
κ2
ℓi

bmℓi is zero unless m = ℓ = 1, in the which case

d11i = − 2

κ31ij2 (κ1i)
,

and we have finally

u =

∞∑

i=1

− 2

κ31ij2 (κ1i)
j1 (κ1ir) sin θsinφ.

A similar example could clearly be worked for the heat equation, along the lines of the pair of examples given
in cylindrical coordinates above; we leave the formulation and solution of such a problem to the reader.

INHOMOGENEOUS BOUNDARY CONDITIONS. Consider now the problem (say on B)

∇2u = f, u|∂B = g,

where neither f nor g is identically zero. This problem may be solved by first solving the two ancillary
problems

∇2u1 = f, u1|∂B = 0,

∇2u2 = 0, u2|∂B = g,

the second of which may be solved using the methods developed for solving Laplace’s equation on a ball,
and the first of which may be solved using the eigenfunctions just derived. If we then set u = u1 + u2, we
see that

∇2u = ∇2u1 +∇2u2 = f + 0 = f,

u|∂B = u1|∂B + u2|∂B = 0 + g = g;
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in other words, u = u1 + u2 is a solution to our original problem.
This method clearly applies to any of the regions Q, C, B we have studied.
In the hope that the foregoing is sufficiently clear as it stands, we skip giving any examples to talk about

a similar method for the heat equation. In this case, we are given the problem

∂u

∂t
= ∇2u, u|t=0 = f, u|(0,+∞)×∂B = g.

As in the case of Poisson’s equation just considered, this may be solved by decomposing u as a sum of
solutions to two ancillary problems. The decomposition is a bit more subtle in this case. We first give some
motivation. Recall from our previous work that solutions to the heat equation with homogeneous boundary
data converge to 0 as t → +∞. A more careful consideration of the series solutions given above shows that
in fact also ∂u

∂t → 0 as t → +∞.2 Now if ∂u
∂t = 0, then the heat equation becomes simply ∇2u = 0, i.e., it

becomes Laplace’s equation. Noting that u = 0 is the unique solution to Laplace’s equation on B satisfying
u|∂B = 0, we see that in this (admittedly very special!) case the solution to the heat equation with boundary
data u|∂B = 0 converges to the solution to Laplace’s equation on B with the same boundary data.

It turns out that this is true for inhomogeneous boundary data also, as we shall now show. Thus let U1

be the solution to the problem on B
∇2U1 = 0, U1|∂B = g

(which is just a boundary-value problem for Laplace’s equation on the unit ball, and hence is a problem we
know how to solve). Now let us define u1 : (0,+∞) × B → R1 by u1(t, x, y, z) = U1(x, y, z); then we see
that u1 is a solution to the problem

∂u1
∂t

= ∇2u1, u1|t=0 = U1, u1|(0,+∞)×∂B = g,

since in this case ∂u1

∂t = 0. (Note that the initial condition is a bit silly since in fact u1 = U1 for all t; but it
is certainly true nonetheless.) Since the problem we wish to solve is

∂u

∂t
= ∇2u, u|t=0 = f, u|(0,+∞)×∂B = g,

this suggests taking the other part of the solution to be the function u2 satisfying

∂u2
∂t

= ∇2u2, u2|t=0 = f − U1, u|(0,+∞)×∂B = 0,

which we can solve using the eigenfunction methods developed earlier. Letting u1 and u2 be these two
solutions, and taking u = u1 + u2, we see that

∂u

∂t
=
∂u1
∂t

+
∂u2
∂t

= 0 +∇2u2 = ∇2u1 +∇2u2 = ∇2u,

u|t=0 = u1|t=0 + u2|t=0 = U1 + f − U1 = f,

u|(0,+∞)×∂B = u1|(0,+∞)×∂B + u2|(0,+∞)×∂B = g + 0 = g,

so that u = u1 + u2 is indeed a solution to our original problem, as desired.

EXAMPLE. We give a simple example of the foregoing to illustrate the procedure. Consider the following
problem on B:

∂u

∂t
= ∇2u, u|t=0 = rsin θsinφ, u|(0,+∞)×∂B = cos θ.

2Note that this does not follow from the preceding statement: consider, for example, the function f(t) =
1
t sin t

3; we have clearly f(t) → 0 as t → +∞, while f ′(t) = − 1
t2 sin t

3 + 3tsin t3, which does not converge to
any limit as t→ +∞.
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We first solve the problem
∇2U1 = 0, U1|∂B = cos θ;

now on ∂B we have cos θ = z, since ∂B = {(r, θ, φ)|r = 1}; since z satisfies ∇2z = 0, we see that the solution
to this equation is just U1 = z = r cos θ. Thus we are left with the problem

∂u2
∂t

= ∇2u2, u|t=0 = rsin θsinφ− r cos θ, u|(0,+∞)×∂B = 0.

Now some reflection3 indicates that the initial data here may be expanded as

∞∑

i=1

2

κ1ij2 (κ1i)
j1 (κ1ir) (sin θsinφ− cos θ)

(the point is that the sum above is just to expand the function r in the basis {j1 (κ1ir)}, and hence is
insensitive to which combination of {P1m cosmφ,P1msinmφ} the function r is multiplied by). Thus by
standard methods (whose details we invite the reader to fill in as an exercise!) we have

u2(t, x, y, z) =

∞∑

i=1

2

κ1ij2 (κ1i)
e−κ

2
1itj1 (κ1ir) (sin θsinφ− cos θ) ,

and thus we have finally the solution

u = u1 + u2 = r cos θ +

∞∑

i=1

2

κ1ij2 (κ1i)
e−κ

2
1itj1 (κ1ir) (sin θsinφ− cos θ)

=

∞∑

i=1

2

κ1ij2 (κ1i)
j1 (κ1ir)

(
e−κ

2
1itsin θsinφ+

(
1− e−κ

2
1it
)
cos θ

)
.

We note that this solution does indeed converge to the solution u1 = r cos θ to Laplace’s equation with
the given inhomogeneous boundary conditions, as claimed. We also note the nice interpolation that occurs
term-by-term in the above sum between the initial data (for which the angular dependence is sin θsinφ) and
the final value (for which the angular dependence is cos θ).

3The author is reminded of a comment in the aforementioned textbook Classical Electrodynamics by J. D.
Jackson to the effect that ‘adroit use of the recurrence relation leads to ...’, and of the exasperated reaction
of his electrodynamics instructor upon finding this sentence: ‘Oh, J. D.!’ The author apologises for making
a slightly similar remark here. He hopes that working out the details is somewhat more straightforward than
for the corresponding result in Jackson!
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APM 346, Homework 9. Due Monday, July 22, at 8.00 AM EDT. To be marked completed/not completed.

1. Using the eigenfunctions and eigenvalues for the Laplacian on the cylinder C = {(ρ, φ, z)|ρ < 1, 0 ≤ z ≤ 1}
derived in class, solve the following problem on C:

∇2u = z

{
0, ρ < 1

2
ρ3 cos 3φ, 1

2 < ρ < 1
, u|∂C = 0.

Let us denote the right-hand side of Poisson’s equation above by f . Then expanding

f =

{
0, ρ < 1

2
ρ3 cos 3φ, 1

2 < ρ < 1
=

∞∑

n=1

∞∑

m=0

∞∑

i=1

Jm (λmiρ) sinnπz (anmi cosmφ+ bnmisinmφ) ,

we see as usual that bnmi = 0 for all n, m, and i, while anmi = 0 unless m = 3, and in that case (using the
standard normalisation integrals for J3 (λ3iρ) and sinnπz on [0, 1])

an3i =
4

J2
4 (λ3i)

∫ 1

1
2

∫ 1

0

ρ3zJ3 (λ3iρ) sinnπz dz ρdρ =
4

J2
4 (λ3i)

∫ 1

1
2

ρ4J3 (λ3iρ) dρ

∫ 1

0

zsinnπz dz

=
4(−1)n+1

λ3iJ2
4 (λ3i)nπ

[
J4 (λ3i)−

1

16
J4

(
1

2
λ3i

)]
,

whence

u =

∞∑

n=1

∞∑

i=1

4(−1)n

λ3iJ2
4 (λ3i)nπ (λ

2
3i + n2π2)

(
J4 (λ3i)−

1

16
J4

(
1

2
λ3i

))
J3 (λ3iρ) sinnπz cos 3φ.

2. Using the eigenfunctions and eigenvalues for the Laplacian on the unit ball B = {(r, θ, φ)|r < 1} derived
in class, solve the following problem on B:

∇2u = 3sin 2θ cos 2φ

{
r2, r < 1

2
0, 1

2 < r < 1
, u|∂B = 0.

Again, we expand the right-hand side:

{
r2, r < 1

2
0, 1

2 < r < 1
=

∞∑

ℓ=0

ℓ∑

m=0

∞∑

i=1

jℓ (κℓir)Pℓm (cos θ) (aℓmi cosmφ+ bℓmisinmφ) ,

whence as before we have bℓmi = 0 for all ℓ, m, and i, while aℓmi = 0 unless m = 2. Now P22 (cos θ) = 3sin 2θ,
so since {Pℓ2 (cos θ)}∞ℓ=2 is a complete orthogonal set on [0, π], we must also have aℓ2i = 0 unless ℓ = 2.
Finally, denoting the above right-hand side by f ,

a22i =
(f, j2 (κ2ir)P22(cos θ) cos 2φ)

(j2 (κ2ir)P22(cos θ) cos 2φ, j2 (κ2ir)P22(cos θ) cos 2φ)

=
2

j23 (κ2i)

∫ 1
2

0

r4j2 (κ2ir) dr =
2

j23 (κ2i)

∫ 1
2

0

r
7
2

√
π

2
J 5

2
(κ2ir) dr

=
2

κ2ij23 (κ2i)

√
π

2

(
1√
128

J 7
2

(
1

2
κ2i

))
=

1

8
√
κ2ij23 (κ2i)

j3

(
1

2
κ2i

)
,

so (since the eigenvalue corresponding to jm (κmir)Pℓm(cos θ) cosmφ is simply −κ2mi)

u =

∞∑

i=1

− 1

8j23 (κ2i)κ
5
2

2i

j3

(
1

2
κ2i

)
j2 (κ2iρ)P22(cos θ) cos 2φ.
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3. Solve the following problem on the unit cube Q:

∇2u = 0, u|x=0 = u|x=1 = u|y=0 = u|y=1 = 0, u|z=0 = sinπxsin 2πy, u|z=1 = 0.

One way of doing this (which is not really detailed enough to count as a full solution on a test!) is to
note that the solution will be a linear combination of sinπxsin 2πycoshπ

√
5z and sinπxsin 2πysinhπ

√
5z,

after which a little thought shows that the solution is exactly

sinπxsin 2πy
(
coshπ

√
5z − cothπ

√
5sinhπ

√
5z
)
.

More systematically, we note that the solution can be written in the form

u =

∞∑

ℓ,m=1

sin ℓπxsinmπy
(
aℓmcoshπ

√
ℓ2 +m2z + bℓmsinhπ

√
ℓ2 +m2z

)
;

then the boundary conditions give that for (ℓ,m) 6= (1, 2)

aℓm = 0, aℓmcoshπ
√
ℓ2 +m2 + bℓmsinhπ

√
ℓ2 +m2 = 0,

whence it is easily seen that aℓm = bℓm = 0 for all (ℓ,m) 6= (1, 2); further,

a12 = 1, a12coshπ
√
5 + b12sinhπ

√
5 = 0,

so b12 = − cothπ
√
5 and we obtain u = sinπxsin 2πy

(
coshπ

√
5z − cothπ

√
5sinhπ

√
5z
)
, as claimed.

4. Recall the function χ defined in problem 1 of assignment 8:

χ(x) =

{
0, 0 ≤ x < 1

2
1, 1

2 < x ≤ 1
.

Let u0 denote the solution to problem 3. Solve the following problem on the unit cube Q:

∂u

∂t
= ∇2u, u|∂Q = u0|∂Q, u|t=0 = χ(x)χ(y)χ(z).

[Optional: compute the coefficients in the series for u for two choices of ℓ, m, and n, one small (say
ℓ = m = n = 1) and another large (say ℓ,m, n > 10). Compare the ratio of these coefficients for t = 0 and
t = 10.]

Does the function u have a limit as t→ +∞?
By what we did in class, this reduces to solving the two problems

∇2U1 = 0, U1|∂Q = u0|∂Q,
∂u2
∂t

= ∇2u2, u2|∂Q = 0, u2|t=0 = χ(x)χ(y)χ(z)− U1;

now since u0 satisfies ∇2u0 = 0, the first problem gives clearly U1 = u0, whence we need only to satisfy the
problem

∂u2
∂t

= ∇2u2, u2|∂Q = 0, u2|t=0 = χ(x)χ(y)χ(z)− u0.

From problem 1 of assignment 8, we have the expansion

χ(x)χ(y)χ(z) =

∞∑

ℓ,m,n=1

8

π3ℓmn

(
(−1)ℓ+1 + cos

1

2
ℓπ

)(
(−1)m+1 + cos

1

2
mπ

)(
(−1)n+1 + cos

1

2
nπ

)

· sin ℓπxsinmπysinnπz.
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Now it is necessary to expand u0 in the basis {sin ℓπxsinmπysinnπz}; the only tricky part of this is the
expansion in the z direction. For this we note the following integral:

∫ 1

0

eazsinnπz dz = −cosnπz

nπ
eaz
∣∣∣
1

0
+

a

nπ

∫ 1

0

cosnπzeaz dz

=
1

nπ
[1− (−1)nea] +

a

nπ

[
sinnπz

nπ
eaz
∣∣∣∣
1

0

− a

nπ

∫ 1

0

sinnπzeaz dz

]

whence ∫ 1

0

eazsinnπz dz =
1
nπ [1− (−1)nea]

1 + a2

n2π2

=
nπ [1− (−1)nea]

n2π2 + a2
.

From this we see easily that (since coshx = 1
2 (e

x + e−x) and sinhx = 1
2 (e

x − e−x))

∫ 1

0

coshπ
√
5zsinnπz dz =

nπ
[
1− (−1)ncoshπ

√
5
]

5π2 + n2π2
,

∫ 1

0

sinhπ
√
5zsinnπz dz = −nπ(−1)nsinhπ

√
5

5π2 + n2π2
,

and

∫ 1

0

(
coshπ

√
5z − cothπ

√
5sinhπ

√
5z
)
sinnπz dz

=
nπ

5π2 + n2π2

([
1− (−1)ncoshπ

√
5
]
+ cothπ

√
5(−1)nsinhπ

√
5
)

=
nπ

5π2 + n2π2
.

From this we see that

u0 =
2

π
sinπxsin 2πy

∞∑

n=1

n

5 + n2
sinnπz,

so that

χ(x)χ(y)χ(z)− u0 =

∞∑

ℓ,m,n=1
(ℓ,m)6=(1,2)

8

π3ℓmn

(
(−1)ℓ+1 + cos

1

2
ℓπ

)(
(−1)m+1 + cos

1

2
mπ

)(
(−1)n+1 + cos

1

2
nπ

)

· sin ℓπxsinmπysinnπz

+ sinπxsin 2πy

∞∑

n=1

[
8

π3n

(
(−1)n+1 + cos

1

2
nπ

)
− 2n

π (5 + n2)

]
sinnπz

and thus, by our usual method,

u2 =

∞∑

ℓ,m,n=1
(ℓ,m)6=(1,2)

8

π3ℓmn

(
(−1)ℓ+1 + cos

1

2
ℓπ

)(
(−1)m+1 + cos

1

2
mπ

)(
(−1)n+1 + cos

1

2
nπ

)

· sin ℓπxsinmπysinnπze−π2(ℓ2+m2+n2)t

+ sinπxsin 2πy

∞∑

n=1

[
8

π3n

(
(−1)n+1 + cos

1

2
nπ

)
− 2n

π (5 + n2)

]
sinnπze−π

2(5+n2)t
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and the solution to our original problem is

u = sinπxsin 2πy
(
coshπ

√
5z − cothπ

√
5sinhπ

√
5z
)

+

∞∑

ℓ,m,n=1
(ℓ,m)6=(1,2)

8

π3ℓmn

(
(−1)ℓ+1 + cos

1

2
ℓπ

)(
(−1)m+1 + cos

1

2
mπ

)(
(−1)n+1 + cos

1

2
nπ

)

· sin ℓπxsinmπysinnπze−π2(ℓ2+m2+n2)t

+ sinπxsin 2πy

∞∑

n=1

[
8

π3n

(
(−1)n+1 + cos

1

2
nπ

)
− 2n

π (5 + n2)

]
sinnπze−π

2(5+n2)t.

Clearly, u→ sinπxsin 2πy
(
coshπ

√
5z − cothπ

√
5sinhπ

√
5z
)
as t→ +∞. We leave the optional part of this

exercise to the reader.
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Summary:
• We clarify and review a couple points from last week.
• We then show how our work with Poisson’s equation gives a series expression for the so-called Green’s
function.

• Using this, we derive other formulas relating to the Green’s function, and indicate its conceptual
import.

• We then introduce two new integral operations: the Fourier transform, which is an integral operator,
and convolution, which is a generalised product of functions.

• We derive various properties of these operations and provide an indication of their use in solving
partial differential equations.

INNER PRODUCTS FOR SPHERICAL BESSEL FUNCTIONS. In the previous week’s lectures we derived
the orthogonality relation

∫ 1

0

x2jℓ (κℓix) jℓ (κℓjx) dx =

{
0, i 6= j

1
2j

2
ℓ+1 (κℓi) , i = j

.

This indicates that when expanding functions in series of spherical Bessel functions on the interval [0, 1], the
inner product we should use is

(f, g) =

∫ 1

0

f(x)g(x)x2 dx.

This should be compared to the inner product

(f, g) =

∫ 1

0

f(x)g(x)x dx

used when expanding functions in series of ordinary Bessel functions Jm (λmix) (there we typically used ρ
instead of x).

With this inner product in the r coordinate, we noted that the full inner product used when expanding
functions in series of the eigenfunctions of the Laplacian on a ball is

(f, g) =

∫ 1

0

∫ π

0

∫ 2π

0

f(r, θ, φ)g(r, θ, φ) dφ sin θ dθ r2 dr =

∫∫∫

B

f(x)g(x) dV,

where x denotes an arbitrary point in three-dimensional space and V is the usual volume element in three-
dimensional space. An examination of the inner products used for the various coordinates in the other
coordinate systems (rectangular and cylindrical) in which we have constructed eigenfunctions for the Lapla-
cian shows that the same formula holds; specifically, we have respectively

(f, g) =

∫

Q

f(x)g(x) dV, (f, g) =

∫

C

f(x)g(x) dV

when expanding in rectangular and cylindrical coordinates, respectively. Thus while the inner products used
in the different individual coordinates differ, the inner product on the full set is always given by integrating
f(x)g(x) over the full set. While this does not add much computationally, it is helpful for remembering the
individual inner products we have learned so far.

GREEN’S FUNCTIONS. Recall (see p. 10 of the lecture notes for July 2 – 4) the following manipulations.
If {eI} is a complete set of eigenfunctions for the Laplacian on a set D, say satisfying homogeneous Dirichlet
boundary conditions on ∂D, with corresponding eigenvalues λI (which we assume to be all nonzero), then
the solution to the problem

∇2u = f, u|∂D = 0

has the series solution

u =
∑

I

1

λI

(f, eI)

(eI , eI)
eI .
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Here I represents an abstract index which may contain multiple separate indices; e.g., in the case of the
eigenfunctions on the unit ball I will represent the triple (ℓ,m, i). For simplicity, let us assume that (eI , eI) =
1; this can always be achieved by rescaling the eigenfunctions eI if necessary. Then the above formula can
be expanded as follows:

u(x) =
∑

I

1

λI
(f, eI)eI(x)

=
∑

I

1

λI

∫

D

f(x′)eI(x′) dx′eI(x)

=

∫

D

(∑

I

eI(x)eI(x′)
λI

)
f(x′) dx′, (1)

where we assume that the sum is such that we may interchange sum and integral. The (negative1 of the)
function in parentheses above is called the Green’s function for the problem. We denote it by G(x,x′),
noting that both x and x′ are actually points in D, hence (at least for D ⊂ R3) in R3. Note that, since
G is expressed in terms of the eigenfunctions, it depends in principle upon everything that they depend on,
namely (1) the operator (the Laplacian); (2) the region D; (3) the boundary conditions (here, homogeneous
Dirichlet). If any of these change, the Green’s function will in principle change also.

If the above were all there were to the Green’s function, it would not be clear why the above formula
is useful: it is not clear that the series expansion above should be summable to anything simpler, and if it
isn’t then the only real use for the above formula would be to run the above derivation backwards to obtain
the series expansion for u from which we started. It turns out, though, that the notion of a Green’s function
can be discussed profitably independent of any expansion in eigenfunctions, and to this we now turn.

(Before doing this, it is probably helpful to say a few words about the general direction of the course
moving forwards. So far we have been focussed almost exclusively on obtaining expansions in complete
orthogonal sets which provide formal solutions to our problems. Going forwards, what we shall do gives
more directly integral representations (rather than series expansions) for the solutions to our problems.
Philosophically, though, the two parts are not all that different: in both cases we are seeking representation
formulas for solutions.)

Let us return to equation (1) above. First, since for us the eigenfunctions eI are all real, we see that we
may drop the complex conjugate on eI(x

′), meaning that we have the series expansion

G(x,x′) = −
∑

I

eI(x)eI(x
′)

λI
,

from which we see easily that G(x,x′) = G(x′,x), i.e., the Green’s function is symmetric in its arguments.
(This will be important below.) Now if we formally take the Laplacian of G with respect to x, we obtain
(denoting this by ∇2

x, and keeping the complex conjugate since the symmetry of G is not important here)

∇2
xG(x,x

′) = −
∑

I

1

λI
∇2

xeI(x)eI(x
′) = −

∑

I

1

λI
λIeI(x)eI(x′)

= −
∑

I

eI(x)eI(x′).

Now this last sum generally does not converge in any usual sense; however, we can make some sense out of
it by integrating it against a sufficiently smooth function f and then proceeding formally:

∫

D

(∑

I

eI(x)eI(x′)

)
f(x′) dx′ =

∑

I

eI(x)

∫

D

f(x′)eI(x′) dx′

=
∑

I

(f, eI)eI(x) = f(x),

1This negative sign – which was not used in the lecture – seems to be standard, for some reason, but is also
extremely annoying from our perspective. We shall, however, include it for ease of reference both to the
textbook and to other external sources.
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since {eI} is a complete orthonormal set by assumption. This shows that, at least formally,
∑

I eI(x)eI(x
′) =

δ(x−x′), where δ(x) is the celebrated Dirac delta function, beloved of physicists probably long before it was
understood by mathematicians.2 Heuristically, this is described as a ‘function’ possessing the following two
properties:

1. δ(x) = 0 unlessx = 0;

2.

∫

R3

f(x)δ(x) dx = f(0) for all functions f.

Putting these two conditions together, we see that in effect δ(x) is zero everywhere except at the origin, where
it has an infinitely high peak. We note that the second property implies in particular that

∫
R3 δ(x) dx = 1,

and also that for any (suitable3) f

∫

R3

f(x′)δ(x − x′) dx′ = f(x);

this may be seen by doing a simple substitution with u = x − x′. While there is no actual function which
satisfies the above two properties, there are many sequences of functions which satisfy them in the limit, in
the following sense.

DEFINITION. A sequence of functions {δn} on some Rm is said to have the properties of a delta function
in the limit , or to be an approximate identity,4 if the following two properties hold:

1.

∫

Rm

δn(x) dx = 1 for alln;

2. lim
n→∞

∫

Rm

f(x)δn(x) dx = f(0) for all suitable functions f(x)

(see our commentary about suitable functionsn in the footnotes).

The point of this definition is that, while the sequence {δn} itself need not have a limit in any normal sense,
the functionals (linear maps to R) it induces on spaces of functions have the delta function as a ‘limit’;5 more
intuitively, while it doesn’t make any sense to put the limit above inside the integral, everything works well
if we keep it outside the integral. One could in fact probably work out most of the theory using sequences
which are approximate identities without mentioning the delta function itself at all; but we shall prefer to
take the delta function as something which exists by itself, and only use approximate identities for cases of
illustration and in dealing with fine points.

We shall now give several examples of approximate identities, beginning with a simple one to illustrate
the idea and then proceeding to more complicated ones which shall be useful in our future work with the

2Mathematicians, take note! Just because a physicist fails to give an object a precise mathematical for-
mulation does not mean that one doesn’t exist. I heard a quote from a well-known mathematician (I have
unfortunately forgotten who) to the effect that, If physicists have been using something consistently for
years, mathematicians ought to study how it works (or something like that, I don’t remember exactly how
the second half went).
3We shall be vague about what is meant by ‘suitable’. In the mathematically rigorous formulation of
delta functions, one actually restricts f to be C∞, and generally either of compact support – meaning that it
vanishes outside of a bounded set – or of ‘rapid decrease’ (falling to zero faster than any polynomial function)
at infinity. It is sometimes appropriate to work with more general functions, though; and the functions which
we shall say have the properties of a delta function in the limit (see the definition immediately following)
satisfy this property for fairly general classes of functions, cf. [1], Theorem 8.15.
4This terminology comes from the equation just given, which is seen – cf. the definition of convolution below
– to show that the delta function is an identity for the convolution operation. See [1], Theorem 8.15, and
ensuing commentary.
5Those interested in seeing how to make this notion of limit rigorous may see the appendix [to be added
soon], but be warned that it assumes a fairly detailed understanding of point-set toplogy and a high level of
mathematical maturity.
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Fourier transform. We shall begin by considering delta functions on R1 and then use these to construct
them on R3.

(Before beginning the examples, we mention the one example we have constructed so far of something
which ‘looks like a delta function in the limit’, namely

∑
I eI(x)eI(x

′) (this is a limit since it is an infinite
sum). The above calculation can be written more carefully as follows (using the notation I → ∞ to indicate
that all of the indices in I go to infinity; convergence of multiply-indexed sequences is a tricky business and
we elide the details here):

lim
I→∞

∫

D

I∑

J

eJ (x)eJ (x′)f(x′)dx′ = lim
I→∞

I∑

J

eJ(x)

∫

D

eJ (x′)f(x′)dx′ = lim
I→∞

I∑

J

(eJ , f)eJ (x),

and we know that this limit equals f(x) if we take it to be in the L2 sense. Thus, while our discussion of
complete orthogonal sets is insufficient to conclude that

∑
I eI(x)eI(x

′) is an approximate identity in the
sense just given (or more precisely, that it would be if we replaced x by 0), it is somehow one in an L2 sense
(whatever that means6). Generally speaking, series such as the foregoing converge pointwisely at points of
continuity of f , so that if we restrict to continuous functions then the sum should be an approximate identity.
Perhaps the take-home lesson here is that, at least for our purposes, general statements of when a certain
sequence is or is not an approximate identity are probably less important than understanding the general
idea and specific cases.)

EXAMPLES. (a) For each n ∈ Z, n > 0, define a function χn : R1 → R1 as follows:

χn(x) =

{
n
2 , x ∈ [− 1

n ,
1
n ]

0, otherwise
.

Then we see that
∫
R1 χn(x) dx = 1 for all n, and that χn(x) → 0 for all x 6= 0 as n → ∞ (to see this, let

x ∈ R, x 6= 0, and let N ∈ Z, N > 1
|x| ; then for all n > N we have 1

n < |x|, so x /∈ [− 1
n ,

1
n ] and χn(x) = 0).

Now let f : R1 → R1 be continuous at x = 0. We claim that

∫

R1

f(x)χn(x) dx → f(0) as n→ ∞.

To prove this, we first rewrite the left-hand side as follows (recall that
∫
R1 χn(x) dx = 1 for all n):

∫

R1

f(x)χn(x) dx =

∫

R1

(f(x)− f(0) + f(0))χn(x) dx =

∫

R1

(f(x) − f(0))χn(x) dx + f(0).

Now let ǫ > 0, let δ > 0 be such that |f(x) − f(0)| < ǫ when |x| < δ, and let N ∈ Z be such that 1
N < δ.

Then for all n > N , we have 1
n < δ, so for such n

∫

R1

f(x)χn(x) dx = f(0) +

∫

R1

(f(x)− f(0))χn(x) dx = f(0) +

∫ 1
n

− 1
n

(f(x) − f(0))
n

2
dx,

and ∣∣∣∣
∫

R1

f(x)χn(x) dx − f(0)

∣∣∣∣ ≤
n

2

∫ 1
n

− 1
n

|f(x)− f(0)| dx < n

2

2ǫ

n
= ǫ,

which shows that
∫
R1 f(x)χn(x) dx → f(0), as claimed. While limχn does not exist in any normal sense,

we see that, in some sense, the sequence χn has the properties of the delta function in the limit as n→ ∞.
(Intuitively, the idea behind the above ǫ-δ proof is as follows. Since f is continuous at x = 0, f(x)−f(0)

will be small if x is close to zero. Now if n is large, then χn(x) is zero unless |x| ≤ 1
n ; thus χn(x) will be zero

6The author suspects that someone more talented than he has already made this precise, but even if that is
the case he is not aware of it; for the which ignorance, he apologises.



APM346, 2019 July 23 – 25 Nathan Carruth

unless x is small, in the which case f(x)−f(0) will also be small. This suggests that
∫
R1(f(x)−f(0))χn(x) dx

will be small in this case. Unfortunately, while f(x) − f(0) is small, χn(x) will be large (since χn(0) → ∞
as n → ∞), so this does not follow immediately; but since the interval is also getting small, it turns out –
and the calculations above prove rigorously – that in fact this integral is small, as desired. Just for the sake
of thouroughness, we give another proof (which in rigour is halfway between the full proof and the intuitive
description just given) in the special case where f is continuous on some interval containing 0: in this case,
by taking n large enough we may assume that f is continuous on [ 1n ,

1
n ]. Thus |f(x) − f(0)| must also be

continuous on this interval, and hence must have a maximum there, call it Mn. Then we may write

∫

R1

|f(x)− f(0)|χn(x) dx =

∫ 1
n

− 1
n

|f(x)− f(0)|n
2
dx ≤Mn

n

2

2

n
=Mn.

But since f is continuous at 0, the quantity Mn must become small as n → ∞, so that the integral∫
R1(f(x)− f(0))χn(x) dx must become small as well, as claimed.)

(b) Again, for each n ∈ Z, n > 0, define a function φn : R1 → R1 by

φn(x) =
√
nπe−nx

2

.

We recall the Gaussian integral: for any a > 0,

∫

R1

e−ax
2

dx =

√
π

a
;

thus we have (as for χn)
∫∞
−∞ φn(x) dx = 1 for all n. Moreover, φn(x) → 0 for all x 6= 0 as n → ∞, as for

χn. We claim again that for any function f which is continuous at 0 and (in this case) bounded on R1

∫

R1

f(x)φn(x) dx → f(0) as n→ ∞.

The intuition is very similar to that in the previous proof (note that φn, like χn, becomes infinitely sharply
peaked at 0 in the limit as n→ ∞) and we give only the ǫ-δ proof. Thus let M = sup

x∈R1

|f(x)|+ 1, ǫ > 0, let

δ > 0 be such that |f(x)− f(0)| < ǫ for |x| < δ, and let K ∈ Z, K > 0 be such that
∣∣∣∣∣1−

1√
π

∫ K

−K
e−x

2

dx

∣∣∣∣∣ <
ǫ

2M

(such a K certainly exists since
∫ +∞
−∞ e−x

2

dx =
√
π). Let N ∈ Z, N > 0 be such that δ

√
N > K. Then for

n > N we have, doing a change of variables with u = x
√
n,

∫ δ

−δ
φn(x) dx =

√
n

π

∫ δ

−δ
e−nx

2

dx =
1√
pi

∫ δ
√
n

−δ√n
e−u

2

du,

from which we see that ∣∣∣∣∣

∫

R1\[−δ,δ]
φn(x) dx

∣∣∣∣∣ =
∣∣∣∣∣1−

∫ δ

−δ
φn(x) dx

∣∣∣∣∣ <
ǫ

2M

and moreover that
∣∣∣∣f(0)−

∫ ∞

−∞
f(x)φn(x) dx

∣∣∣∣ ≤
∫

R1

|f(x)− f(0)|φn(x) dx

=

∫

R1\[−δ,δ]
|f(x) − f(0)|φn(x) dx +

∫ δ

−δ
|f(x)− f(0)|φn(x) dx

≤ 2M

∫

R1\[−δ,δ]
φn(x) dx + ǫ

∫ δ

−δ
φn(x) dx

< ǫ+ ǫ = 2ǫ,
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which shows that
∫
R1 f(x)φn(x) dx→ f(0) as n→ ∞, as desired.7

(c) [This example can be skipped at a first reading; in that case, replace ψn with φn in (d) below, and refer-
ences to (c) with references to (b). For a similar but more careful and general result, see the aforementioned
Theorem 8.15 of [1].] Given the foregoing, we are now ready to posit the following general result: suppose
that ψ : R1 → R1 satisfies

∫
R1 ψ(x) dx = 1,

∫
R1 |ψ(x)| dx < ∞ (this latter means that ψ is in L1), and for

all n ∈ Z, n > 0 define
ψn(x) = nψ(nx).

(χn in example (a) is certainly of this form; in example (b), we have basically this same form except that we
scale by

√
n instead of n.) Assume now that ψn(x) → 0 as n→ ∞.8 Then we claim that for any f : R1 → R1

which is continuous at x = 0 and bounded on R1,

∫

R1

f(x)ψn(x) dx → f(0) and n→ ∞.

To see this, we first note that for any n, using a change of variables u = nx,

∫

R1

ψn(x) dx =

∫ ∞

−∞
nψ(nx) dx =

∫ ∞

−∞
ψ(u) du = 1.

Now let M = sup
x∈R1

|f(x)|+1, let ǫ > 0, let δ > 0 be such that |f(x)− f(0)| < ǫ when |x| < δ, and let K ∈ Z,

K > 0 be such that ∫

R1\[−K,K]

|ψ(x)| dx < ǫ

2M
;

such a K clearly exists since
∫∞
−∞ |ψ(x)| dx < ∞. Now choose N ∈ Z, N > 0, such that Nδ > K, and let

n > N . Then we have ∣∣∣∣∣

∫

R1\[−δ,δ]
ψn(x) dx

∣∣∣∣∣ ≤
∫

R1\[−δ,δ]
|ψn(x)| dx

=

∫

R1\[−nδ,nδ]
|ψ(u)| du < ǫ

2M
,

so ∣∣∣∣f(0)−
∫ ∞

−∞
f(x)ψn(x) dx

∣∣∣∣ ≤
∫

R1

|f(x)− f(0)||ψn(x)| dx

=

∫

R1\[−δ,δ]
|f(x)− f(0)||ψn(x)| dx +

∫ δ

−δ
|f(x)− f(0)||ψn(x)| dx

≤ 2M

∫

R1\[−δ,δ]
|ψn(x)| dx + ǫ

∫ ∞

−∞
|ψn(x)| dx < 2ǫ,

and
∫
R1 f(x)ψn(x) dx→ f(0) as n→ ∞, as claimed.

7Note that we did not really need f to be bounded; we just needed f to be such that the tails

∫

R1\[−δ,δ]
f(x)φn(x) dx

would go to zero as n → ∞. Since φn(x) goes to zero like e−nx
2

, it is sufficient, for example, that f go to
infinity no more than exponentially fast as x → ±∞. This material is interesting, but we pass over it for
now.
8It is possible to give sufficient conditions for this to hold: for example, suppose that there wereM > 0, α > 1
such that |ψ(x)| < M

xα for all x (or even for all x sufficiently large); then clearly ψn(x) < n M
(nx)α = M

x n
1−α → 0

as n→ ∞, since α > 1 – this is the condition used in [1], Theorem 8.15. Other conditions could presumably
also be found.
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(d) We would now like to construct a delta function on R3. We may construct it as the improper limit of a
sequence like those just given in the following way. Let ψ be any function satisfying the requirements given
in (c), and define

Ψℓmn(x, y, z) = ψℓ(x)ψm(y)ψn(z).

(Using three different indices is just for convenience in making the calculation below simpler; it could
probably be done without it, at least for f uniformly continuous on some neighborhood of the origin.) Then
if f : R3 → R1 is any function which is bounded on R3 and continuous at x = 0, we have

∫

R3

f(x)Ψℓmn(x) dx =

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
f(x, y, z)ψℓ(x)ψm(y)ψn(z) dx dy dz.

Now the hypotheses allow us to interchange the limit on n with the integral over z;9 taking this limit, the
above integral becomes ∫ ∞

−∞

∫ ∞

−∞
f(x, y, 0)ψℓ(x)ψm(y) dx dy.

We may then similarly take the limit on m, and finally on ℓ, to see that
∫

R3

f(x)Ψℓmn(x) dx → f(0, 0, 0) as ℓ,m, n→ ∞.

From this it can be shown that the sequence

Ψ̂n(x) = Ψnnn(x)

behaves also like a delta function in the limit as n → ∞. In general, then, if we have a sequence in R1 of
the form given in (c) which behaves like a delta function in the limit, then we may obtain a sequence in Rn

(for any n) which behaves like a delta function in the limit by taking a product of n copies of the sequence
in R1, one in each variable separately. We write this symbolically in R3 as

δ(x) = δ(x)δ(y)δ(z)

(one tends to write δ for the delta function in any dimension, and even for multiple different dimensions in
one single equation as above, without regards to niceties of notation!).

(e) Finally, for use in a moment we would like to find an expression for the delta function in R3 which is
adapted to spherical coordinates in the way the expressions in (d) are adapted to rectangular coordinates.
We shall apply the method of (d) to the function from (b). We have

φn(x) =

√
n

π
e−nx

2

,

so

Φn(x) =
(n
π

) 3
2

e−n(x
2+y2+z2)

will behave like a delta function in the limit as n→ ∞. In spherical coordinates, this can be written as

∫ 2π

0

∫ π

0

∫ +∞

0

f(r, θ, φ)
(n
π

) 3
2

e−nr
2

r2sin θ dr dθ dφ;

if we extend f to be even in r on R1, then this may be rewritten as

1

2

∫ 2π

0

∫ π

0

∫ ∞

−∞
f(r, θ, φ)

(n
π

) 3
2

e−nr
2

r2sin θ dr dθ dφ

=
1

2

∫ 2π

0

∫ π

0

∫ ∞

−∞
f(r, θ, φ)2

√
n

π
e−nr

2 nr2

2πr2
r2sin θ dr dθ dφ.

9One might need the dominated convergence theorem and Lebesgue integration. The deponent verb may
have all the forms of the gerund.
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Now we note that

∫ ∞

−∞
x2e−x

2

dx = − d

da

∫ ∞

−∞
e−ax

2

dx

∣∣∣∣
a=1

= − d

da

√
π

a

∣∣∣∣
a=1

=
1

2

√
π

thus the function ψ = 2√
π
x2e−x

2

is of the form covered by (c), so that (scaling by
√
n instead of n, as in (b))

the sequence ψn(x) = 2
√

n
πnx

2e−nx
2

will behave like a delta function in the limit n → ∞. But the above
integral is exactly ∫ 2π

0

∫ π

0

∫ ∞

−∞
f(r, θ, φ)

1

4πr2
ψn(r)r

2 dr sin θ dθ dφ.

Thus we identify the three-dimensional delta function δ(x) with the function

1

4πr2
δ(r)

in spherical coordinates.10

With our understanding of delta functions (hopefully!) increased by these examples, we return to our
study of Green’s functions. We recall that we have derived the relation (which holds in some sort of L2

sense, perhaps not in the precise sense of our definition of approximate identity above)

∇2
xG(x,x

′) = −δ(x− x′).

For the rest of our work with Green’s functions, we shall take this equation (and not the expansion in
eigenfunctions) as the starting point; in other words, for us a Green’s function will be any function on Rm

(generally we have m = 3) which satisfies the above equation, in the sense that for any suitable function f

∫

Rm

−
(
∇2

xG(x,x
′)
)
f(x′) dx′ = f(x).

We shall show later how to take boundary conditions into account. We show how it may be used to prove
the above representation formula for solutions to Poisson’s equation. Suppose that f : R3 → R is a function
such that

∫
R3 G(x,x

′)f(x′) dx′ exists for all x ∈ R3; then, assuming that we may interchange integration
and differentiation, we have

∇2
x

∫

R3

G(x,x′)f(x′) dx′ =
∫

R3

∇2
xG(x,x

′)f(x′) dx′ =
∫

R3

δ(x− x′)f(x′) dx′ = −f(x)

10There are several objections which could legitimately be brought up to this derivation and formula. One
of them involves the fact that δ(r) = 0 unless r = 0, which means that we should be able to replace r by 0
in the above expression: but this would involve dividing by 0, which is meaningless. This can be answered
by noting that delta functions proper (as opposed to the sequences we have been constructing which lead to
them) only really exist when appearing under integral signs, and the one here only exists when appearing
under a three-dimensional integral; in such a case, there will always be the factor r2 from the volume element
in spherical coordinates to cancel the r2 in the denominator here. Another, more subtle, objection is that the
final integral we just derived involved integrating over r from −∞ to ∞, whereas the integral we started with
only involved an integral from 0 to +∞; thus we seem to have counted things twice. This can be answered
(though not, I admit, entirely resolved; to entirely resolve either of these objections we would probably have
to work in a much more rigorous setting) by the following observation: note that the normalisation we used
for ψ was also obtained by integrating from −∞ to ∞; thus we have effectively divided by an extra factor
of 2, which should cancel the problematic one. It should perhaps also be pointed out that the delta function
requires integrating over an interval containing zero, not just on half of such an interval, so that the integral
from 0 to ∞ might be said, in some sense, to collect only half of the delta function (though I do not think
this can be made precise in any real sense).
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This shows that the function

u = −
∫

R3

G(x,x′)f(x′) dx′ (1)

satisfies Poisson’s equation on R3. (See Theorem 8.3 of the textbook for a more careful treatment by another
method of this result; but note that the textbook’s definition of a Green’s function interchanges x and x′

compared with ours – symmetry of the Green’s function (see below) can be used to turn the result back into
something closer to what we have here.)

It might be helpful to give some intuitive content to this relation. Consider Poisson’s equation. The
Green’s function G(x,x′) gives the solution at the point x due to a (negative) unit (i.e., negative delta
function) source at the point x′. (In physical terms, if we are solving for the electrostatic potential, so that
the right-hand side of Poisson’s equation is essentially the charge density, then the Green’s function gives
the electrostatic potential at x due to a point charge of unit size at x′; if we are solving for the steady-state
temperature distribution in a body with internal sources, then the Green’s function gives the temperature at
a point x due to a single point source of unit strength at x′; and so on.) Since Poisson’s equation is linear, we
expect that the solution for a sum of such sources, say at the points x′

i should be the sum −∑i fiG(x,x
′
i),

where fi represents the size of the source at x′
i. Now if we are given a continuous source, then it makes

sense11 that the sum should become an integral, and that the whole solution should be

−
∫

R3

G(x,x′)f(x′) dx′,

exactly as we showed just now. In other words, the representation formula for the solution to Poisson’s
equation using the Green’s function is just what is obtained by taking a superposition of solutions due to
individual point sources.

To go back to our more formal investigations for a moment, if we look at the relation

∇2
x

∫

R3

G(x,x′)f(x′) dx′ = −f(x)

more carefully, we see that it means that the operator

f(x) 7→ −
∫

R3

G(x,x′)f(x′) dx′

is a left inverse to the Laplacian, in the sense that, denoting the map by G, we have ∇2G[f ] = f for all
suitable functions f . If we assume that G is symmetric (for the Green’s function on all of R3, this will follow
from the calculation we give in a moment; for the Green’s function on a bounded region, this was already
noted as following from the expansion in eigenfunctions, or see Theorem 8.4 in the textbook), then we can
show that G is also a right inverse:

−
∫

R3

G(x,x′)∇2
x′f(x′) dx′ = −

∫

R3

∇x′ · (G(x,x′)∇x′f(x′))−∇x′G(x,x′) · ∇x′f(x′) dx′

=

∫

R3

∇x′ · (∇x′G(x,x′)f(x′))−∇2
x′G(x,x′)f(x′) dx′

= −
∫

R3

∇2
x′G(x,x′)f(x′) dx′

= −
∫

R3

∇2
x′G(x′,x)f(x′) dx′ =

∫

R3

δ(x′ − x)f(x′) dx′ = f(x), (1′)

where we have used the fact that the delta function is even, and also that G(x,x′) → 0 as x or x′ → ∞.

GREEN’S FUNCTION ON R3. The Green’s function on R3 can most conveniently be computed by using
the expression for the delta function derived in Example (d) above. We have the equation

∇2
xG(x,x

′) = −δ(x− x′).

11One could derive this in more detail, but we shall pass over it here because of space and time considerations.
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Now in this equation x′ is considered to be a fixed parameter. We now introduce spherical coordinates on
R3 centred at x′; i.e., let (r, θ, φ) of a point x satisfy (writing x = (x, y, z), x′ = (x′, y′, z′))

rsin θ cosφ = x− x′, rsin θsinφ = y − y′, r cos θ = z − z′.

Then the delta function δ(x − x′) can be written, by Example (d) above, as

δ(x− x′) =
δ(r)

4πr2
.

This suggests that the Green’s function will only depend on r (at least as far as its x dependence is concerned);
thus the equation for G reduces to

∂2G

∂r2
+

2

r

∂G

∂r
= − δ(r)

4πr2
.

Now
∂2G

∂r2
+

2

r

∂G

∂r
=

1

r2
∂

∂r

(
r2
∂G

∂r

)
,

so multiplying by r2 we obtain
∂

∂r

(
r2
∂G

∂r

)
= −δ(r)

4
π.

Integrating from 0 to some value r gives

r2
∂G

∂r
= − 1

4π
,

whence
∂G

∂r
= − 1

4πr2
, G =

1

4πr
+ C

for some constant C. Requiring G to vanish as x → ∞ gives C = 0. Thus we have the Green’s function

G(x,x′) =
1

4πr
=

1

4π|x− x′| ,

which is seen to be symmetric in x and x′, as claimed.

GREEN’S FUNCTION ON A FINITE REGION. Suppose that we are now interested in solving Poisson’s
equation on a bounded region D; in other words, consider the equation

∇2u = f, u|∂D = 0.

We claim that an appropriate Green’s function for this problem is given by the solution to the problem

∇2
xG(x,x

′) = −δ(x,x′), G|x∈∂D = 0;

in other words, we claim that the solution to this problem is given by

u(x) = −
∫

D

G(x,x′)f(x′) dx′.

(Note the relation of this to our discussion of the intuitive content of the representation formula (1) above:
in the case at hand, the solution u must also satisfy a homogeneous Dirichlet boundary condition – in the
context of the two physical examples we gave above, this amounts to saying that the region D is surrounded
by a grounded conductor or by a substance of constant temperature 0 – and so we require the solutions to
the point source problems – the Green’s function – to satisfy the same condition.) While we could give a
proof of this using definition of G in terms of an orthogonal expansion given initially, we would like to prove
it using just the definition of G given here. In order to do this, we shall first derive a calculus formula known
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as Green’s second identity (see pp. 490 – 491 in the textbook). Suppose that f and g are suitably smooth
functions on a domain D. Then

∫

D

f∇2g − g∇2f dx =

∫

∂D

f
∂g

∂n
− g

∂f

∂n
dS,

where ∂f
∂n = n · ∇f denotes the outwards normal derivative of f at ∂D.

This is basically an integration-by-parts formula and may be derived as follows. We have

∫

D

f∇2g dx =

∫

D

∇ · (f∇g)−∇f · ∇g dx =

∫

∂D

n · (f∇g) dS −
∫

D

∇f · ∇g dx

=

∫

∂D

f
∂g

∂n
dS −

∫

D

∇f · ∇g dx;

interchanging f and g and subtracting then gives

∫

D

f∇2g − g∇2f dx =

∫

∂D

f
∂g

∂n
− g

∂g

∂n
dS −

∫

D

∇f · ∇g −∇g · ∇f dx

=

∫

∂D

f
∂g

∂n
− g

∂f

∂n
dS,

as claimed.
Now, formally, if we pretend that Green’s identity applies also to the Green’s function in x′ (which it

won’t, because of the singularity; see Theorem 8.3 in the textbook for a more careful treatment of the result
here), then we may write, applying Green’s identity (integrating in x′) with f = u(x′) and g = G(x,x′)
(please note that the results we derived above, giving G∇2 = ∇2G = identity, were on R3 and hence do not
apply in the present case; in essence, we are trying to re-derive at least one of them in the present case),

∫

D

u(x′)∇2
x′G(x,x′)−G(x,x′)∇2

x′u(x′) dx′ = −u(x)−
∫

D

G(x,x′)∇2
x′u(x′) dx′

=

∫

∂D

u(x′)
∂G

∂n′ −G(x,x′)
∂u

∂n′ dS
′

where primes denote derivatives and integrals with respect to x′. Thus we obtain

u(x) = −
∫

D

G(x,x′)∇2
x′u(x′) dx′ +

∫

∂D

G(x,x′)
∂u

∂n′ − u(x′)
∂G

∂n′ dS
′. (2)

Now in the case of the Poisson equation above,

∇2u = f, u|∂D = 0,

we see that the volume integral becomes simply

−
∫

D

G(x,x′)∇2
x′u(x′) dx′,

while the surface integral vanishes, since u|∂D = 0 and G|x′∈∂D = 0. Thus we have

u(x) = −
∫

D

G(x,x′)f(x′) dx′,

as claimed.
The above formula (2) above is of wider applicability. We pause for a moment to derive from it an

important result about solutions to Laplace’s equation. Suppose that D is some open set in R3, and that
u satisfies ∇2u = 0 on D. Let G denote the Green’s function on R3 derived in the previous section. Let
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x ∈ D, and let r > 0 be such that Br(x) ⊂ D; we can do this since D is open (more intuitively, x cannot be
on the boundary of D so it has to be inside D). Then applying formula (2) using G as our Green’s function,
Br(x) as our region (in place of D), and x as our evaluation point, we obtain

u(x) = −
∫

Br(x)

G(x,x′)∇2
x′u(x′) dx′ +

∫

∂Br(x)

G(x,x′)
∂u

∂n′ − u(x′)
∂G

∂n′ dS
′.

Now on Br(x) we have ∇2u = 0, so the first integral vanishes; also, for x′ ∈ ∂Br(x) we have

G(x,x′) =
1

4π|x− x′| =
1

4πr
,

which is a constant, so that the middle term above becomes

∫

∂Br(x)

G(x,x′)
∂u

∂n′ dS
′ =

1

4πr

∫

∂Br(x)

n · ∇u dS′

=
1

4πr

∫

Br(x)

∇2u dS′ = 0,

where we have used the divergence theorem in the penultimate inequality. Thus we are left with only the
last term, i.e.,

u(x) = −
∫

∂Br(x)

u(x′)
∂G

∂n′ dS
′.

Now to calculate ∂G
∂n′ we may proceed geometrically as follows. This derivative is the derivative in the

direction normal to the sphere ∂Br(x); alternatively, if we set up a spherical coordinate system (r′′, θ′′, φ′′)
for x′ centred at the point x, then ∂

∂n′ will simply be the radial derivative ∂
∂r′′ . But we have also

G(x,x′) =
1

4π|x− x′| =
1

4πr′′
,

so that
∂G

∂n′ =
∂G

∂r′′
= − 1

4πr′′2
= − 1

4π|x− x′|2 ,

and we obtain finally

u(x) =

∫

∂Br(x)

1

4π|x− x′|2u(x
′) dS′ =

1

4πr2

∫

∂Br(x)

u(x′) dS′,

i.e., the value of u at any point x is equal to the average of u over a sphere centred at x, as long as the
corresponding ball bounded by the sphere is entirely contained in the region D on which u satisfies Laplace’s
equation. This implies that u cannot have a local maximum or local minimum in D, unless it is constant.
The main idea is as follows: if u had a local maximum at some point x, and r were any number for which
the above formula applied and small enough that x was a maximum point for u on Br(x), then u on ∂Br(x)
would have to be equal everywhere to u(x), as it cannot anywhere be greater so were it somewhere less its
average would also be less, which would contradict the above equation. The same logic holds for a local
minimum.

The foregoing shows that if u is a continuous solution to Laplace’s equation on a bounded region, then
it must take its extreme values on the boundary of the region (since it must take them somewhere, and if
it took either of them at an interior point then it would have a local extremum; and in that case it would
be constant, so its maximum value on D would equal its minimum value there, and both would be taken on
the boundary – and everything would be quite trivial, of course!).

Returning to our main topic, now, we note the similarity of (2) to formula (1′) above: the only additional
terms are those for the boundary conditions. In other words, formula (2) allows us to pass backwards from
the Laplacian of u to obtain u, as long as we are given suitable information about u on the boundary. Note
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though (see [2], p. 37, on which the following discussion is based) that as it stands the information which
seems to be required is too much: for example, suppose that we are trying to solve Laplace’s equation; we
know from our previous studies that giving just the value of u on the boundary suffices to obtain a unique
solution to Laplace’s equation, and hence to obtain also the normal derivatives ∂u

∂n on the boundary. But the
formula above seems to require us to give both; since they cannot be specified independently, the formula
does not seem to be much use as it stands. The resolution lies in the manipulations following equation (2):
we are free to impose boundary conditions on G also, and may impose them to make either of the terms in
the surface integral vanish. Thus, if we are given u on the boundary, we shall use a Green’s function which
vanishes on the boundary, so that the term involving ∂u

∂n does not appear; if we are instead given ∂u
∂n on the

boundary, then we shall use a Green’s function which satisfies ∂G
∂n

∣∣
x∈∂D = 0, so that (using symmetry of G)

the term involving u on the boundary vanishes.
As an example, consider now the problem

∇2u = f, u|∂D = g;

if G is the Green’s function defined above, then by (2) we may write

u(x) = −
∫

D

G(x,x′)f(x′) dx′ −
∫

∂D

g(x′)
∂G

∂n′ dS
′.

This gives an alternative representation of the solution to the above problem (which we already know how
to solve in terms of orthogonal expansions, at least for D = Q,C,B). In the case where f = 0, we obtain
the formula

u(x) = −
∫

∂D

g(x′)
∂G

∂n′ dS
′

for the solution to the boundary-value problem for Laplace’s equation

∇2u = 0, u|∂D = g.

Returning to general theory, we may now ask how we are to find a Green’s function satisfying an
appropriate boundary condition on ∂D. This may be done by a method very similar to that used to solve
Poisson’s equation with nonhomogeneous boundary conditions. We first set G0(x,x

′) = 1
4π|x−x′ , which is

just the Green’s function for R3 and hence satisfies ∇2
xG0 = −δ(x − x′). Then we let u(x,x′) solve the

boundary-value problem for Laplace’s equation given by

∇2
xu(x,x

′) = 0, u|x∈∂D = −G0(x,x
′);

if we let G(x,x′) = G0(x,x
′) + u(x,x′), then we see that G satisfies

∇2
xG(x,x

′) = −δ(x− x′), G|x∈∂D = 0,

and hence that G is the desired Green’s function.
If we wished instead to solve Poisson’s equation with Neumann boundary conditions, we would use the

function u satisfying instead the problem

∇2
xu(x,x

′) = 0,
∂u

∂n

∣∣∣∣
x∈∂D

= −∂G0

∂n
;

then G = G0 + u would be the desired Green’s function.
All of this, of course, is just empty air unless we have a method to actually calculate a Green’s function;

in other words, unless we can actually solve the boundary-value problems for Laplace’s equation given
above. In general, of course, the only methods we know for solving Laplace’s equation involve expansions
in orthogonal sets, so it seems that the only formulas we can obtain for Green’s functions at the moment
are still as expansions in orthogonal sets, and it isn’t clear that we have gained much. It turns out, though,
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that for specific geometries there are other techniques for finding a Green’s function; for example, for a
sphere one can calculate the Green’s function using the so-called method of images – see Example 8.2.1 in
the textbook. (Regardless of this, the foregoing is important to know from a theoretical point of view. And
actually we have gained something practical by the manipulations above, since the solutions to Laplace’s
equation are written in terms of orthogonal sets on sets of dimension one less than the space in which we
work: for example, if we use an orthogonal expansion to find the Green’s function on the sphere, we would
be expanding in the basis {Pℓm(cos θ) cosmφ,Pℓm(cos θ)sinmφ} rather than the full basis of eigenfunctions
of the Laplacian on the ball. This is a gain in simplicity, at least.)

While it would be beneficial and interesting to take some time to give concrete examples involving
Green’s functions, considerations of time and space impel us to pass over this and continue to our next topic,
Fourier transforms. We shall try to come back and give an example or two of the above theory at some point
in the future.

FOURIER TRANSFORMS. We first say a few words about orthogonal expansions in general. Consider an
expansion in the basis of eigenfunctions for the Laplacian on Q obeying homogeneous Dirichlet boundary
conditions: this is a series of the form

∑
ℓmn aℓmnsin ℓπxsinmπysinnπz, where ℓ, m and n range over all

positive integers. Now if we use instead periodic boundary conditions then we would obtain expressions
of the above form but with both sin and cos terms; if we were to express everything in terms of complex
exponentials, we would get a sum of the form

∞∑

ℓ,m,n=−∞
aℓmne

2iℓπxe2imπye2inπz =

∞∑

ℓ,m,n=−∞
ale

2πil·x,

where l = (ℓ,m, n). The point here is that we can express any function on the bounded region Q as a series in
a discrete set of functions {e2πil·x}. This is related to the fact that the eigenvalues of the Laplacian onQ (with
suitable boundary conditions) form a discrete set (for periodic boundary conditions, 4π2

(
ℓ2 +m2 + n2

)
).

Now it turns out that, in general, the set of eigenvalues of the Laplacian on a bounded set is discrete. (For
those who have or will study quantum mechanics, this is closely related to the statement that a bound
partical has only a discrete set of energy levels.) On an unbounded set, though, the set of eigenvalues (more
properly, in this case, the spectrum12) of the Laplacian becomes continuous, and the sum over eigenvalues in
the above expression must be replaced by an integral. (See section 5.1.1 in the textbook for a more detailed
explanation of this crossover from series to integral.) In the case of the complex exponential basis, this gives
rise to the Fourier transform.

We begin by recall the complex exponential basis on [0, 1]: if f is any suitably well-behaved function on
[0, 1], then we have

f =

∞∑

k=−∞
f̂ke

2πikx,

where

f̂k =

∫ 1

0

f(x)e−2πikx dx

(the signs in the exponents differ since when we take an inner product we always take the conjugate of the
second function). This may clearly be extended to the unit cube, giving

f(x) =

∞∑

ℓ,m,n=−∞
f̂ke

2πik·x,

where

12If A is a linear operator on a vector space V , the spectrum of A is defined as the set of numbers λ such
that A− λI is not invertible. If V is finite-dimensional, this is the same as the set of eigenvalues of A; but
in infinite-dimensional spaces, such as those we work with here, this is not necessarily the case.
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f̂k =

∫

Q

f(x)e−2πik·x dx

where we now write k = (ℓ,m, n). This motivates the following definition of the Fourier transform. We first
make one comment about terminology. We shall be dealing mainly with functions f which have the property
that

∫
Rm |f(x)| dx <∞; such functions are said to be in L1 (on Rm); in symbols,

L1(Rm) = {f : Rm → C|
∫

Rm

|f(x)| dx <∞}.

DEFINITION. Suppose that f ∈ L1(Rm). Then we define the Fourier transform of f , which we denote f̂
or F [f ], to be the function from Rm to C given by

f̂(k) =

∫

Rm

f(x)e−2πik·x dx.

(Note that this definition differs from that in the textbook by the factor of 2π in the exponent. As we
shall see, factors of 2π appear in various places in the study of Fourier transforms; there is no way to get rid
of all of them, and the different conventions just push them around into different locations. From a purely
mathematical point of view, there are many reasons why the above definition recommends itself. See [1], p.
278, for discussion.)

The Fourier transform enjoys the following properties. We write x = (x1, . . . , xm), k = (k1, . . . , km);
the superscripts are just that – superscripts – not powers; think of them like subscripts, but written up, not
down.13

PROPERTIES OF THE FOURIER TRANSFORM. (a) The Fourier transform is linear:

F [af + bg](k) = aF [f ](k) + bF [g](k).

(b) If f is differentiable and ∂f
∂xj ∈ L1 for some j (note that this latter does not follow from f ∈ L1!), then

F [∂jf ](k) = 2πikjF [f ](k).

(c) If xjf ∈ L1 for some j, then

F [2πixjf ](k) = − ∂f̂

∂kj
.

(d) For any α ∈ Rm,

F [f(x−α)](k) = e−2πik·αf̂(k).

(e) Similarly,

F [e2πiα·xf(x)](k) = f̂(k−α).

Proof. (a) This is entirely straightforward, almost trivial:

F [af + bg](k) =

∫

Rm

[af(x) + bg(x)] e−2πik·x dx

= a

∫

Rm

f(x)e−2πik·x dx+ b

∫

Rm

g(x)e−2πik·x dx = aF [f ](k) + bF [g](k).

(b) We first note a technical point. Contrary to what I said in class, f ∈ L1 does not imply that f → 0 as
x → ∞ (think of the function on R1 defined by

f(x) =

{
1, x ∈ [n, n+ 1

n2 ] for somen ∈ Z
0, otherwise

;

13The reason for this is that from a differential-geometric perspective, quantities with indices up are distinct
from quantities with indices down. This is related to the first notion of ‘tensor’ which I mentioned in class
on Thursday, as a collection of numbers transforming in a certain way under a coordinate transformation.
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it is simple to see that f ∈ L1, but clearly f has no limit as x → ∞). However, ∂f
∂xj ∈ L1 implies that

lim
xj→∞

f(x) exists: for

lim
xj→∞

f(x) = f(0) + lim
xj→∞

∫ xj

0

∂f

∂xj
(x1, · · · , yj, · · · , xn) dyj ,

and since the latter integral is absolutely convergent (as ∂jf ∈ L1), it must be convergent, meaning that
lim
xj→∞

f(x) exists. Since f ∈ L1, this limit must be zero. The result may now be proven using integration by

parts:

F [∂jf ](k) =

∫

Rm

∂f

∂xj
e−2πik·x dx =

∫

Rm

∂

∂xj
(
fe−2πik·x)+ 2πikjf(x)e−2πik·x dx

= 2πikjF [f ](k),

where the boundary term vanishes since, as just noted, lim
xj→∞

f(x) = 0.

(c) We have

F [2πixjf ](k) =

∫

Rm

2πixjf(x)e−2πik·x dx = −
∫

Rm

f(x)
∂

∂kj
e−2πik·x dx

= − ∂

∂kj

∫

Rm

f(x)e−2πik·x dx = − ∂f̂

∂kj
,

where we may interchange differentiation and integration since xjf ∈ L114

(d) This and (e) are very straightforward calculations. Here we do a change of variables y = x−α:

F [f(x− α)](k) =

∫

Rm

f(x−α)e−2πik·x dx

=

∫

Rm

f(y)e−2πik·(y+α) dx = e−2πik·αf̂(k).

F [e2πiα·xf(x)](k) =
∫

Rm

e2πiα·xf(x)e−2πik·x dx =

∫

Rm

f(x)e−2πi(k−α)·x dx(e)

= f̂(k−α).

Parts (a) and (b) are probably the most important for us at the moment. To show how (b) is used more
generally, suppose that P (k) is some polynomial on Rm, i.e., P (k) is a linear combination of monomial terms
of the form (

k1
)α1
(
k2
)α2 · · · (km)

αm ,

where α1, . . . , αm are all nonnegative integers. Suppose that Q(k) is the above monomial. Then we define
the differential operator Q(∇) by

Q(∇)(f)(x) =
∂α1f

∂x1α1
· · · ∂

αmf

∂xmαm
.

Part (b) can then be used to show that for any polynomial P (k),

F [P (∇)f ] (k) = P (2πik)f̂(k);

i.e., the Fourier transform turns differential operators into multiplication operators. Let us consider a few
examples.

14Again, to get things in this generality one probably needs the Lebesgue integral and dominated convergence
theorem. We apologise.



APM346, 2019 July 23 – 25 Nathan Carruth

EXAMPLES. (a) Let us consider an example in R1 for simplicity. If f is such that all of the relevant Fourier
transforms are defined, then

F [f ′(x)](k) = −2πikf̂(k),

F [f ′′(x)](k) = −4π2k2f̂(k).

(b) Let us consider how the Fourier transform acts on the Laplacian of a function in R3. Thus suppose that
f is a function on R3 and is such that all of the relevant Fourier transforms are defined. Then

F [∇2f ](k) = F
[
∂2f

∂x2
+
∂2f

∂y2
+
∂2f

∂z2

]
= (−2πik1)2f̂(k) + (−2πik2)2f̂(k) + (−2πik3)2f̂(k)

= −4π2(k1)2f̂(k)− 4π2(k2)2f̂(k)− 4π2(k3)2f̂(k) = −4π2|k|2f̂(k),

where |k| = (k1)2 + (k2)2 + (k3)2 is the Euclidean norm of k.

The above three examples will be the most important examples of this kind of thing for us going
forwards.

CONVOLUTION. To derive the next property satisfied by the Fourier transform, we need to define another
operation on functions known as convolution. Unlike the Fourier transform, which takes a single function
to a single function, convolution is a product, which takes two functions to one function. It is defined as
follows: suppose that f, g ∈ L1(Rm); then we define their convolution f ∗ g (note that this is a star, an
asterisk, with six points, and may not be properly written with less!) to be the function on Rm

(f ∗ g)(x) =
∫

Rm

f(x− x′)g(x′) dx′.

Convolution satisfies the following properties:

(a) It is bilinear:

([af + bh] ∗ g)(x) = a(f ∗ g)(x) + b(h ∗ g)(x), (f ∗ [ag + bh])(x) = a(f ∗ g)(x) + b(f ∗ h)(x).

(b) It is commutative:
(f ∗ g)(x) = (g ∗ f)(x)

and associative:
[(f ∗ g) ∗ h](x) = [f ∗ (g ∗ h)](x).

Proof. (a) This is again almost trivial; we show only the first one as the second is identical:

([af + bh] ∗ g)(x) =
∫

Rm

(af + bh)(x− x′)g(x′) dx′ = a

∫

Rm

f(x− x′)g(x′) dx′ + b

∫

Rm

h(x− x′)g(x′) dx′

= a(f ∗ g)(x) + b(h ∗ g)(x).

(b) The first of these is straightforward, doing a change of variables to y = x− x′:

(f ∗ g)(x) =
∫

Rm

f(x− x′)g(x′) dx′ =
∫

Rm

f(y)g(x− y) dy = (g ∗ f)(x).

The second may be shewn as follows, using the change of variables y = x′ + x′′, y′ = x′; we note that this
has unit determinant. We ignore the difficulties in rewriting the iterated integrals as a single integral.

[(f ∗ g) ∗ h](x) =
∫

Rm

(f ∗ g)(x− x′)h(x′) dx′ =
∫

Rm

∫

Rm

f(x− x′ − x′′)g(x′′)h(x′) dx′′ dx′

=

∫

Rm×Rm

f(x− y)g(y− y′)h(y′) dy′ dy =

∫

Rm

f(x− y)(g ∗ h)(y) dy = [f ∗ (g ∗ h)](x),
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as desired.

For us, the main interest in convolution is not the above algebraic properties (though it is important to know
about these), but rather the way in which convolution interacts with the Fourier transform. This is given in
the following theorem.

THEOREM. Suppose that f, g ∈ L1(Rm), f ∗ g ∈ L1(Rm). Then

F [f ∗ g](k) = f̂(k)ĝ(k);

i.e., the Fourier transform turns convolutions into products.
Proof. Assuming (as in the proof of associativity above) that we may combine the iterated integrals

appearing here into a single integral over the product space, we have, using the change of variables y = x−x′,
y′ = x′,

F [f ∗ g](k) =
∫

Rm

(f ∗ g)(x)e−2πik·x dx =

∫

Rm

∫

Rm

f(x− x′)g(x′)e−2πik·x dx′ dx

=

∫

Rm×Rm

f(y)g(y′)e−2πik·(y+y′) dy′ dy =

∫

Rm

f(y)e−2πik·y dy
∫

Rm

g(y′)e−2πik·y′
dy′

= f̂(k)ĝ(k),

as claimed.
We note in passing that an analogous result would hold if we replaced e−2πik·x in F by e2πik·x; this will

be used shortly.

One use of the Fourier transform for solving partial differential equations can now be indicated briefly.
Suppose that we are interested in solving Poisson’s equation on Rm; i.e., that we have the problem ∇2u = f .
If f ∈ L1, then assuming u ∈ L1 we may take the Fourier transform of both sides to obtain

−4π2|k|2û(k) = f̂(k),

whence

û = − 1

4π2|k|2 f̂(k).

By the foregoing theorem, then, if we can find a function g whose Fourier transform is − 1
4π2|k|2 , then we will

have

u(x) = (g ∗ f)(x) =
∫

Rm

g(x− x′)f(x′) dx′.

Our work with Green’s functions suggests that in R3 we have g(x) = 1
4π|x| . Note, though, that the Fourier

transform result above is independent of m.
Even more generally, suppose that we were interested in the equation

P (∇)u = f

for some polynomial P ; if f ∈ L1, then taking the Fourier transform gives P (k)u = f , or u(k) = 1
P (k)f(k).

Hence, if 1
P (k) is the Fourier transform of a function g, then u(x) = (g ∗ f)(x) will be the solution to the

original problem. Actually calculating g, however, is quite another matter. We shall try to say more about
this later.

FOURIER INVERSION THEOREM. Our study of the basic theory of the Fourier transform will be essen-
tially completed once we have established the Fourier inversion theorem, which tells us how to invert the
Fourier transform. Its statement is as follows; a proof will be given next week.

THEOREM. Suppose that f ∈ L1 is such that f is bounded on Rm (this condition can be removed by doing

more careful calculations in Example (b) on p. 5) and f̂ ∈ L1. Then we have15

f(x) =

∫

Rm

f̂(k)e2πik·x dk.

15This formula, like so many of the other formulas we have given in this course, may not hold at every point.
It will, however, hold at points at which f is continuous; it will, in fact, hold almost everywhere, meaning
everywhere except on a set of measure zero. For a related result, see Theorem 5.1 in the textbook.
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APPENDIX I. Let us take X = Rn for some n, and consider the set C∞
c (X) of all C∞ functions on X which

have compact support, i.e., which vanish outside of a compact set. (The support of a function is defined as

supp f = {x|f(x) 6= 0},

where U indicates the closure of the set U .) We may define a toplogy on C∞
c (X) which gives it the structure

of a topological vector space by means of an infinite family of seminorms, as follows. (Recall that a norm
on a vector space V is a map ‖ · ‖ : V → R+ which satisfies the following properties:

1. ‖x‖ ≥ 0 and ‖x‖ = 0 impliesx = 0

2. ‖αx‖ = |α|‖x‖ for allα ∈ R

3. ‖x+ y‖ ≤ ‖x‖+ ‖y‖;

a seminorm is a map | · | : V → R+ which satisfies all of these except that |x| = 0 does not imply x = 0.) Let
K ⊂ X be compact, and let ℓ ≥ 0. We let I denote a multiindex, i.e., I = (I1, . . . , In), where I1, . . . , In ∈ Z,
I1, . . . , In ≥ 0, and for such an I we define |I| =∑i Ii and for f ∈ C∞

c (X)

∂If =
∂|I|f

∂xI11 ∂x
I2
2 · · · ∂xInn

.

Then for f ∈ C∞
c (X) we define

|f |K,ℓ = sup
x∈K

sup
|I|≤ℓ

|∂If(x)|.

It is straightforward to show that | · |K,ℓ is indeed a seminorm on C∞
c (X) for all K and ℓ as above. This

family of seminorms may be used to define a topology by taking the corresponding balls

Bǫ,K,ℓ(f0) = {f ||f − f0|K,ℓ < ǫ}

as a basis: i.e., we define a set U ⊂ C∞
c (X) to be open if and only if for all f0 ∈ U there is an ǫ > 0, K ⊂ X

compact, and ℓ ≥ 0 such that Bǫ,K,ℓ(f0) ⊂ U . It is simple to show that with this definition C∞
c (X) becomes a

topological space. (It can also be shown that the vector-space operations of addition and scalar multiplication
are continuous with respect to this topology.) We may then ask which linear functionals φ : C∞

c (X) → R
are continuous with respect to this topology. Such linear functionals are called distributions, and the set of
all distributions is denoted D′(X) (after the notation D(X) for C∞

c (X), a prime denoting the so-called dual
space of continuous linear functionals).
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APM 346, Homework 10. Due Monday, July 29, at 6.00 AM EDT. To be marked completed/not completed.

1. Starting from separation of variables, give the series expansion to the solution for the following problem in
terms of an appropriate set of eigenfunctions of the Laplacian on the unit cube Q = {(x, y, z)|0 ≤ x, y, z ≤ 1}:

∇2u =

{
1, 0 ≤ z < 1

2
−1, 1

2 < z ≤ 1
, ∂νu|∂Q = 0, u(

1

2
,
1

2
,
1

2
) = 0,

where ∂ν denotes the outward normal derivative on the surface (e.g., on the surface ∂Q∩{z = 0}, it is − ∂
∂z ).

We begin by finding the eigenfunctions of the Laplacian on Q appropriate to the given boundary con-
ditions. (The last condition u(12 ,

1
2 ,

1
2 ) = 0 is a condition on the solution, not the eigenfunctions, and will

be dealt with at the end.) We shall look as usual for separated eigenfunctions; thus we seek functions
u = X(x)Y (y)Z(z) and numbers λ satisfying

∇2u = λu, ∂νu|∂Q = 0;

now substituting u = X(x)Y (y)Z(z) into the first equation and dividing through by u (since we assume that
u, as an eigenfunction, is not identically zero), we have as usual the equation

X ′′

X
+
Y ′′

Y
+
Z ′′

Z
= λ. (1)

Now we need to determine how the boundary conditions are to be implemented in terms of X , Y , and Z.
Now the boundary ∂Q of Q has six parts, which lie in the planes z = 0, z = 1, x = 0, x = 1, y = 0,
y = 1; since ∂ν is the unit outward normal derivative on the boundary of Q, we see that on the plane
z = 0, ∂ν = − ∂

∂z , while on z = 1 we have ∂ν = ∂
∂z ; thus the parts of the boundary condition ∂νu|∂Q = 0

corresponding to the top and bottom surfaces of the cube are

X(x)Y (y) (−Z ′(0)) = 0, X(x)Y (y)Z ′(1) = 0,

i.e., X(x)Y (y)Z ′(0) = X(x)Y (y)Z ′(1) = 0 for all x and y. Since X and Y are not identically zero, we
conclude that Z ′(0) = Z ′(1) = 0. Analogously, the boundary conditions on the other sides of the cube give
X ′(0) = X ′(1) = 0, Y ′(0) = Y ′(1) = 0, and we thus have in addition to (1) the boundary conditions

X ′(0) = X ′(1) = Y ′(0) = Y ′(1) = Z ′(0) = Z ′(1) = 0.

From these we see as usual (since the derivative of a linear combination of exponentials is still a linear

combination of exponentials) that X , Y , and Z must all be oscillatory; thus X′′

X , Y ′′

Y , Z
′′

Z < 0, so we may
write

X ′′ = −λ21X, Y ′′ = −λ22Y, Z ′′ = −λ23Z

(note that we do not yet know what the λi are since the boundary conditions are not the homogeneous
Dirichlet conditions we have met previously; in other words, we cannot just directly write λ1 = ℓπ, etc.).
Let us consider the problem for X :

X ′′ = −λ21X, X ′(0) = X ′(1) = 0.

From the equation, we have
X = a cosλ1x+ bsinλ1x,

whence the boundary conditions give

X ′(0) = −λ1b = 0, X ′(1) = −aλ1sinλ1 + bλ1 cosλ1 = 0;
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the first gives either λ1 = 0, in the which case X = a is constant, or b = 0; in the first case the second
boundary condition is satisfied automatically, while in the second case (λ1 6= 0, b = 0) it gives

aλ1sinλ1 = 0,

so (since a 6= 0 as X 6= 0, and λ1 6= 0 by assumption) we must have λ1 = ℓπ, ℓ ∈ Z, ℓ > 0, as before. Thus
we have two separate cases: either X = a or X = a cos ℓπx, ℓ ∈ Z, ℓ > 0. Clearly, we may combine these
two cases; dropping the arbitrary constant a, we may write

X = cos ℓπx, ℓ ∈ Z, ℓ ≥ 0.

Similar logic clearly applies also to Y and Z, so we have

Y = cosmπy, m ∈ Z,m ≥ 0,

Z = cosnπz, n ∈ Z, n ≥ 0,

and we have finally the eigenfunctions

eℓmn = cos ℓπx cosmπy cosnπz, ℓ,m, n ∈ Z, ℓ,m, n ≥ 0,

while the corresponding eigenvalues are

λℓmn = −π2
(
ℓ2 +m2 + n2

)
.

Note that λ000 = 0, i.e., we have a zero eigenvalue; this is because the constant function satisfies the boundary
condition in this case. This will create some extra wrinkles in our solution, one of which is obvious while
one is less so, as we shall see shortly.

We note that the set {cos ℓπx}∞ℓ=0 is complete on [0, 1]; this can be shown in a way similar to that by
which we showed {sin ℓπx}∞ℓ=1 complete on [0, 1]: if f : [0, 1] → R1 is any suitable function, then we may
extend it to [−1, 1] by requiring it to be even, i.e., we may define a new function

f∗ : [−1, 1], f∗(x) =

{
f(x), x ≥ 0
f(−x), x ≤ 0

;

since {cos ℓπx, sin ℓπx}∞ℓ=0 is complete on [−1, 1], we may expand f∗ in a aeries in cos ℓπx and sin ℓπx; but
since f∗ is even, all of the coefficients for the sin ℓπx terms vanish, meaning that f∗ can be written in a series

f∗ =

∞∑

ℓ=0

aℓ cos ℓπx

on [−1, 1]. But from this it follows that on [0, 1] we have the series

f =

∞∑

ℓ=0

aℓ cos ℓπx,

meaning that {cos ℓπx}∞ℓ=0 is complete on [0, 1], as desired. By standard logic, it follows that the set of
eigenfunctions {eℓmn}∞ℓ,m,n=0 is complete on Q.

We may now proceed as usual to solve the equation. We begin by expanding the right-hand side of the
given Poisson equation in terms of the above basis of eigenfunctions. Thus let

g(x, y, z) =

{
1, 0 ≤ z < 1

2
−1, 1

2 < z ≤ 1
;
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then we may write

g(x, y, z) =

∞∑

ℓ,m,n=0

aℓmn cos ℓπx cosmπy cosnπz.

To write out a formula for the aℓmn, we need to determine the normalisation constants for the eℓmn. Now

∫ 1

0

cos2 ℓπx dx =

{
1, ℓ = 0
1
2 , ℓ 6= 0

;

if we denote this quantity by Nℓ, then we may write

∫

Q

e2ℓmn(x, y, z) dV = NℓNmNn.

Thus we may write the coefficients aℓmn in the above expansion as

aℓmn =
1

NℓNmNn

∫

Q

g(x, y, z)eℓmn dV =
1

NℓNmNn

∫ 1

0

∫ 1

0

∫ 1

0

g(x, y, z) cos ℓπx cosmπy cosnπz dz dy dx

=
1

NℓNmNn

∫ 1

0

cos ℓπx dx

∫ 1

0

cosmπy dy

∫ 1

0

g cosnπz dz,

where we have used the fact that g depends only on z. Now we may write

∫ 1

0

cos ℓπx dx = (1, cos ℓπx) =

{
1, ℓ = 0
0, ℓ 6= 0

,

since both 1 = cos 0πx is an element of the orthogonal set {cos ℓπx}∞ℓ=0. From this, we see that aℓmn = 0
unless ℓ = m = 0. Further, we see that

∫ 1

0

g cos 0πz dz =

∫ 1

0

g dz = 0,

so that a000 = 0, while if n 6= 0

a00n = 2

∫ 1

0

g cosnπz dz = 2

(∫ 1
2

0

cosnπz dz −
∫ 1

1
2

cosnπz dz

)

= 2

(
1

nπ
sinnπz

∣∣∣∣
1
2

0

− 1

nπ
sinnπz

∣∣∣∣
1

1
2

)
=

4

nπ
sin

nπ

2
.

Thus we have finally

g(x, y, z) =

∞∑

n=1

4

nπ
sin

nπ

2
cosnπz.

Now we assume that the solution u to ∇2u = g may be expanded in the basis {eℓmn}∞ℓ,m,n=0 as

u =

∞∑

ℓ,m,n=0

bℓmn cos ℓπx cosmπy cosnπz;

substituting this in, and using the series expansion for g above, we have

∞∑

ℓ,m,n=0

λℓmnbℓmneℓmn =

∞∑

n=1

4

nπ
sin

nπ

2
cosnπz;
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from this we see, first of all, that

λ000b000 = a000 = 0;

but since λ000 = 0, this tells us nothing about b000. Thus b000 is not determined by the boundary conditions
on u. We note also that had g been such that a000 6= 0 – which, unravelling everything, amounts to saying∫
Q
g dV 6= 0 – then the above equation would become

λ000b000 = 0 = a000 6= 0,

which has no solution. If we recall our abstract formula for the solution to Poisson’s equation nabla2u = g,

u =
∑

I

1

λI

(g, eI)

(eI , eI)
eI ,

we see that this is exactly the condition that (g, eI) = 0 for all I for which λI vanishes, while also the
coefficients in the series for u corresponding to such I are undetermined. These are common difficulties
when the Laplacian has a zero eigenvalue.

Proceeding to the nonzero eigenvalues, we see that bℓmn = 0 unless ℓ = m = 0, while for n 6= 0

b00n =
1

λℓmn

4

nπ
sin

nπ

2
= − 4

n3π3
sin

nπ

2
.

Thus we have the series solution

u = b000 −
∞∑

n=1

4

n3π3
sin

nπ

2
cosnπz.

To determine b000, we apply the final condition, noting that sin nπ
2 cos nπ2 = 1

2 sinnπ = 0 for all n ∈ Z:

u(
1

2
,
1

2
,
1

2
) = b000 −

∞∑

n=1

4

n3π3
sin

nπ

2
cos

nπ

2
= b000 = 0,

so that finally we have the solution

u(x, y, z) = −
∞∑

n=1

4

n3π3
sin

nπ

2
cosnπz.

2. Compute the Fourier transforms of the following functions:

f(x) =

{
1, x ∈ [−1, 1]
0, otherwise

.

f(x) =

{
1− |x|, x ∈ [−1, 1]

0, otherwise
.

f(r, θ, φ) =

{
1, r ≤ 1
0, otherwise

.

f(x) = e−ax
2

, a ∈ R, a > 0.

f(r, θ, φ) = e−ar
2

, a ∈ R, a > 0.

f(x) = xe−ax
2

, a ∈ R, a > 0.

[For the fifth of these, it may be simpler to change to rectangular coordinates.]
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We take these one by one:

F [f ](k) =

∫ ∞

−∞
f(x)e−2πikx dx =

∫ 1

−1

e−2πikx dx =
i

2πk
e−2πikx

∣∣∣∣
1

−1

=
i

2πk

(
e−2πik − e2πik

)
=

sin 2πk

πk
.

The above calculation only works for k 6= 0; but for k = 0 we have clearly F [f ](0) = 2, which is the limit of
the above function as k → 0. Thus we have

F [f ](k) =

{
2, k = 0

sin 2πk
πk , k 6= 0

.

This function of k is closely related to the so-called sinc function, which is useful in many different places.
We shall typically just write it as sin 2πk

πk , with the understanding that its value at k = 0 is taken to be
2. (We note that with this definition it is actually an analytic function of k with a power series expansion
convergent on the entire real line, or complex plane.)

Next, we have

F [f ](k) =

∫ ∞

−∞
f(x)e−2πikx dx =

∫ 1

−1

(1− |x|) e−2πikx dx.

To compute this integral, we note that for k 6= 0
∫
xe−2πikx dx = − 1

2πik
xe−2πikx +

1

2πik

∫
e−2πikx dx =

(
− 1

2πik
x+

1

4π2k2

)
e−2πikx + C,

while when k = 0 ∫
xe−2πikx dx =

∫
x dx =

1

2
x2 + C.

Thus the above integrals become

∫ 1

−1

(1− |x|) e−2πikx dx =

∫ 1

−1

e−2πikx dx+

∫ 0

−1

xe−2πikx dx−
∫ 1

0

xe−2πikx dx;

the first of these is just sin 2πk
πk , while the second two give

(
− 1

2πik
x+

1

4π2k2

)
e−2πikx

∣∣∣∣
0

−1

−
(
− 1

2πik
x+

1

4π2k2

)
e−2πikx

∣∣∣∣
1

0

=
1

4π2k2
−
(

1

2πik
+

1

4π2k2

)
e2πik −

((
− 1

2πik
+

1

4π2k2

)
e−2πik − 1

4π2k2

)

=
1

2π2k2

(
1− 1

2

(
e2πik + e−2πik

))
− 1

πk

1

2i

(
e2πik − e−2πik

)

=
1

2π2k2
(1− cos 2πk)− sin 2πk

πk
,

in the case that k 6= 0; when k = 0, they give simply

∫ 0

−1

x dx−
∫ 1

0

x dx =
1

2
x2
∣∣∣∣
0

−1

− 1

2
x2
∣∣∣∣
1

0

= −1,

which is seen to be the limiting value of the above expression as k → 0. Taking it to have this value at k = 0
(as we did with sin 2πk

πk above), we have finally

F [f ](k) =
sin 2πk

πk
+

1

2π2k2
(1 − cos 2πk)− sin 2πk

πk

=
1

2π2k2
(1 − cos 2πk).
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(We note that, defining this function to have its limiting value at k = 0, it is also analytic.)
Proceeding, we have

F [f ](k) =

∫

R3

f(r, θ, φ)e−2πik·x dx.

Fix some k ∈ R3. Now since f is spherically symmetric, we may assume that our spherical coordinate
system (r, θ, φ) is such that in it k = (k, 0, 0), i.e., that k points along the positive z axis. In this case,
k · x = kr cos θ, and the above integral may be written

∫ 2π

0

∫ π

0

∫ 1

0

e−2πikr cos θr2sin θ dr dθ dφ

which may be evaluated as

2π

∫ 1

0

1

2πik
re−2πikr cos θ

∣∣∣∣
π

0

dr = 2π

∫ 1

0

1

2πik
r
(
e2πikr − e−2πikr

)
dr = 2π

∫ 1

0

rsin 2πkr

πk
dr

=
2

k

(
−r cos 2πkr

2πk

∣∣∣∣
1

0

+
1

2πk

∫ 1

0

cos 2πkr dr

)

=
2

k

(
−cos 2πk

2πk
+

1

4π2k2
sin 2πkr

∣∣∣∣
1

0

)
=

2

k

(
−cos 2πk

2πk
+

sin 2πk

4π2k2

)

=
1

2π2k3
(−2πk cos 2πk + sin 2πk) ,

for k 6= 0, while if k = 0 it is clearly just 4
3π, the volume of the unit sphere; and we note that this is just the

limit of the above expression as k → 0:

1

2π2k3
(−2πk cos 2πk + sin 2πk) =

1

2π2k3

(
−2πk + πk (2πk)

2 − · · ·+ 2πk − 1

6
(2πk)

3
+ · · ·

)

=
1

2π2k3

(
4π3k3 − 4

3
π3k3 + · · ·

)
=

8
3π

3k3 + · · ·
2π2k3

=
4

3
π + · · · ,

where · · · indicates terms of order in k higher than those preceding. This expression thus clearly approaches
4
3π as k → 0, as claimed.

Continuing with fortitude, we have, noting the Gaussian integral

∫

R1

e−ax
2

dx =

√
π

a

(which holds for all complex a with ℜa > 0)

F [f ](k) =

∫ ∞

−∞
e−ax

2

e−2πikx dx

=

∫ ∞

−∞
e−a(x+

πik
a )

2−π2k2

a dx = e−
π2k2

a

∫ ∞

−∞
e−a(x+

πik
a )

2

dx

=

√
π

a
e−

π2k2

a ,

where we have used the substitution u = x+ πik
a in the last equality. (This can be justified more rigorously in

the context of complex variable theory by thinking of adjusting the contour z = t to the contour z = t+ πik
a

bit by bit, and noting that the integrand rapidly goes to zero as t → ±∞ along either contour.) We note
that the width of the Gaussian giving the Fourier transform is proportional to the reciprocal of the width
of the original Gaussian; this is a manifestation of the celebrated uncertainty principle, which is probably
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best known from quantum mechanics but can also be formulated as a theorem on Fourier transforms (since,
we note for those who have seen some quantum mechanics, the momentum-space representation of the
wavefunction is essentially just the Fourier transform of its position-space representation).

Continuing, and using the hint, we have

F [f ](k) =

∫

R3

e−ar
2

e−2πik·x dx

=

∫

R3

e−a(x
2+y2+z2)e−2πi(k1x+k2y+k3z) dx,

which is easily seen to be a product of three transforms of Gaussians; in other words, we have

F [f ](k) =
(π
a

) 3
2

e−
π2(k2

1
+k2

2
+k2

3)
a =

(π
a

) 3
2

e−
π2|k|2

a .

For the final Fourier transform, we could proceed directly, but that would be quite a nuisance; instead we
use a property of the Fourier transform to write

F [xe−ax
2

](k) = F
[
− 1

2a

d

dx

(
e−ax

2
)]

(k) = − 1

2a
2πik

√
π

a
e−

π2k2

a

= −ik
(π
a

) 3
2

e−
π2k2

a .

This formula is related to the properties of the so-called Hermite polynomials discussed in section 5.2.8 of
the textbook.
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Summary:
• We use the notion of approximate identities introduced last week to prove a version of the Fourier
inversion theorem.

• We then use Fourier transforms to study the heat equation, obtaining both integral formulas for
solutions to the homogeneous and inhomogeneous equations as well as qualitative information.

A THEOREM ON APPROXIMATE IDENTITIES. We have the following generalisation of Example (c)
from last week’s lecture notes.

THEOREM 1. Let ψ : Rm → R1 satisfy
∫
Rm |ψ(x)| dx <∞,

∫
Rm ψ(x) dx = 1. Then the sequence {ψn}∞n=1

given by
ψn(x) = nmψ(nx)

is an approximate identity, at least for continuous, bounded functions (i.e., elements of the space Cb(R
m) to

be introduced momentarily).
Proof. The proof is almost identitical to that of the case m = 1. Let f : Rm → R1 be bounded and

continuous. Then we see that
∫

Rm

f(x)ψn(x) dx =

∫

Rm

f(x)ψ(nx)nm dx =

∫

Rm

f
(u
n

)
ψ(u) du,

where we have made the change of variables u = nx, which gives du = nm dx since we are working on Rm.
Now this integral can be broken down as follows:

∫

Rm

f
(u
n

)
ψ(u) du =

∫

Rm

[
f
(u
n

)
− f(0)

]
ψ(u) du+ f(0),

since
∫
Rm ψ(u) du = 1. It thus suffices to show that the first term on the right-hand side above approaches

0 as n→ ∞. Let M = sup
x∈Rm

|f(x)|+1 (where sup
x∈Rm

|f(x)| denotes the least upper bound for |f(x)| on Rm),

let ǫ > 0, let δ > 0 be such that |f(x)− f(0)| < ǫ

2
∫
Rm

|ψ(u)| du when |x| < δ, and let K ∈ Z, K > 0 be such

that ∫

|x|>K
|ψ(x)| dx < ǫ

2M
;

such a K clearly exists since
∫
Rm |ψ(x)| dx <∞. Furthermore, let N ∈ Z, N > 0 be such that N > K

δ , and
let n > N . Now we have
∣∣∣∣
∫

Rm

[
f
(u
n

)
− f(0)

]
ψ(u) du

∣∣∣∣ ≤
∫

Rm

∣∣∣
[
f
(u
n

)
− f(0)

]∣∣∣ |ψ(u)| du

=

∫

|x|<K

∣∣∣
[
f
(u
n

)
− f(0)

]∣∣∣ |ψ(u)| du+

∫

|x|>K

∣∣∣
[
f
(u
n

)
− f(0)

]∣∣∣ |ψ(u)| du

≤ ǫ

2
∫
Rm |ψ(u)| du

∫

|x|<K
|ψ(u)| du+ 2M

∫

|x|>K
|ψ(u)| du ≤ ǫ

2
+
ǫ

2
= ǫ,

where we have used the fact that n > N implies K
n < δ, and replaced the integral over |x| < K one over Rm

in the last line. This completes the proof. QED.
The basic idea here is that the function f

(
u
n

)
looks like a very ‘zoomed-in’ version of f , so that since ψ

needs to be concentrated somewhere finite, if we zoom in f enough it will eventually cover essentially all of
the places where ψ is not trivially small; and since f is continuous, zooming in like this makes it look very
close to the single number f(0), and since

∫
Rm ψ(x) dx = 1, the resulting integral will be very close to f(0).

The foregoing ǫ-δ proof merely makes this rigorous.

A WORD ON FUNCTION SPACES, AND THE NATURE OF THE FOURIER TRANSFORM. We recall
that we have defined the space

L1(Rm) = {f : Rm → R1|
∫

Rm

|f(x)| dx <∞}.
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We now define the space of bounded continuous functions on Rm:

Cb(R
m) = {f : Rm → R1|f is bounded and continuous onRm}.

(Both spaces could also be defined with real-valued functions replaced by complex-valued ones; in that case,
|f(x)| in the definition of L1(Rm) means the modulus of the complex number f(x).)

We are now in a position to say more precisely what exactly the Fourier transform is. First of all,
we recall that a function f from a set A to a set B is a rule which assigns to each element a ∈ A an
element f(a) ∈ B. Now the Fourier transform is a function on functions, in the sense that for every function
in a certain class it gives another function in another class. We have shown how to define F [f ] for any
f ∈ L1(Rm); the result is another function on Rm whose rule is

F [f ](k) =

∫

Rm

f(x)e−2πik·x dx.

Now we claim that for f ∈ L1(Rm), F [f ] ∈ Cb(R
m). That F [f ] is bounded can be seen easily: for any

k ∈ Rm,

|F [f ](k)| = |
∫

Rm

f(x)e−2πik·x dx| ≤
∫

Rm

|f(x)e−2πik·x| dx =

∫

Rm

|f(x)| dx,

and this last quantity is finite since f ∈ L1(Rm). Since it is independent of k, we see that F [f ] is indeed
bounded on Rm, as claimed. To see that it is also continuous on Rm, we may proceed as follows: let
k0 ∈ Rm; then

lim
k→k0

F [f ](k) = lim
k→k0

F [f ](k) = lim
k→k0

∫

Rm

f(x)e−2πik·x dx

=

∫

Rm

f(x) lim
k→k0

e−2πik·x dx =

∫

Rm

f(x)e−2πik0·x dx = F [f ](k0),

where we can interchange the limit with the integral since f ∈ L1(Rm)1. This shows that F [f ] is continuous
on Rm, and hence that F [f ] ∈ Cb(R

m), as claimed.
The foregoing shows that we may think of the Fourier transform F as a function on functions, or perhaps

better put, a transformation or map on functions which takes elements of L1(Rm) to elements of Cb(R
m).2

It can be shown that the Fourier transform actually maps into the subspace of Cb(R
m) consisting of those

functions which go to zero at infty in a certain sense, but we shall not show that here.

FOURIER INVERSION THEOREM. A version of the Fourier inversion theorem was stated at the end of
last week’s notes; here we shall prove the following slightly modified version.

THEOREM 2. Suppose that f ∈ L1(Rm) ∩ Cb(Rm) (i.e., that f is in both L1 and Cb), and that f̂ ∈ L1.
Then we have

f(x) =

∫

Rm

f̂(k)e2πik·x dk.

Proof. This may be shown by using a particular approximate identity. (The one we shall use here is
not the only option, incidentally; actually there is a very broad range of possibilities.) For convenience, if
k ∈ Rm we shall write k = |k| for the norm of k. We work from the right-hand side to the left-hand side.

Now3 since f̂ ∈ L1(Rm), we may write

∫

Rm

f̂(k)e2πik·x dk = lim
n→∞

∫

Rm

f̂(k)e−
k2

n2 e2πik·x dk,

1Again, this technically requires that we use the dominated convergence theorem for the Lebesgue integral.
2We note in passing that the inequality |F [f ](k)| ≤

∫
Rm |f(x)| dx implies that F is in fact a continuous map

from L1 to Cb, at least if we use appropriate norms to give these spaces topologies.
3Applying again the dominated convergence theorem of Lebesgue integration theory!
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since in the limit the quantity − k2

n2 → 0, so the exponential approaches 1. Substituting in the definition of

f̂(k), we have

∫

Rm

f̂(k)e−
k2

n2 e2πik·x dk =

∫

Rm

[∫

Rm

f(x′)e−2πik·x′
dx′
]
e−

k2

n2 e2πik·x dk;

now because of the factor e−
k2

n2 , the integrand is in fact integrable over the product Rm×Rm, which implies
that we can interchange the order of integration, obtaining

∫

Rm

[∫

Rm

e−
k2

n2 e−2πik·(x′−x) dk

]
f(x′) dx′.

Now the integral in brackets is seen to be the Fourier transform of the Gaussian function e−
k2

n2 , evaluated
at the point x′ − x. From the results on homework 10, this is seen to be

(
πn2

)m
2 e−π

2n2|x′−x|2 . (1)

Thus the full integral above becomes
∫

Rm

(
πn2

)m
2 f(x′)e−π

2n2|x−x′|2 dx′.

Now setting

ψ(x) = π
m
2 e−π

2|x|2 ,

and noting that ψ ∈ L1(Rm),
∫
Rm ψ(x) dx = 1, and that the function in (1) above is just ψn(x) as defined

in Theorem 1, we see that, by Theorem 1, we have finally
∫

Rm

f̂(k)e2πik·x dk = lim
n→∞

∫

Rm

(
πn2

)m
2 e−π

2n2|x−x′|2f(x′) dx′ = f(x),

as desired. QED.

The transformation on functions which takes a function f(k) in L1(Rm) to the function
∫

Rm

f(k)e2πik·x dk

is called the inverse Fourier transform and is denoted F−1[f ]. The foregoing shows that, if f ∈ L1(Rm) ∩
Cb(R

m), then F−1[F [f ]] = f , i.e., that F−1 is indeed a left inverse to F . Identical arguments to those in
the proof just given show that also F [F−1[f ]] = f for such f . These formulas are also correct much more
generally: in fact, if f ∈ L1(Rm) is any function satisfying

∫
Rm |f(x)|2 dx < ∞, then these relations still

hold for f . We shall, however, not pursue such questions here but merely regard the above result as being
an example of the results which can be obtained. For the most part we shall work with Fourier transforms
and their inverses rather more formally.

HEAT EQUATION ON Rm. Consider the following problem on (0,+∞) × Rm (points of which we shall
denote as (t,x)):

∂u

∂t
= ∇2u, u|t=0 = f.

Suppose that f ∈ L1(Rm), and suppose that u and all of its derivatives up to second order are in L1(Rm)4;
then, taking the Fourier transform of the above equation, we obtain (assuming that we may interchange the
order of integration and differentiation with respect to t)

∂û

∂t
= −4π2|k|2û, û|t=0 = f̂ .

4All we really need, of course, is for u to be such that we can take the Fourier transforms needed below. The
given conditions are sufficient but probably not necessary.
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Now the first equation is almost identical to the one we found when solving the heat equation on the unit
cube, and has the solution

û(t,k) = û(0,k)e−4π2|k|2t = f̂(k)e−4π2|k|2t.

Assuming that we may apply Fourier inversion, this gives rise immediately to the integral expression

u =

∫

Rm

f̂(k)e−4π2|k|2te2πik·x dk.

This expression, however, is rather unsatisfactory, since calculating f̂ requires us to perform a rather difficult
integral, and then we are still faced with evaluating the above integral in order to finally obtain u; in other
words, the above expression requires two integrations. We may use properties of the Fourier transform to
reduce this to one, as follows. First, we note that

F−1[e−4π2|k|2t](x) =
∫

Rm

e−4π2|k|2te2πik·x dk =

∫

Rm

e−4π2|k|2te−2πik·(−x) dk

=
( π

4π2t

)m
2

e−
π2|−x|2

4π2t =
1

(4πt)
m
2
e−

|x|2
4t .

This last expression is called the heat kernel; let us denote it by K(t,x). Thus we see that F [K](t,k) =

e−4π2|k|2t, so that
û(t,k) = F [f ](k)F [K](t,k) = F [f ∗K],

where the convolution is performed only on the spatial variables. Fourier inversion then implies that we have

u(t,x) = (f ∗K)(t,x) = (K ∗ f)(t,x) =
∫

Rm

K(t,x− x′)f(x′) dx′

=
1

(4πt)
m
2

∫

Rm

e−
|x−x′|2

4t f(x′) dx′.

This is the desired formula for u in terms of f .
In order to apply this formula to concrete examples, of course, we would need to find a function f for

which the integral above is actually calculable. There are some examples in the textbook for which the above
integral can be determined in terms of the error function; for now we shall just comment on some qualitative
properties of solutions to the heat equation which emerge from it. The first of these is the result

lim
t→∞

u(t,x) = 0;

this can be seen from the above formula since the quantity 1

(4πt)
m
2

→ 0 as t→ ∞, while the integral simply

approaches
∫
Rm f(x′) dx′, which is finite since f ∈ L1(Rm). It can actually be seen even more clearly from

the formula for the Fourier transform for u above, namely

û(t,k) = f̂(k)e−4π2|k|2t :

from this formula it is entirely obvious that û→ 0 as t→ ∞, so assuming that the inverse Fourier transform
is continuous in an appropriate sense, the same will be true also of u. Next we note that, at least assuming
f ∈ Cb,

lim
t→0+

u(t,x) = f(x).

To prove this fully rigorously would require an extension of Theorem 1 to the case of nonintegral n; we shall
content ourselves by investigating the limit5

lim
n→∞

u(
1

n2
,x).

5If the limit above exists, it will certainly be equal to the limit below. However, the limit below can exist
without the original limit existing (consider, for example, the function sin(2πt ), which is zero when t = 1

n2

but has no limit as t → 0): this is similar to the fact we learned in multivariable calculus, that a function
can have a limit at a point along a certain curve without having a full limit at that point.
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This is seen to be

lim
n→∞

nm

(4π)
m
2

∫

Rm

e−
n2|x−x′|2

4 f(x′) dx′;

since ∫

Rm

e−
n2|x|2

4 dx = (4π)
m
2 ,

we see that we may apply Theorem 1 to conclude that this limit is in fact f(x), as desired.
The foregoing has the following curious consequence: any function f ∈ L1(Rm)∩Cb(Rm) is the limit of

a sequence of functions which have infinitely many derivatives. To see this, we need the following result about
convolutions (which is worth knowing in its own right). Suppose that f, g ∈ L1(Rm), and that ∂jf ∈ L1(Rm)
for some j. Then we have

∂j(f ∗ g)(x) = ∂j

∫

Rm

f(x− x′)g(x′) dx′ =
∫

Rm

(∂jf)(x− x′)g(x′) dx′ = ((∂jf) ∗ g)(x);

in other words, ∂j(f ∗ g) = (∂jf) ∗ g. Note that we did not need to assume anything about differentiability
(or even continuity) of g here; thus this result shows that the convlution of two functions is at least as smooth
(i.e., possesses at least as many derivatives) as the smoother of the two factors. Now the heat kernel

K(t,x) =
1

(4πt)
m
2
e−

|x|2
4t

clearly possesses derivatives of all orders in x, for all t > 0; since any solution to the heat equation is just the
convolution of K with the initial data f , we see that any such solution must have derivatives of all orders in
x for all t > 0. In other words, the functions

u(
1

n2
,x)

must have infinitely many derivatives in x for all n. But these functions converge to f , meaning that f
is indeed a limit of functions with infinitely many derivatives, as claimed. We say that the heat equation
smooths out its initial data. (This is a general property of the class of equations known as parabolic equations
of which the heat equation is the simplest example. The wave equation, which we shall study next week, is
a member of the class of hyperbolic equations and transports singularities rather than smoothing them out.)

Finally, we show how Fourier techniques can be used to solve the inhomogeneous heat equation. To this
end, consider the following problem on Rm:

∂u

∂t
= ∇2u+ g, u|t=0 = f.

If we assume as usual that all necessary Fourier transforms exist, then Fourier transforming gives

∂û

∂t
= −4π2|k|2û+ ĝ, û|t=0 = f̂ .

The first equation again becomes a simple linear first-order ordinary differential equation which may be
solved using the integrating factor e4π

2|k|2t. Multiplying both sides by this factor and rearranging, we obtain

e4π
2|k|2tĝ = e4π

2|k|2t ∂û
∂t

+ 4π2|k|2e4π2|k|2tû =
∂

∂t

[
e4π

2|k|2tû
]
,

so replacing t by s and integrating with respect to s from 0 to t,

e4π
2|k|2sû(s,k)

∣∣∣
s=t

s=0
=

∫ t

0

e4π
2|k|2sĝ(s,k) ds

e4π
2|k|2tû(t,k)− û(0,k) =

∫ t

0

e4π
2|k|2sĝ(s,k) ds

û(t,k) = e−4π2|k|2tf̂(k) +
∫ t

0

e−4π2|k|2(t−s)ĝ(s,k), ds. (2)
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The first term is just the expression we obtained before, as it should be since that is just the case g = 0,
and in that case the second term vanishes. Now the second term looks somewhat like a convolution integral,
though not quite because of the limits; it turns out that this type of integral is the kind of convolution
appropriate for the so-called Laplace transform usually encountered in introductory classes on ordinary
differential equations.6 At any rate, assuming that we may interchange the order of the t integral with the k
integral appearing in F−1, we may take the inverse Fourier transform of this expression as before to obtain

u(t,x) = K(t,x) ∗ f(x) +
∫ t

0

K(t− s,x) ∗ g(s,x) ds,

where all convolutions are with respect to the variable x.
As with the case of the homogeneous heat equation above, for this formula to be useful in practice we

would need functions f and g for which the above integrals are calculable. An (attempt at an) example of this
sort is given in Homework 11. For the moment let us do what we did when we discussed the homogeneous
heat equation and see what kinds of qualitative information we can determine from this solution. We see
that the first term, which is just the solution of the homogeneous equation with the given initial data, goes
to zero as t → ∞ and to f(x) as t → 0+, as before. Now let us consider the second term. Suppose that
g(t,x) = g0(x) for all t ≥ 0. Then ĝ(t,k) = ĝ0(k) for all k. Returning now to the expression for the Fourier
transform of u in equation (2) above, we see that

4π2|k|2û(t,k) = 4π2|k|2
[
e−4π2|k|2tf̂(k) + ĝ0(k)e

−4π2|k|2t
∫ t

0

e4π
2|k|2s ds

]

= 4π2|k|2e−4π2|k|2tf̂(k) + ĝ0(k)e
−4π2|k|2te4π

2|k|2s
∣∣∣
t

0

= 4π2|k|2e−4π2|k|2tf̂(k) + ĝ0(k)
[
1− e−4π2|k|2t

]
,

from which it is clear that in the limit t→ ∞ we have

4π2|k|2û = ĝ0(k).

But (assuming that the functions involved are such that we can take the inverse Fourier transform of both
sides) this is nothing but the equation −∇2u = g0! From this we see that (at least for suitable functions f
and g0) in the limit as t→ ∞, u converges to the solution to the Poisson equation ∇2u = −g0 on Rm. This
should be compared with our earlier result, when working on a bounded region, that if the heat equation
were solved with nonhomogeneous boundary conditions, in the limit as t → ∞ the solution would converge
to the solution to Laplace’s equation on that region with the same boundary conditions. In the current case,
since we are solving on the whole space Rm, there are no real boundary conditions (the only relevant one
are that u should be in L1), but our work here shows that a similar result holds for the inhomogeneous heat
equation.

6The Laplace transform takes account of initial conditions while the Fourier transform extends from −∞ to
+∞, i.e., over the whole range of the variable. We might have a chance to say a little bit about the Laplace
transform towards the end of the course.
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APM 346, Homework 11, solutions. Due Monday, August 5, at 6.00 AM EDT. To be marked completed/not
completed.

1. Using the eigenfunctions derived in homework 10, problem 1, construct the Green’s function on Q
satisfying

∇2
xG(x,x

′) = −δ(x− x′),
∂G

∂n

∣∣∣∣
x∈∂Q

= 0,

and use it to find a series expansion for the solution to the following problem on Q:

∇2u = sin 2πxsin 2πysin 2πz,
∂u

∂n

∣∣∣∣
∂Q

= 1.

[The following question is worth considering: What would happen if we replaced sin 2πxsin 2πysin 2πz by
sinπxsinπysinπz above?]

We have the eigenfunctions

eℓmn = cos ℓπx cosmπy cosnπz, ℓ,m, n ∈ Z, ℓ,m, n ≥ 0,

with corresponding eigenvalues
λℓmn = −π2

(
ℓ2 +m2 + n2

)
.

Formally, then, we have the Gren’s function

G(x,x′) = −
∑

ℓ,m,n

8

λℓmn
cos ℓπx cosmπy cosnπz cos ℓπx′ cosmπy′ cosnπz′.

However, in this case we have a zero eigenvalue λ000 = 0, and the corresponding term in the above sum is
undefined. We shall show at the end of this document that the ordinary formulas work just as well in this
case, if we drop the terms with λℓmn = 0 from the above sum and assume that (f, eℓmn) = 0 for all such
ℓmn. For the moment we show how to apply this to solve the current problem. We have the Green’s function

G(x,x′) =
∑

(ℓ,m,n) 6=(0,0,0)

8

π2 (ℓ2 +m2 + n2)
cos ℓπx cosmπy cosnπz cos ℓπx′ cosmπy′ cosnπz′.

Now applying the formula

u = −
∫

Q

G(x,x′)∇2u(x′) dx′ +
∫

∂Q

G(x,x′)
∂u

∂n′ − u(x′)
∂G

∂n′ dS
′,

and using the fact that G satisfies homogeneous Neumann conditions on ∂Q, we have

u = −
∫

Q

G(x,x′)sin 2πx′sin 2πy′sin 2πz′ dx′ +
∫

∂Q

G(x,x′) dS′.

Now we note that, for ℓ 6= 2,

∫ 1

0

cos ℓπx′sin 2πx′ dx′ =
1

2

∫ 1

0

sin [(ℓ+ 2)πx′]− sin [(ℓ− 2)πx′] dx′

= − 1

2π

[
1

ℓ+ 2
cos [(ℓ+ 2)πx′]− 1

ℓ− 2
cos [(ℓ− 2)πx′]

]∣∣∣∣
1

0

=
1

2π

[
1

ℓ+ 2
(1− (−1)ℓ)− 1

ℓ− 2
(1− (−1)ℓ)

]
= − 2

π(ℓ2 − 4)
(1− (−1)ℓ),
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while if ℓ = 2 we have ∫ 1

0

cos 2πx′sin 2πx′ dx′ =
1

2

∫ 1

0

sin 4πx′ dx′ = 0.

Thus the first integral above becomes

−
∫

Q

G(x,x′)sin 2πx′sin 2πy′sin 2πz′ dx′

=
∑

(ℓ,m,n) 6=(0,0,0)

ℓ,m,n 6=2

8

π2(ℓ2 +m2 + n2)

(
− 1

π3(ℓ2 − 4)(m2 − 4)(n2 − 4)

)

· 8 · (1− (−1)ℓ)(1− (−1)m)(1− (−1)n) cos ℓπx cosmπy cosnπz.

For the second integral, we note that ∂Q is a union of six squares, namely

{(x, y, z)|x ∈ {0, 1}, (y, z) ∈ [0, 1]2}
∪ {(x, y, z)|y ∈ {0, 1}, (x, z) ∈ [0, 1]2}

∪ {(x, y, z)|z ∈ {0, 1}, (x, y) ∈ [0, 1]2};

these are the left and right, front and back, and top and bottom sides, respectively. Now the part of the
second integral corresponding to the first of these would be

∫ 1

0

∫ 1

0

G(x,x′)|x′=0 dy
′ dz′ +

∫ 1

0

∫ 1

0

G(x,x′)|x′=1 dy
′ dz′

= 8
∑

(ℓ,m,n) 6=(0,0,0)

m,n 6=2

cos ℓπx cosmπy cosnπz

π2(ℓ2 +m2 + n2)
(1 + (−1)ℓ)

∫ 1

0

∫ 1

0

cosmπy′ cosnπz′ dy′ dz′

= 8

∞∑

ℓ=1

1 + (−1)ℓ

π2ℓ2
cos ℓπx,

since the integral is zero unless m = n = 0 (and the final sum begins at ℓ = 1 since we cannot have
ℓ = m = n = 0). Similar results would hold for the integrals over the other pairs of sides. Thus we would
have finally the awe-inspiring (or perhaps, ahem, awe-ful!) expression

u = −
∑

(ℓ,m,n) 6=(0,0,0)

ℓ,m,n 6=2

64(1− (−1)ℓ)(1− (−1)m)(1− (−1)n)

π5(ℓ2 +m2 + n2)(ℓ2 − 4)(m2 − 4)(n2 − 4)
cos ℓπx cosmπy cosnπz

+ 8

∞∑

ℓ=1

1 + (−1)ℓ

π2ℓ2
cos ℓπx+ 8

∞∑

m=1

1 + (−1)m

π2m2
cosmπy + 8

∞∑

n=1

1 + (−1)n

π2n2
cosnπz.

[The above solution would not be unique since adding any constant to it will give another solution
to the original problem. This constant could be fixed by giving another condition such as the condition
u(12 ,

1
2 ,

1
2 ) = 0 which we had in problem 1 of homework 10.]

Unfortunately the above procedure fails to actually give a solution, partly because the problem as stated
has in fact no solution (your instructor apparently failed to notice this somehow). The reason for this is easy
to see once one thinks about it for a bit. We have the problem

∇2u = sin 2πxsin 2πysin 2πz,
∂u

∂n

∣∣∣∣
∂Q

= 1.
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Let us integrate ∇2u over Q and apply the divergence theorem:

∫

Q

∇2u dx =

∫

Q

∇ · ∇u dx

=

∫

∂Q

n · ∇u dx =

∫

∂Q

∂u

∂n
dS

=

∫

∂Q

1 dS = 6;

but we have also ∫

Q

∇2u dx =

∫

Q

sin 2πxsin 2πysin 2πz dx

= 0,

a contradiction. In other words, the problem

∇2u = f,
∂u

∂n

∣∣∣∣
∂Q

= g

must satisfy the consistency condition ∫

Q

f dx =

∫

∂Q

g dS

in order to have a solution. (This is an extension of the condition (f, eI) = 0 for I such that λI = 0 which we
derive in the Appendix.) Since the given f and g do not satisfy this condition, this problem has no solution
as stated. We apologise.

2. Using Fourier transforms in space, solve the problem on (0,+∞)×R3

∂u

∂t
= ∇2u+

1√
t
e−

x2

4t , u|t=0 = 0.

[It is worth considering what would happen if a factor other than 4 were used in the exponent above; but
the calculations would become far more involved.]

This problem is actually quite easy (particularly compared to the previous one!). First we recall (see
the solutions to Homework 10) that on R3

F
[
e−a|x|

2
]
(k) =

(π
a

) 3
2

e−
π2|k|2

a ;

an exactly analogous result holds for the inverse Fourier transform:

F−1
[
e−a|k|

2
]
(x) =

(π
a

) 3
2

e−
π2|x|2

a

(this can either be seen by turning the first result above backwards – i.e., by replacing a by π2

a and moving
the multiplicative factor to the left-hand side – or by noting that for a real-valued function f

F−1[f ](x) = F [f ](x).)

Thus, assuming that u and sufficiently many of its derivatives have Fourier transforms, we may take the
Fourier transform of the above problem to obtain

∂û

∂t
= −4π2|k|2û+ 1√

t
(4πt)

3
2 e−4π2|k|2t, û|t=0 = 0;
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multiplying the first equation by e4π
2|k|2t and rearranging gives

∂

∂t

(
e4π

2|k|2tû
)
= (4π)

3
2 t

û = 4π
3
2 t2e−4π2|k|2t,

so, taking the inverse Fourier transform, we obtain

u = 4π
3
2 t2
( π

4π2t

) 3
2

e−
x2

4t = 4π
3
2 t2t−

3
2 (4π)−

3
2 e−

x2

4t =

√
t

2
e−

x2

4t .

If the coefficient in the exponent in the original problem were not 1
4 , the Gaussian factors would not cancel,

but we would still be able to integrate because of the t factor. (Note that if we were working in any dimension
other than 3 the t factor would become tα for some α 6= 1, and we would not in general be able to integrate
in closed form.)

3. [Optional.] By analogy with our derivation in class of the eigenfunctions of the Laplacian on the cylinder
C, derive the eigenfunctions and eigenvalues of the Laplacian on the disk D = {(r, θ)|r < 1} satisfying
Dirichlet boundary conditions. Now consider the wave equation on D with Dirichlet boundary conditions:

∂2u

∂t2
= ∇2u, u|∂D = 0.

Find the set of all possible frequencies f such that the above problem has a solution of the form e2πiftΦ(r, θ)
for some function Φ(r, θ). These are the natural frequencies for a circular drumhead: they are the frequencies
at which it can oscillate continuously (ignoring losses due to heating in the drumhead and the transmitting
of energy from the drumhead to the air to create the sound waves which we actually hear, of course). Any
forced motion at another frequency would rapidly die out.

[Sketch.] Since the Laplacian in polar coordinates is the same as the Laplacian in cylindrical coordinates

except that it lacks the ∂2

∂z2 term, we see the the eigenfunctions for the Laplacian in polar coordinates are
simply

Jm(λmiρ) cosmφ, Jm(λmiρ)sinmφ,

with eigenvalues
λ = −λ2mi.

(It is worthwhile to derive these results by working directly from separation of variables in polar coordinates.)
Now suppose that we have a solution u to the above problem which is of the form u = e2πiftΦ(r, θ);
substituting in, we obtain for Φ the problem

−4π2f2Φ = ∇2Φ, Φ|∂D = 0.

The left-hand equation here is known as the Helmholtz equation, and is easily seen to be simply the eigenvalue
problem for the Laplacian on the unit disk. By the foregoing, then, we see that we must have, for some m,
i,

−4π2f2 = −λ2mi,

f = ± 1

2π
λmi.

[We now have enough background to appreciate at least part of the following question, which arises in the
study of inverse problems, and was posed by the mathematician Mark Kac: Can one hear the shape of a drum?
More precisely, suppose that for some region D in the plane we are given the set of all possible frequencies
f for which the wave equation on D possesses solutions with the single frequency f , i.e., possesses solutions
of the form above, e2πiftΦ(r, θ). The question then is whether this set of frequencies uniquely determines D.
(More generally, one considers a so-called Riemannian manifold and the generalised Laplacian on it.) The
answer, as the author saw it put in a course prospectus when he was at Cambridge a long time ago, is No,
but Almost Yes. Unfortunately that about exhausts the knowledge of the current author on the subject!]
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Appendix: Green’s functions in the presence of zero eigenvalues. Let us suppose that the eigenvalue problem

∇2u = λu,
∂u

∂n

∣∣∣∣
∂D

= 0

on some region D has a zero eigenvalue, i.e., that there is a nonzero function e which satisfies the above
with λ = 0. We would like to find a Green’s function in this case; but the standard formula would involve
a division by zero, as noted in the solutions to problem 1 above. To derive an appropriate formula for the
solution in this case, we go back to first principles. Suppose that {eI} is a complete set of eigenfunctions
for the above problem with (eI , eI) = 1, with corresponding eigenvalues λI . Let I0 = {I|λI = 0}. Let us
consider first the homogeneous problem

∇2u = f,
∂u

∂n

∣∣∣∣
∂D

= 0.

If we write f =
∑

I bIeI , u =
∑

I aIeI , then substituting in gives
∑

I

λIaIeI =
∑

I

bIeI .

Since {eI} is an orthogonal set of nonzero functions, this gives for I /∈ I0 that aI =
1
λI
bI , which is the same

as we had before. If, however, I ∈ I0, then this relation gives instead bI = 0; i.e., it becomes a restriction
on the functions f for which the problem has a solution, rather than information about the solution. We
assume that f is such that bI = (f, eI) = 0 for all I ∈ I0, so that this condition is satisfied. We note also
that aI is undetermined for I ∈ I0. Thus we may write

u =
∑

I /∈I0

1

λI
bIeI +

∑

I∈I0

aIeI .

The second sum can only be determined by auxiliary information (for example, in problem 1 of homework
10 the condition u(12 ,

1
2 ,

1
2 ) = 0 allowed us to determine that part of the sum). Thus here we drop it and

consider only the first term. We have, as in our previous derivation of the Green’s function, that (assuming
as usual that we may interchange integration and summation)

u =
∑

I /∈I0

1

λI

∫

D

f(x′)eI(x′) dx′eI(x) =
∫

D

f(x′)


∑

I /∈I0

eI(x)eI(x′)
λI


 dx′.

This suggests that we should take as the Green’s function

G(x,x′) = −
∑

I /∈I0

eI(x)eI(x′)
λI

.

This satisfies a homogeneous Neumann condition by construction. Now if we proceed formally as in our
original derivation of a Green’s function, we may write

∇2
xG(x,x

′) = −
∑

I /∈I0

eI(x)eI(x′);

since for any f satisfying (f, eI) = 0 when I ∈ I0 we have

f(x) =
∑

I

(f, eI)eI =
∑

I /∈I0

∫

D

f(x′)eI(x′) dx′eI(x)

=

∫

D

f(x′)


∑

I /∈I0

eI(x)eI(x
′)


 dx′,

we see that as long as we restrict to functions satisfying the above condition we may write ∇2
xG(x,x

′) =
−δ(x − x′), as before. Examining the proof of the relation used in the solution of problem 1 above in this
case, we see that it also holds if we assume that u likewise satisfies (u, eI) = 0 for I ∈ I0. This justifies the
solution given above.
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Summary:
• We provide some analogies between our work with Fourier transforms and our previous work with
orthogonal expansions.

• We then derive the eigenfunctions for the Laplacian on a disk with Dirichlet boundary conditions and
use them together with Fourier transforms to study the wave equation on a disk.

• Finally, we derive the solution to the initial value problem for the wave equation on R3 (and indicate
how to derive a similar formula in dimensions 1 and 2). We indicate its qualitative content and sketch
an example of its use. In an appendix, we show how to use similar methods to solve the inhomogeneous
wave equation.

ANALOGIES BETWEEN FOURIER TRANSFORM METHODS AND ORTHOGONAL EXPANSIONS.
Suppose that D is some bounded region in Rm, and that {eI}I∈I is a complete orthonormal set of
eigenfunctions for the Laplacian on D with homogeneous Dirichlet boundary conditions, for some set
I. Then we know that any ‘reasonable’ function can be expanded as a series u =

∑
I∈I uIeI , where

uI = (u, eI) =
∫
D u(x)eI(x) dx. Now we may view the coefficients uI as giving a function from the set of

indices I to the complex numbers C (for the problems we have dealt with, the coefficients have generally
been real; this is because we have used real functions u and real eigenfunctions eI); we shall write such a
function as ũ : I → C, so that ũ(I) = (u, eI). Let us denote the set of all such sequences by CI (there is a
nice sense in which this set is a Cartesian product of I copies of C, but it veers off into set theory and we
shall not treat it here). Then the foregoing shows that we may define a transform O : L1(D) → CI1 by

O[u](I) = ũ(I) = (u, eI) =

∫

D

u(x)eI(x) dx;

in other words, O[u] is the function from I to C which, for every I ∈ I, gives the coefficient (u, eI). (If the

set {eI}I∈I were not assumed to be normalised, then of course we would use (u,eI)
(eI ,eI)

instead here.) We then

have the expansion

u(x) =
∑

I∈I
O[u](I)eI(x).

Suppose that we let O ⊂ CI denote the set of maps v : I → C such that the series
∑

I∈I
v(I)eI(x)

converges in some appropriate sense, and such that this sum is in L1(D);2 then we expect that O actually
maps into O (much as we were able to show that F actually maps into Cb(R

m)). If we now define the map

O−1 : O → L1(D)

by

O−1[v](x) =
∑

I∈I
v(I)eI(x),

then we see that (as our notation indicates) O−1[O[u]](x) = u(x), O[O−1[v]](I) = v(I), i.e., that O−1 is
actually an inverse to O.

We may make the following comparison between the foregoing and the Fourier transform:

F [f ](k) =

∫

Rm

f(x)e−2πik·x dx = f̂(k)

F−1[f̂ ](x) =

∫

Rm

f̂(k)e2πik·x dk = f(x)

O[u](I) =

∫

D

u(x)eI(x) dx = ũ(I)

O−1[ũ](I) =
∑

I∈I
ũ(I)eI(x) = u(x)

1As with the Fourier transform, which, we recall, we showed in the previous set of lecture notes could be
viewed as a map F : L1(Rm) → Cb(R

m), one can define O for various different function spaces. We use
L1(D) here for convenience; doing so requires only that the eigenfunctions of the Laplacian are bounded on
D, which is true for all of the cases we have studied in this course.
2Again, the exact spaces used here are not as important as the general idea.



APM346, 2019 August 6 – August 8 Nathan Carruth

The transform O possesses some (though certainly not all) of the properties of the transform F . As an
example, we compute the transform of the Laplacian of a function. (As usual, we assume that all relevant
transforms exist.) This can be done two ways. The way most closely related to our derivation of a similar
property for the Fourier transform is as follows (note that this is the first place we use the fact that the
eigenfunctions satisfy homogeneous Dirichlet boundary conditions):

O[∇2u](I) =

∫

D

∇2u(x)eI(x) dx =

∫

D

∇ ·
(
∇u(x)eI(x)

)
−∇u(x) · ∇eI(x) dx

=

∫

∂D

n · ∇u(x)eI(x) dS −
∫

D

∇ ·
(
u(x)∇eI(x)

)
− u(x)∇2eI(x) dx

= −
∫

∂D

u(x)n · ∇eI(x) dS +

∫

D

u(x)∇2eI(x) dx =

∫

D

u(x)λIeI(x) dx

= λI

∫

D

u(x)eI(x) dx = λIO[u](I);

here we assume that, since u is a series of functions satisfying homogeneous Dirichlet boundary conditions,
it satisfies them itself. This result should be compared to the corresponding result for the Fourier transform:

F [∇2u](k) = −4π2|k|2F [u](k).

Another way of deriving the above result for O[∇2u](I) which is much closer to our usual methods for
manipulating orthogonal expansions (and also more general) is as follows. Writing ũ(I) = O[u](I), we have

u(x) =
∑

I∈I
ũ(I)eI(x);

assuming that we may differentiate term-by-term, we have

∇2u(x) =
∑

I∈I
ũ(I)∇2eI(x) =

∑

I∈I
λI ũ(I)eI(x).

But this shows that

O[∇2u](I) = (∇2u, eI) =

(∑

J∈I
λJ ũ(J)eJ , eI

)

= λI ũ(I) = λIO[u](I),

by our usual manipulations with orthogonal expansions. This is our desired result.
The other major property of the Fourier transform, that of turning convolution into multiplication, does

not have so happy a fate with O; the details are quite beyond the scope of this course, but we provide an
outline in Appendix I at the end for those who are interested. (This Appendix can be skipped entirely,
though it does give another perspective on where convolution comes from.)

Given this property, we may proceed to solve the heat equation using O in a fashion exactly analogous
to that by which we solved the heat equation using F . To this end, consider the problem

∂u

∂t
= ∇2u, u|t=0 = f, u|∂D = 0.

If we apply O to the entire problem, we obtain the transformed problem

∂ũ(t, I)

∂t
= λI ũ(t, I), ũ|t=0 = f̃(I);

from this we easily obtain
ũ(t, I) = f̃(I)eλIt,
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whence
u = O−1[ũ](x) =

∑

I∈I
f̃(I)eλI teI(x),

where
f̃(I) = (f, eI).

This is identical to the result we obtained by our usual methods (see, for example, our treatment of the heat
equation on the cube in the lecture notes for July 9 – 11).

The point of this is to try to make the Fourier method a little bit more understandable, rather than to
suggest that we ought to use this method with orthogonal expansions! (Though we certainly can if we like.)

EIGENFUNCTIONS AND EIGENVALUES FOR THE LAPLACIAN ON A DISK. LetD = {(ρ, φ)|ρ < a},
for some positive number a, and consider the problem

∇2u = λu, u|∂D = 0.

Now the Laplacian in polar coordinates can be obtained from the Laplacian in cylindrical coordinates by

dropping the final ∂2

∂z2 ; thus this equation becomes

∂2u

∂ρ2
+

1

ρ

∂u

∂ρ
+

1

ρ2
∂2u

∂φ2
= λu.

We proceed as usual by looking for separated solutions to this equation. Thus suppose that u = P (ρ)Φ(φ);
substituting in and dividing through by u then gives

P ′′

P
+

1

ρ

P ′

P
+

1

ρ2
Φ′′

Φ
= λ.

As usual, since only the term Φ′′

Φ depends on φ, it must be constant; and since φ is an angular variable which
is only defined up at an additive term of a multiple of 2π, our usual logic shows that this constant must be
the negative square of an integer, i.e., that there must be an m ∈ Z such that Φ′′

Φ = −m2. From this we
obtain readily the two solutions Φ1(φ) = cosmφ, Φ2(φ) = sinmφ. Substituting this back in, we obtain for
P

P ′′

P
+

1

ρ

P ′

P
− m2

ρ2
= λ,

or

P ′′ +
1

ρ
P ′ +

(
−λ− m2

ρ2

)
P = 0.

This is seen, after scaling by
√
−λ, to be simply Bessel’s equation; in other words, we must have

P (ρ) = Jm(
√
−λρ).

Somewhat more carefully: if −λ ≥ 0 then we obtain the above formula; if −λ < 0 then we would obtain
Im(

√
λρ). Since we require homogeneous Dirichlet boundary conditions on the boundary, i.e., at ρ = a, we

must choose Jm and not Im. This forces λ ≤ 0, say λ = −µ2. Now the boundary condition gives

P (a) = Jm(µa) = 0,

whence we see that µ = λmi

a for some i, where λmi denotes as usual the ith positive zero of Jm. Thus we
have the eigenfunctions

Jm

(
λmi
a
ρ

)
cosmφ, Jm

(
λmi
a
ρ

)
sinmφ,

with the eigenvalues

λ = −λ
2
mi

a2
.



APM346, 2019 August 6 – August 8 Nathan Carruth

This set of eigenfunctions is seen to be complete, since the Bessel function factors are in ρ.

THE WAVE EQUATION ON A DISK. The wave equation,

1

c2
∂2u

∂t2
= ∇2u,

describes the motion of waves on elastic membranes, in gasses and fluids, and in various other circumstances
(at least as long as the quantity u is not large so that nonlinear effects can be neglected). Here c is a
parameter called the wave speed (we shall see the reason for this terminology later, when we discuss the
wave equation on Rm); we shall occasionally set it equal to 1 for convenience – any formula with c = 1 can
be turned into a formula for general c by multiplying t by c at each occurrence. Now consider the following
problem on (0,+∞)×D:

∂2u

∂t2
= ∇2u, u|∂D = 0;

this problem could describe the vibrations of a circular drumhead (in that case, u would represent the vertical
deflection from the equilibrium plane of the drumhead, so the Dirichlet condition u|∂D = 0 means physically
that the edge of the drumhead is fixed and immobile). Here we have specified no initial conditions. If we
Fourier transform in t, we obtain, using f as our Fourier variable,

−4π2f2û = ∇2û, û|∂D = 0;

from this we see that −4π2f2 must be an eigenvalue of the Laplacian on D, which means that we must have

f = ±λmi
2πa

for some m and i; more specifically, for f not of this form we must have û(f,x) = 0 for all x. While we shall
not pause to give a precise derivation of the following, this means that any solution u must be simply a sum
(rather than an integral) over frequencies; specifically, since 2πiλmi

2πa t =
iλmit
a , we have

u(t,x) =

∞∑

m=0

∞∑

i=1

Jm

(
λmi
a
ρ

)[
e

iλmit

a (ami cosmφ+ bmisinmφ) + e−
iλmit

a (cmi cosmφ+ dmisinmφ)
]
.

Here the coefficients can be complex to make u real.
Let us now consider the slightly different problem

∂2u

∂t2
= ∇2u, u|t=0 = f,

∂u

∂t

∣∣∣∣
t=0

= g, u|∂D = 0.

For this problem we shall begin by expanding u in a series in terms of the eigenfunctions found above. We
could proceed in the usual fashion; for the sake of illustration, we shall use the transform O introduced
above. Transforming with O, the above problem becomes

∂2ũ

∂t2
= −λ

2
mi

a2
ũ, ũ|t=0 = f̃ ,

∂ũ

∂t

∣∣∣∣
t=0

= g̃.

From the equation, we see that the general solution is of the form (writing I = (m, i, σ), where σ = 1 for the
eigenfunction with cosmφ and σ = −1 for the eigenfunction with sinmφ)

ũ(t, I) = a(I) cos
λmi
a
t+ b(I)sin

λmi
a
t;

applying the initial conditions gives

ũ|t=0 = a(I) = f̃(I),

∂ũ

∂t

∣∣∣∣
t=0

=
λmi
a
b(I) = g̃(I),

b(I) =
a

λmi
g̃(I),
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so that

ũ(t, I) = f̃(I) cos
λmi
a
t+ g̃

a

λmi
sin

λmi
a
t,

and the solution is

u(t,x) =
∞∑

m=0

∞∑

i=1

[[
f̃(m, i, 1) cos

λmi
a
t+ g̃(m, i, 1)

a

λmi
sin

λmi
a
t

]
Jm

(
λmi
a
ρ

)
cosmφ

+

[
f̃(m, i,−1) cos

λmi
a
t+ g̃(m, i,−1)

a

λmi
sin

λmi
a
t

]
Jm

(
λmi
a
ρ

)
sinmφ

]
.

The same result could of course be obtained by our usual methods. We now give a specific example.

EXAMPLE. Solve the following problem on D:

∂2u

∂t2
= ∇2u, u|t=0 = 1,

∂u

∂t

∣∣∣∣
t=0

= 0, u|∂D = 0.

We first determine the transform O[1]:

O[1](m, i,±1) =
2

(cosmφ, cosmφ)a2J2
m+1(λmi)

∫

D

Jm

(
λmi
a
ρ

){
cosmφ
sinmφ

dx,

whence we see that O[1](m, i,±1) = 0 unless m = 0 and we take the +1 in the third slot, and that in that
case

O[1](0, i, 1) =
1

πa2J2
1 (λ0i)

∫ 2π

0

∫ a

0

J0

(
λ0i
a
ρ

)
ρ dρ dφ

=
2

a2J2
1 (λ0i)

a2

λ20i
(xJ0(x)) |λmi

0 =
2

λ0iJ1(λ0i)
;

we note that the factors of a cancel only because of the value ofm involved. Clearly O[0] = 0, so substituting
back into the general formula above, we have the solution

u(t,x) =
∞∑

i=1

2

λ0iJ1(λ0i)
cos

λ0i
a
tJ0

(
λ0i
a
ρ

)
.

This is, of course, what we would expect to obtain had we started by writing out the general series expansion
for u and then substituted it into the equation.

THE WAVE EQUATION ON Rm. We now come to the last major topic of the course, namely the treatment
of the initial value problem for the wave equation on Rm. Thus we seek solutions to the following problem:

∂2u

∂t2
= ∇2u, u|t=0 = f,

∂u

∂t

∣∣∣∣
t=0

= g.

(The treatment of the nonhomogeneous version, where there is a term F added to the right-hand side, is
beyond the scope of the course proper but will be sketched in Appendix II.) We approach this problem in
a fashion analogous to that in which we approached the corresponding version on D. We begin by Fourier
transforming:

∂2û

∂t2
= −4π2|k|2û, û|t=0 = f̂ ,

∂û

∂t

∣∣∣∣
t=0

= ĝ.

Now the first equation above clearly has the general solution

û(t,k) = a(k) cos 2π|k|t+ b(k)sin 2π|k|t,
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where a(k) and b(k) are two arbitrary functions. Applying the initial conditions, we obtain

û|t=0 = a(k) = f̂(k),

∂û

∂t

∣∣∣∣
t=0

= 2π|k|b(k) = ĝ(k),

b(k) =
1

2π|k| ĝ(k),

so that

û(t,k) = f̂(k) cos 2π|k|t+ ĝ(k)
sin 2π|k|t
2π|k| ,

exactly analogous to the result we obtained above on D. (We note also that the above function is defined
for all k, even though b(k) as given above is undefined for k = 0.) We note that the result here is valid
for all m; thus the Fourier transform of the solution does not depend in any way on the dimension of the
space involved. (This is analogous to the situation for Poisson’s equation: if one solves ∇2u = f by Fourier
transform, one finds u = − 1

4π2|k|2 f(k), regardless of the dimension.)

We would now like to take the inverse Fourier transform of the above expression. Now the properties
of the Fourier transform show that

F−1[f̂ ĝ](x) = (f ∗ g)(x)

for any appropriate functions f and g; thus if we could recognise the two functions cos 2π|k|t and sin 2π|k|t
2π|k|

as Fourier transforms, we would be able to write u as a sum of two convolution integrals. We note that the
former is the time derivative of the latter, which suggests that we start with the latter function. This is
where the dimension of the space comes into play. The main case for us here will be m = 3 (and this is the
only case we covered systematically in class), but we shall indicate what happens when m = 1 or m = 2.3

Let us denote the inverse transform we seek by M(t,x); then

M(t,x) = F−1

[
sin 2π|k|t
2π|k|

]
(x)

=

∫

Rm

sin 2π|k|t
2π|k| e2πik·x dk.

Before proceeding, we note that this function is real: its conjugate is just

∫

Rm

sin 2π|k|t
2π|k| e2πik·x dk,

which can be turned back into the original integral by using the substitution k′ = −k. This will be important
below. Now it can be shown that for any m > 1 (we shall say more about the case m = 1 below), the m-
dimensional volume element dk can be decomposed into the following (for simplicity, we shall write k = |k|
where convenient):

dk = km−1 dk dΩ,

where dΩ is an angular element; when m = 2 it is simply dθ, while when m = 3 it is sin θdθdφ (this is called
an element of solid angle, in analogy with the element of angle dθ which one obtains in the case m = 2); when

3We shall not, however, treat higher values of m since these involve progressively more pathological ‘func-
tions’: we shall see in a moment that when m = 3 we get a Dirac delta function; for m = 5 we would get
a second derivative of a Dirac delta function, and so on. (Even dimensions turn out to be somewhat more
complicated than odd dimensions.) While these derivatives can be defined in a rigorous sense, doing so is
beyond the scope of this course.
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m > 3 it is a similar angular measure in m−1 angular variables obtained by parametrising the m−1-sphere.
(For example, we may parametrise the 4-sphere thus (letting ψ represent the normal polar angle in 3-space):

w = cos θ

z = sin θ cosψ

x = sin θsinψ cosφ

y = sin θsinψsinφ,

and for higher dimensions we may proceed by induction.) This general parametrisation is not important,
beyond knowing that for allm we can parametrise it in such a way that, for fixed x, we have (writing r = |x|)

k · x = |k|r cos θ

where θ is one of the angles parametrising the m − 1-sphere, and which runs from 0 to π. (This is clearly
true for m = 2 in polar coordinates – taking the x axis along x – and for m = 3 in spherical coordinates
– take the z axis along x – and these are the only situations we are really concerned with here.) Thus we
may rewrite the above integral as, letting S1 denote the unit m− 1-sphere (the unit circle if m = 2, the unit
sphere if m = 3) ∫

S1

∫ ∞

0

sin 2πkt

2πk
e2πikr cos θkm−1 dk dΩ.

Now as noted above, this integral is always a real number; thus we may replace the complex exponential
with its real part, obtaining

∫

S1

∫ ∞

0

sin 2πkt

2πk
cos (2πkr cos θ) km−1 dk dΩ.

Now if m is odd (for example, if m = 3), the integrand is an even function of k, so this integral equals

1

2

∫

S1

∫ ∞

−∞

sin 2πkt

2πk
cos (2πkr cos θ) km−1 dk dΩ =

∫

S1

∫ ∞

−∞

sin 2πkt

2πk
e2πikr cos θkm−1 dk dΩ.

The point behind all of these manipulations is that the integral over k here is now quite clearly the inverse
Fourier transform of the function km−1 sin 2πkt

2πk on R1, evaluated at the point r cos θ – in other words, we
have reduced a three-dimensional inverse Fourier transform to a one-dimensional one. The factor of km−1

indicates that the inverse transform of this function will be the m−1th derivative of the inverse transform of
sin 2πkt

2πk , which we now derive. (This is the reason why the functionM becomes increasingly less well-behaved
in higher dimensions.)

Directly calculating the inverse Fourier transform of sin 2πkt
2πk is not easy, so we shall proceed as we did

in class by finding a function whose Fourier transform it is. Let

χ(x) = χ[−t,t](x) =

{
1, x ∈ [−t, t]
0, x /∈ [−t, t] ;

χ is just a rectangular bump function. The Fourier transform of χ is

F [χ](k) =

∫ ∞

−∞
χ(x)e−2πikx dx =

∫ t

−t
e−2πikx dx =

∫ t

−t
cos 2πkx dx

=
sin 2πkx

2πk

∣∣∣∣
t

−t
=

sin 2πkt

πk
,

where we have made use of the fact that cos is an odd function and sin an even function. Thus we see that

F−1

[
sin 2πkt

2πk

]
(x) =

1

2
χ(x).
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It is worth noting that, were we working in dimensionm = 1, this would be the only inverse Fourier transform
we would need, i.e., this would be our function M . We shall not give the details here.

From this we obtain (pretending for the moment that χ is a twice-differentiable function, even though
it is not even continuous at x = ±t)

F−1

[
k2

sin 2πkt

2πk

]
(x) = − 1

4π2
F−1

[
−4π2k2

sin 2πkt

2πk

]
(x)

= − 1

8π2
χ′′(x),

and we see that our function M is

M = − 1

16π2

∫ 2π

0

∫ π

0

χ′′(r cos θ)sin θ dθ dφ

= − 1

8π

[
−1

r
χ′(r cos θ)

]∣∣∣∣
θ=π

θ=0

= − 1

8πr
· 2χ′(r) = − 1

4πr
χ′(r),

where we have used the fact that χ′ is odd since χ is even (again, pretending that χ′ were a normal
function!). We are, now, thus faced with the task of computing χ′(r), for r > 0 (remember that r = |x|).
Clearly χ′(r) = 0 for r 6= t. We claim that in fact χ′(r) = −δ(r − t). The simplest way to see this is as
follows. Let H denote the Heaviside function

H(x) =

{
0, x < 0
1, x > 0

.

Now suppose that H ′ could be defined in such a way that integration by parts were still valid4, if f were
any function vanishing as x→ ∞, we would have

∫ ∞

−∞
H ′(x)f(x) dx = H(x)f(x)|∞−∞ −

∫ ∞

−∞
H(x)f ′(x) dx

= −
∫ ∞

0

f ′(x) dx = −f(x)|∞0 = f(0),

so that H ′(x) does indeed behave as a delta function. Now on r > 0, we have χ(r) = H(t−r), so (proceeding
formally) we have χ′(r) = −H ′(t− r) = −δ(t− r) = −δ(r− t), as claimed. [Another, perhaps more rigorous,
way of seeing this is as follows. Let {φn} be the approximate identity given by

φn(x) = nπ− 1
2 e−n

2x2

,

and define

Φn(x) =

∫ x

0

φn(u) du;

then we have, doing a change of variables to v = nu,

Φn(x) =

∫ nx

0

φ(v) dv,

whence it is evident that for x > 0 we have Φn(x) → 1
2 as n→ ∞, while Φn(x) → − 1

2 as n→ −∞; in other
words, we have for all x 6= 0 the limit

lim
n→∞

Φn(x) = H(x)− 1

2
.

4This is in fact the way in which differentiation of functions such as H and ‘functions’ (distributions) such as
δ may be defined rigorously: one requires that the normal integration-by-parts formulas hold and proceeds
formally.
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Thus, assuming that we can interchange differentiation with the limit, we obtain

H ′(x) = lim
n→∞

Φ′
n(x) = lim

n→∞
φn(x),

and this latter limit ‘is’ just the delta function δ(x) since {φn} is an approximate identity.] Thus, finally, we
have for M

M(t,x) =
1

4π|x|δ(|x| − t) =
1

4πt
δ(|x| − t).

The inverse transform of ĝ sin 2π|k|t
2π|k| , which we shall denote u2(t,x), is thus equal to the convolution integral

1

4πt

∫

R3

g(x− x′)δ(|x′| − t) dx′.

Let us now set up a spherical coordinate system in x′; then the above integral becomes

1

4πt

∫ 2π

0

∫ π

0

∫ ∞

0

g(x− x′)δ(r′ − t)r′
2
dr′sin θ′ dθ′ dφ′ =

1

4πt

∫ 2π

0

∫ π

0

∫ ∞

0

g(x− x′)δ(r′ − t) dr′t2 sin θ′ dθ′ dφ′

=
1

4πt

∫

St(0)

g(x− x′) dS′ =
1

4πt

∫

St(x)

g(x′′) dS′′,

where in the last equation we have made the substitution x′′ = x − x′, which translates the sphere St(0)
to the sphere St(x). (Here St(x) = {x′||x − x′| = t} is the sphere – not ball! – of radius t centred at x.)
The second-to-last equality holds for the following reasons: first of all, the delta function forces the point
x′ in g(x− x′) to lie on the sphere; second, the remaining parts of the volume element, t2sin θ′ dθ′ dφ′, give
exactly the surface area element on a sphere of radius t.

This is thus the desired formula for the inverse Fourier transform of the second part of our expression
for û obtained above.

To work out the first part, we proceed rather formally as follows, assuming that we can interchange
F−1 and ∂

∂t :

F−1
[
f̂(k) cos 2π|k|t

]
(x) =

∂

∂t
F−1

[
f̂(k)

sin 2π|k|t
2π|k|

]
(x)

=
∂

∂t

[
1

4πt

∫

St(x)

f(x′) dS′
]
.

Thus finally we have the following formula for u:

u(t,x) =
∂

∂t

[
1

4πt

∫

St(x)

f(x′) dS′
]
+

1

4πt

∫

St(x)

g(x′) dS′;

or, putting back in the speed c,

u(t,x) =
1

c

∂

∂t

[
1

4πct

∫

Sct(x)

f(x′) dS′
]
+

1

4πct

∫

Sct(x)

g(x′) dS′. (1)

We note a qualitative result which follows from this: the solution u at a point x and a time t only depends
on the initial data on (or, at any rate, in the case of f , infinitesimally close to) the sphere (not the ball!) of
radius ct centred at x – in other words, on the initial data on the set of points exactly a distance ct from
the point x. This means that signals propagate at exactly the speed c. (As mentioned in class – though the
derivation does not follow in the way indicated there, since the function km−1 becomes odd and one cannot
extend the integral to all of R1 as done here and suggested there – this property of the wave equation does
not hold in two dimensions; and the author has seen it suggested that this is the reason why thunder is
usually heard to continue even though the lightning flash (and hence the source of the thunder) is essentially
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instantaneous: a lightning flash – and hence the intial data for the thunder – is essentially a long straight
line, meaning that the source will possess cylindrical symmetry, and the wave will be essentially the same as
a two-dimensional wave.)

We now give a concrete example.

EXAMPLE. Solve the following problem on R3:

∂2u

∂t2
= ∇2u, u|t=0 = 0,

∂u

∂t

∣∣∣∣
t=0

=

{
1, |x| ≤ 1
0, |x| > 1

.

Let g(x) = ∂u
∂t

∣∣
t=0

. By our foregoing work, it suffices to evaluate integrals of the type

∫

St(x)

g(x′) dS′;

but a little reflection shows that this is just the area of that part of St(x) which lies inside the unit ball
B1(0) = {x||x| ≤ 1}. This is thus a problem in geometry rather than calculus. We may distinguish four
separate cases: (i) Bt(x) ⊂ B1(0); (ii) B1(0) ⊂ Bt(x); (iii) B1(0) ∩Bt(x) = ∅; (iv) everything else. For case
(i) to hold we must have |x|+ t ≤ 1, for then |x−x′| < t implies |x′| < t+ |x| < 1; also, in this case we have
clearly ∫

St(x)

g(x′) dS′ = area(St(x)) = 4πt2.

For case (ii) to hold we must have t − |x| ≥ 1, for then |x′| < 1 implies |x′ − x| ≤ |x′| + |x| < 1 + |x| < t;
and the integral will vanish unless x = 0 and t = 1, in the which case it equals 4π. For case (iii) to hold we
must have |x| − t ≥ 1, for then |x′| < 1 implies |x′ − x| ≥ |x| − |x′| ≥ 1 + t − |x′| > t; and in this case the
integral is also clearly zero. Finally, in case (iv) we have |x|+ t > 1, |t− |x|| < 1, and we see geometrically
(try drawing a picture of the situation in two dimensions!) that the intersection of St(x) with B1(0) is a
spherical cap with central half-angle θ satisfying

1 = |x|2 + t2 − 2t|x| cos θ,

i.e., cos θ = |x|2+t2−1
2t|x| . The area of such a spherical cap is given by

∫ 2π

0

∫ θ

0

t2sin θ′ dθ′ dφ′ = 2πt2
∫ 1

cos θ

dx = 2πt2(1 − cos θ)

= 2πt2
2t|x| − |x|2 − t2 + 1

2t|x| =
πt

|x|
(
1− (t− |x|)2

)
.

We thus see that the second part u2 of the solution u depends only on x (which makes sense, since the
original problem was spherically symmetric), and that we have in particular (remembering the overall factor
of 1

4πt )

u2(t,x) =
1

4πt





4πt2, |x|+ t ≤ 1
πt
|x|
(
1− (t− |x|)2

)
, |x|+ t > 1, |t− |x|| < 1

0, otherwise

=





t, |x|+ t ≤ 1
1−(t−|x|)2

4|x| , |x|+ t > 1, |t− |x|| < 1

0, otherwise

.

Since in this case f = 0, the first part of the solution will vanish and the above formula for u2 gives in fact
the full solution u. Let us consider what it means qualitatively. Let us fix some observation point x and
consider u(t,x) as a function of t only. We identify two cases: (i) |x| ≤ 1; (ii) |x| > 1. In case (i), we see that
at time t = 0 we have u = 0, while for t ≤ 1 − |x| we have u(t,x) = t by the above formula. Now suppose
that t > 1 − |x|, but that we still have |t − |x|| < 1: this means that −1 + |x| < t < 1 + |x|, but the first
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inequality is trivial since −1 + |x| < 0, so only the second inequality is meaningful, and we see that overall

we have |t− 1| < |x|. In this case we have u(t,x) = 1−(t−|x|)2
4|x| , which is a segment of a parabola going from

u(1− |x|,x) = 1− (1− 2|x|)2
4|x| =

4|x| − 4|x|2
4|x| = 1− |x|

to

u(1 + |x|,x) = 1− 1

4|x| = 0.

Finally, if |x| + t > 1 and |t− |x|| ≥ 1, which in this case means (as indicated above) that t > 1 + |x|, then
we have u(t,x) = 0. Thus we have finally

u(t,x) =





t, 0 ≤ t ≤ 1− |x|
1−(t−|x|)2

4|x| , 1− |x| ≤ t ≤ 1 + |x|
0, t ≥ 1 + |x|

;

note that these three functions agree on the endpoints (except in the special case x = 0), so that the resulting
function u is continuous in time. This means that u(t,x) first grows linearly, then drops of quadratically to
zero, and finally stays at zero for all future time.

Now suppose that |x| > 1; in this case, the first case for u2 above never happens, so we are only
concerned with the cases |t− |x|| < 1 and |t− |x|| ≥ 1. The first case gives −1 + |x| < t < 1 + |x|, while the
second case (naturally) gives everything else; thus we have simply

u(t,x) =

{
1−(t−|x|)2

4|x| , −1 + |x| < t < 1 + |x|
0, otherwise

.

In this case, u is zero up to time −1 + |x| (this is the minimum time it takes for a signal to pass from the
unit ball to the point x); it then exhibits a quadratic increase and decrease, before dropping to zero at time
1 + |x| (which is the maximum time it takes for a signal to pass from the unit ball to the point x), after
which it remains zero for all time. In other words, then, at points x outside the unit ball, the solution is a
quadratic pulse of width 2 whose height is inversely proportional to the distance |x| of the point from the
origin.

We may use our work in this example to quickly do one more example, as follows.

EXAMPLE. Solve the following problem on R3:

∂2u

∂t2
= ∇2u, u|t=0 =

{
1, |x| ≤ 1
0, |x| > 1

,
∂u

∂t

∣∣∣∣
t=0

= 0.

In this case only the first term in the solution for u remains, and we have by equation (1)

u(t,x) =





1, |x|+ t < 1
|x|−t
2|x| , |x|+ t > 1, |t− |x|| < 1

0, |x|+ t > 1, |t− |x|| > 1

,

where we have dropped the boundary points since the function u2(t,x) derived above is not in general
differentiable there. If we proceed with the same type of analysis that we performed in the previous example,
we see that for a fixed x with |x| < 1, we have

u(t,x) =





1, 0 ≤ t < 1− |x|
|x|−t
2|x| , 1− |x| < t < 1 + |x|
0, t > 1 + |x|

;

we note that this function is not continuous. Qualitatively, at a point inside the unit ball u is uniformly
equal to 1 until the time 1− |x|, which is the least amount of time required for a signal to pass from outside
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the unit ball to the point x; after that it jumps discontinuously to the value 1 − 1
2|x| , before continually

decreasing up to time t = 1+ |x|, at which point it jumps again from the value − 1
2|x| to 0, where it stays for

all time.
Similarly, for a fixed x with |x| > 1, we have

u(t,x) =

{ |x|−t
2|x| , −1 + |x| < t < 1 + |x|
0, |t− |x|| > 1

,

which is not continuous either. This is a general feature of solutions to the wave equation with discontinuous
initial data: whereas the heat equation smooths out initial discontinuities, the wave equation propagates
them. Qualitatively, in this case we see that u is initially zero, and stays zero until time −1+ |x|, which is the
minimum amount of time required for a signal from inside the unit ball to reach the point x; then it jumps
discontinuously to the value 1

2|x| before decreasing linearly to the value − 1
2|x| at time t = 1 + |x| (which,

similarly, is the maximum amount of time for a signal from inside the unit ball to reach x), whereupon it
jumps discontinuously back to 0. Thus we have again a single pulse, but the front and back edges are now
discontinuous jumps, unlike the previous example.

These two examples end the examinable material for this course. (The last result done in class on
August 8, about solutions to Laplace’s equation, will be added to the notes on Green’s functions.) The
following appendices are not examinable (though some of the formulas in Appendix I may shed light on why
we define convolution the way we do). The author thanks you for your patience, and hopes that you have
gained something from your studies through this course. He would be happy to receive feedback on these
notes at ncarruth@math.toronto.edu.

APPENDIX I. We would like to know what becomes of convolution under O. To do this, we first consider in
more detail exactly how the Fourier transform turns convolution into multiplication. Suppose that f and g
are two suitable functions such that all needed Fourier transforms exist and can be inverted. Then we have

F [f ∗ g](k) =
∫

Rm

[∫

Rm

f(x− x′)g(x′) dx′
]
e−2πik·x dx

=

∫

Rm×Rm

f(x− x′)g(x′)e−2πik·x dx′ dx

=

∫

Rm×Rm

f(x− x′)e−2πik·(x−x′)g(x′)e−2πik·x′
dx′ dx

,

from which the result follows after the change of variables u = x − x′, v = x′. We note that the crucial
property above was that the expansion functions (the analogoues of the eigenfunctions eI) satisfied the
property

e−2πik·x = e−2πik·(x−x′)e−2πik·x′
;

mathematically, if we set for convenience ek(x) = e−2πik·x, then the ek are so-called homomorphisms from the
Abelian group Rm (under vector addition) to the group of complex numbers of unit modulus {z ∈ C||z| = 1}
– in other words, they take addition of vectors to multiplication of complex numbers:

ek(x+ y) = ek(x)ek(y).

Now on a general region D, it does not make sense to ask whether the eigenfunctions eI satisfy a similar
property, since if x, y ∈ D there is no reason at all to expect that x+ y ∈ D.5 Thus there does not appear
to be any way to generalise this property of F to O.

5One could, however, ask whether there were not a more general group structure on D. The mathematical
field of harmonic analysis studies the extension of the transforms here to situations where the domains of
the functions are topological groups. These groups are not, however, in general, open subsets of Rm.
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With some reflection, though, we note that ek(x) is a homomorphism in k as well as in x (this is actually
a rather trivial observation, since k and x appear in ek(x) interchangeably, i.e., ek(x) = ex(k)):

ek+l(x) = ek(x)el(x).

From this we can show that the inverse Fourier transform also maps convolutions to products: suppose that
we have two Fourier representations

f(x) =

∫

Rm

f̂(k)e−2πik·x dk, g(x) =

∫

Rm

ĝ(k′)e−2πik′·x dk′;

then we may write their product as

f(x)g(x) =

∫

Rm×Rm

f̂(k)ĝ(k′)e−2πi(k+k′)·x dk dk′

=

∫

Rm×Rm

f̂(k′′ − k′)ĝ(k′)e−2πik′′·x dk′′ dk′ =
∫

Rm

[∫

Rm

f̂(k′′ − k′)ĝ(k′) dk′
]
e−2πik′′·x dk′′

= F−1[f ∗ g](x),

where as before we have performed the change of variables k′′ = k + k′. (We note that the same kind of
procedure could be used with the forward Fourier transform F .) Now for the eI the prospects of generalising
this result are brighter since, for the index sets we have studied, if I, J ∈ I, then in fact we also have
I +J ∈ I. This suggests that, while O might not turn convolutions into products, perhaps O−1 turns (some
generalised form of) convolutions into products. We investigate this in more detail. Suppose that we have
two expansions

u =
∑

I∈I
ũ(I)eI , v =

∑

I∈I
ṽ(I)eI ;

then we may write, as before,

uv =
∑

I,J∈I
ũ(I)ṽ(J)eIeJ .

In general, though, there is now no clear way to proceed, since we do not know anything about the eI .
Suppose that we still had the result eIeJ = eI+J (none of the sets of eigenfunctions we have dealt with
actually satisfy this property); then the above sum would become

uv =
∑

I,J∈I
ũ(I)ṽ(J)eI+J =

∑

K∈I

∑

J∈I
ũ(K − J)ṽ(J)eK ,

from which we see that
O[uv](I) =

∑

J∈I
ũ(I − J)ṽ(J).

In general, the best we can hope for is some sort of expansion

eIeJ =
∑

K∈I
πIJKeK ;

such an expansion surely exists, assuming anyway that the eigenfunctions eI are not too pathological, and
allows us to write

uv =
∑

I,J,K∈I
ũ(I)ṽ(J)πIJKeK ,

where
πIJK = (eIeJ , eK),
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meaning that

O[uv](K) =
∑

I,J∈I
ũ(I)πIJK ṽ(J).

This is probably the closest we can come to generalising the property of mapping convolutions into products
enjoyed by the Fourier transform. If πIJK is zero for most values of the parameters IJK, then this result
may still be useful; if not, it is probably just a curiousity.

We give an example.

EXAMPLE. Let us consider the simple case of the eigenfunctions of the Laplacian on the unit square with
Dirichlet boundary conditions. We have not considered this case directly but a quick review of our derivation
of the eigenfunctions of the Laplacian on the unit cube shows that the eigenfunctions are eI = sin ℓπxsinmπy,
where I = (ℓ,m), ℓ,m ∈ Z, ℓ,m > 0. Thus in this case, letting I = (ℓ,m), J = (ℓ′,m′), and K = (ℓ′′,m′′),
we have

πIJK =

∫

Q

sin ℓπxsinmπysin ℓ′πxsinm′πysin ℓ′′πxsinm′′πy dx dy.

Now

∫ 1

0

sin ℓπxsin ℓ′πxsin ℓ′′πx dx =
1

2

∫ 1

0

[cos(ℓ− ℓ′)πx − cos(ℓ+ ℓ′)πx] sin ℓ′′πx dx

=
1

4

∫ 1

0

sin (ℓ′′ + ℓ− ℓ′)πx − sin (ℓ′′ − ℓ+ ℓ′)πx

− sin (ℓ′′ + ℓ+ ℓ′)πx+ sin (ℓ′′ − ℓ− ℓ′)πx dx,

which we shall not evaluate explicitly but only determine when it is zero. Clearly,
∫ 1

0
sinnπx = 1

nπ (1−(−1)n)
is zero exactly when n is even; thus the above integral will be zero unless at least one of the quantities

ℓ′′ + ℓ− ℓ′, ℓ′′ − ℓ+ ℓ′, ℓ′′ + ℓ+ ℓ′, ℓ′′ − ℓ− ℓ′

is odd; but the first two are odd together, as are the last two, and thus the integral will vanish unless at
least one of

ℓ′′ + ℓ− ℓ′, ℓ′′ − ℓ− ℓ′

is odd. But these are also seen to be odd together, so we find at last that the integral will vanish unless

ℓ′′ − ℓ− ℓ′

is odd. Since analogous results hold for the corresponding y integrals, we see that πIJK will be zero unless
the quantity

K − (I + J)

is odd (meaning that both of its components are odd). While this is not nearly as nice as requiring it to
vanish, it does tell us that πIJK vanishes for a sizeable number of indices IJK.

Similar triple products can (I believe) be worked out for the Legendre polynomials and the Legendre
functions, and probably Bessel functions as well. If anyone is interested in knowing more about this particular
topic, please let me know and I can provide more references.

APPENDIX II. SOLUTIONS TO THE NONHOMOGENEOUS WAVE EQUATION. We sketch a solution
to the nonhomogeneous wave equation on R3. Thus consider the problem

∂2u

∂t2
= ∇2u+ F, u|t=0 = f,

∂u

∂t

∣∣∣∣
t=0

= g.

Fourier transforming as usual, we have

∂2û

∂t2
= −4π2|k|2û+ F̂ , û|t=0 = f̂ ,

∂û

∂t

∣∣∣∣
t=0

= ĝ.
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Thus we must now solve an equation of the form

y′′ + α2y = h (2)

where α > 0 and h is some given function. We may do this by the method of variation of parameters (also
called variation of constants). (See [1], sections 3.4 and 3.6 (especially Theorem 3.6.4 and accompanying
discussion) for a treatment of this method in a general setting.) The general solution to the corresponding
homogeneous equation

y′′ + α2y = 0

is
y = a cosαx+ bsinαx,

where a = y(0) and b = y′(0)
α . The method of variation of parameters starts by looking for solutions to

equation (2) of the form
y = a(x) cosαx+ b(x)sinαx.

Differentiating once, we obtain

y′ = a′ cosαx+ b′sinαx+ α (−a(x)sinαx+ b(x) cosαx) .

We require the sum of the first two terms to vanish; then differentiating again, we obtain

y′′ = α (−a′sinαx+ b′ cosαx) − α2 (a(x) cosαx+ b(x)sinαx) ,

from which we see easily that

y′′ + αy = h = α (−a′sinαx + b′ cosαx) .

Combining this with the requirement
a′ cosαx + b′sinαx = 0,

we see that we now have the system

cosαxa′ + sinαxb′ = 0

−αsinαxa′ + α cosαxb′ = h.

Now the determinant of the coefficient matrix is just the Wronskian of the two solutions:

W =

∣∣∣∣
cosαx sinαx

−αsinαx α cosαx

∣∣∣∣ = α,

so that as long as we assume α 6= 0 we may solve the above system; in fact, we have (using our formula for
the inverse of a two by two matrix)

(
a′

b′

)
=

1

α

(
α cosαx −sinαx
αsinαx cosαx

)(
0
h

)
=

(
−h sinαx

α
h cosαx

α

)
.

From this we have

a = y(0)− 1

α

∫ x

0

h(u)sinαu du

b =
1

α
y′(0) +

1

α

∫ x

0

h(u) cosαu du,

so that

y = y(0) cosαx + y′(0)
sinαx

α
+

1

α

∫ x

0

h(u)sinαx cosαu − sinαu cosαxdu

= y(0) cosαx + y′(0)
sinαx

α
+

∫ x

0

h(u)
sinα(x − u)

α
du.
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We now return to our original problem:

∂2û

∂t2
= −4π2|k|2û+ F̂ , û|t=0 = f̂ ,

∂û

∂t

∣∣∣∣
t=0

= ĝ.

The above formula gives

û(t,k) = f̂ cos 2π|k|t+ ĝ
sin 2π|k|t
2π|k| +

∫ t

0

F̂ (s,k)
sin 2π|k|(t− s)

2π|k| ds.

The first two terms are of course the same as those we obtained for the homogeneous equation above. We
see that we may invert this formula in much the same way as we did the formula for the solution to the
homogeneous problem previously. Specifically, we obtain

u(t,x) =
∂

∂t

[
1

4πt

∫

St(x)

f(x′) dx′
]
+

1

4πt

∫

St(x)

g(x′) dx′ +
∫ t

0

1

4π(t− s)

∫

St−s(x)

F (s,x′) dS′ ds.

Let us investigate the final term here, which is the only new thing. We see that the contribution which it
gives to u(x) is equal to the integral over all times from 0 to t of a quantity which at time s is (proportional
to) the integral over the sphere of radius t − s centred at x – in other words, the integral over the surface
from which a signal will take exactly the time t − s remaining to reach the point x. More succinctly, the
contribution F makes to u at the point x and time t is the integral over the set of all points (through all
of space-time, not just space) (s,x′) satisfying |x − x′| = t− s, i.e., the set of all points just able to send a
signal to x by time t.

We may write the above result more simply as follows. First, let us do a change of variables and write
u = t− s, x′′ = x′ − x; then the last integral above becomes

∫ t

0

∫

Su(x)

1

4πu
F (t− u,x′) dS′ du =

∫ t

0

∫

Su(0)

1

4πu
F (t− u,x′′ + x) dS′′ du;

if we now introduce spherical coordinates (r′′, θ′′, φ′′) for x′′, we may write this integral as (noting that
dS′′ = u2sin θ′′ dθ′′ dφ′′ since it is the full surface-area element for the sphere of radius u)

∫ t

0

∫ 2π

0

∫ π

0

1

4πu
F (t− u,x′′ + x) sin θ′′ dθ′′ dφ′′ u2 du =

∫

Bt(0)

F (t− r′′,x′′ + x)

4πr′′
dV

=

∫

Bt(x)

F (t− |x− x′|,x′)
4π|x− x′| dV,

where we have changed back to x′ = x′′ + x in the last line, and noted that r′′ = |x′′| = |x − x′|. This
expression is related to the so-called retarded potential which is used in studying electromagnetic radiation.
We recognise the quantity 1

4π|x−x′| as being (up to a sign) the Green’s function for the Laplacian on R3;

what is different here is that we are integrating it against a function F (t− |x− x′|,x′) instead of a function
of x′ alone. In other words, roughly speaking, the effect of the source F on the solution u is obtained by
integrating against the ordinary Green’s function for the Laplacian, but using the retarded source function
F (t − |x − x′|,x′) at times which are such that a signal from the point of integration x′ can just reach the
observation point x by the observation time t.

We note that the above method of variation of parameters can be used with only slight modifications
to solve the nonhomogeneous wave equation on a bounded region, in a manner analogous to our solution to
the wave equation on a disk given above.

REFERENCES

Coddington, E. A., and Levinson, N. Theory of Ordinary Differential Equations. New York: McGraw-Hill
Book Company, Inc., 1955.
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Additional solutions to Laplace’s equation

Laplace’s equation ∇2u = 0 has the following general series expansions as its solutions when solved in the
indicated regions and with the indicated boundary conditions:

Region and boundary conditions,

and dates for notes

Series expansion, related complete orthogonal set, and inner product

{(ρ, φ, z)|ρ ≤ a, 0 ≤ z ≤ b}
u|z=0 = u|z=b = 0

July 2 – 4

∞∑

n=1

∞∑

m=0

Im

(nπ
b
ρ
)
(anm cosmφ+ bnmsinmφ)sin

nπ

b
z

{cosmφsin nπ
b z, sinmφsin

nπ
b z|n,m ∈ Z, n ≥ 1,m ≥ 0}

(f(φ, z), g(φ, z)) =
∫ 2π

0

∫ b
0
f(φ, z)g(φ, z) dz dφ

{(x, y, z)|0 ≤ x, y, z ≤ 1}
u|x=0 = u|x=1 =

u|y=0 = u|y=1 = 0

July 9 – 11

∞∑

ℓ=1

∞∑

m=1

sin ℓπxsinmπy
(
aℓmcosh

√
ℓ2 +m2πz + bℓmsinh

√
ℓ2 +m2πz

)

{sin ℓπxsinmπy|ℓ,m ∈ Z, ℓ,m ≥ 1}, (f(x, y), g(x, y)) =
∫ 1

0

∫ 1

0

f(x, y)g(x, y) dx dy

We may interchange x, y, and z in the last example to obtain additional solutions on the cube.
In cases where more than one set of boundary conditions is inhomogeneous, we may express the solution
as a sum of two or three separate ones, each of which satisfies a problem with one set of inhomogeneous
boundary conditions. See notes of July 2 – 4, pp. 3 – 6 for an example.

Eigenfunctions and eigenvalues for the Laplacian: ∇2u = λu

Region and boundary conditions,

and dates for notes

Eigenfunctions, eigenvalues, and parameter ranges

Q = {(x, y, z)|0 ≤ x, y, z ≤ 1}, u|∂Q = 0

July 9 – 11

sin ℓπxsinmπysinnπz, −π2
(
ℓ2 +m2 + n2

)
, ℓ,m, n ∈ Z, ℓ,m, n ≥ 1

Q = {(x, y, z)|0 ≤ x, y, z ≤ 1}, ∂u

∂n

∣∣∣∣
∂Q

= 0

[Homeworks 10 and 11]

cos ℓπx cosmπy cosnπz, −π2
(
ℓ2 +m2 + n2

)
, ℓ,m, n ∈ Z, ℓ,m, n ≥ 0

C = {(ρ, φ, z)|ρ ≤ 1, 0 ≤ z ≤ 1}, u|∂C = 0

July 9 – 11, 16 – 18

Jm(λmiρ)sinnπz

{
cosmφ
sinmφ

, −λ2mi − n2π2,

m, n, i ∈ Z, m ≥ 0, n, i ≥ 1, λmi the ith positive zero of Jm(x)

B = {(r, θ, φ)|r < 1}, u|∂B = 0

July 16 – 18

jℓ (κℓir)Pℓm(cos θ)

{
cosmφ
sinmφ

, −κ2ℓi, ℓ,m, i ∈ Z, ℓ ≥ 0, 0 ≤ m ≤ ℓ, i ≥ 1,

κℓi = λℓ+ 1
2 ,i

the ith positive zero of jℓ(x)

D = {(ρ, φ)|ρ < a}, u|∂D = 0

August 6 – 8

Jm

(
λmi
a
ρ

){
cosmφ
sinmφ

, − 1

a2
λ2mi, m, i ∈ Z,m ≥ 0, i ≥ 1,

λmi the ith positive zero of Jm(x)

The inner product used is (f, x) =
∫
X
f(x)g(x) dx, where X is the region and dx is the volume or area element.

All of the above sets are complete and orthogonal with respect to their respective inner product.
For general concepts relating to eigenfunctions and eigenvalues, see notes of July 2 – 4.

Additional special functions: equations and properties

Modified Bessel functions. These are solutions Im(x), m ∈ Z, m ≥ 0 to the equation

d2I

dx2
+

1

x

dI

dx
−
(
1 +

m2

x2

)
I = 0

(compare the equation satisfied by Bessel functions Jm(x)). They are exponential rather than oscillatory in
nature and hence do not form an orthogonal basis. They satisfy many similar identities to the unmodified
Bessel functions but we do not need these identities in this course. (continued)
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Spherical Bessel functions. These are solutions jℓ(x), ℓ ∈ Z, ℓ ≥ 0 to the equation

d2j

dx2
+

2

x

dj

dx
+

(
1− ℓ(ℓ+ 1)

x2

)
j = 0

and can be expressed as jℓ(x) =
√

π
2xJℓ+ 1

2
(x). They can be expressed in terms of elementary functions

(though we don’t use that here). If κℓi denotes the ith positive zero of jℓ(x), then for each ℓ the set
{jℓ(κℓir)}∞i=1 forms a complete orthogonal set on [0, 1] with respect to the inner product

(f(r), g(r)) =

∫ 1

0

f(r)g(r) r2 dr.

Their normalisation with respect to this inner product is

(jℓ(κℓir), jℓ(κℓir)) =
1

2
j2ℓ+1(κℓi).

The jℓ satisfy many identities similar to those satisfied by the ordinary Bessel functions, but everything we
shall need to calculate can be obtained by reducing to the ordinary Bessel functions so we do not give them.

Poisson’s equation on a bounded domain. Let X denote one of Q, C, and B. The problem on X

∇2u = f, u|∂X = 0

can be solved by expanding f =
∑

I aIeI , where aI =
(f,eI)
(eI ,eI)

, and u =
∑
I bIeI ; ∇2u = f then gives

λ2IbI = aI .

Here eI is the eigenfunction of the Laplacian satisfying

∇2eI = λIeI , eI |∂X = 0.

See the notes of July 9 – 11 and 16 – 18 for examples. The more general problem

∇2u = f, u|∂X = g

may be solved as the sum u = u1 + u2 of the two problems

∇2u1 = f, u1|∂X = 0, ∇2u2 = 0, u2|∂X = g.

See the notes of July 16 – 18 for examples of this type of problem. The related problem

∇2u = f, ∂u
∂n

∣∣
∂X

= 0 [ ∂∂n the outward normal derivative]

may be solved in the same way, using the eigenfunctions satisfying

∇2eI = λIeI ,
∂eI

∂n

∣∣
∂
X = 0,

except when one or more of the eigenvalues vanish: in that case f must be orthogonal to all corresponding
eigenfunctions, and additional conditions must be imposed on u to get a unique solution. See the Appendix
to the solutions for Homework 11, and the notes for July 2 – 4. The inhomogeneous problem may then be
treated as above.

Green’s functions for Poisson’s equation. Suppose that G(x,x′) is a function satisfying

∇2
xG(x,x

′) = −δ(x− x′)
where δ is the Dirac delta function (see the next page for a review of this function). Then for u sufficiently
differentiable on a domain D we have

u(x) = −
∫

D

G(x,x′)∇2
x′u(x′) dx′ +

∫

∂D

G(x,x′)
∂u

∂n′ − u(x′)
∂G

∂n′ dS
′.

We may use Green’s functions satisfying certain boundary conditions to solve boundary-value problems.

G(x,x′)|x∈∂D = 0 : u = −
∫

D

G(x,x′)f(x′) dx′ −
∫

∂D

∂G

∂n′ g(x
′) dS′ solves ∇2u = f, u|∂D = g

∂G

∂n

∣∣∣∣
x∈∂D

= 0 : u = −
∫

D

G(x,x′)f(x′) dx′ +
∫

∂D

G(x,x′)g(x′) dS′ solves ∇2u = f,
∂u

∂n

∣∣∣∣
∂D

= g

On R3, the solution vanishing at infinity to

∇2
xG(x,x

′) = −δ(x− x′) is G(x,x′) =
1

4π|x− x′| .

Thus on R3 the solution vanishing at infinity to Poisson’s equation

∇2u = f is u(x) = −
∫

R3

G(x,x′)f(x′) dx′.
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Fourier transforms. These are covered in the notes for July 23 – 25, July 30 – August 1, and August 6 –
August 8. If f(x) is a function on Rm which satisfies

∫
Rm |f(x)| dx < ∞, then we say that f is in L1 and

define its Fourier transform

f̂(k) = F [f(x)](k) =

∫

Rm

f(x)e−2πik·x dx.

If f is continuous and bounded and such that f̂(k) is in L1, then we have the Fourier inversion theorem

f(x) = F−1[f̂(k)](x) =

∫

Rm

f̂(k)e2πik·x dk.

This may be shewn by making use of so-called approximate identities, which are sequences {φn(x)} of
functions in L1 satisfying∫

Rmφn(x) dx = 1,
∫
Rmφn(x)f(x) dx → f(0) as n→ ∞

for all suitable (e.g., continuous and bounded) functions f(x). If φ is any individual function in L1 satisfying∫
Rm φ(x) dx = 1, then the sequence {nmφ(nx)} is an approximate identity.

If f(x) and g(x) are two functions in L1 on Rm, we define their convolution f ∗ g by

(f ∗ g)(x) =
∫

Rm

f(x− x′)g(x′) dx′.

The Fourier transform maps convolution to multiplication in the following sense:

F [(f ∗ g)(x)](k) = f̂(k)ĝ(k), F−1[f(k)g(k)](x) = (F−1[f ] ∗ F−1[g])(x).

The Fourier transform possesses the following properties (see notes for July 23 – 25, p. 15):

F [af + bg](k) = aF [f ](k) + bF [g](k), F [∂jf ](k) = 2πikjF [f ](k), F [2πixjf ](k) = − ∂

∂kj
F [f ](k)

F [f(x−α)](k) = e−2πik·αf̂(k), F [e2πiα·xf(x)](k) = F [f ](k−α).

The Fourier transform of a Gaussian is

F
[
e−a|x|

2
]
(k) =

(π
a

)m
2

e−
π2|k|2

a , F−1
[
e−a|k|

2
]
(x) =

(π
a

)m
2

e−
π2|x|2

a .

Heat equation: bounded domains. Let X denote one of Q, C, and B. The problem on (0,+∞)×X
∂u

∂t
= ∇2u, u|t=0 = f, u|∂X = 0

can be solved by expanding f =
∑
I aIeI , where aI = (f,eI )

(eI ,eI)
, and u =

∑
I bI(t)eI ; the equation and initial

condition then give
b′I(t) = λIbI , bI(0) = aI , whence bI(t) = aIe

λI t.

Here eI and λI denote the appropriate eigenfunctions and eigenvalues, as in our discussion of the Poisson
equation. See the notes of July 2 – 4, 9 – 11, and 16 – 18 for details and examples. The more general problem

∂u
∂t = ∇2u, u|t=0 = f, u|∂X = g,

where g is a function of x alone, can be solved as the sum u = u1 + u2 of the two problems

∇2u1 = 0, u1|∂X = g, ∂u2

∂t = ∇2u2, u2|t=0 = f − g, u2|∂X = 0.

See the notes of July 16 – 18, pp. 7 – 8, for discussion and an example.
Heat equation and generalisations on Rm. The problem on (0,+∞)×Rm

∂u

∂t
= ∇2u, u|t=0 = f, lim

|x|→∞
u(x) = 0

can be solved using Fourier transforms, obtaining ∂û
∂t = −4π2|k|2û, û|t=0 = f̂ , whence û = f̂ e−4π2t|k|2 , and

u(t,x) = (Kt ∗ f)(x), where the heat kernel Kt(x) =
1

(4πt)
m
2
e−

|x|2
4t .

Note that the heat kernel is an approximate identity in the limit t → 0+. The more general problem on
(0,+∞)×Rm

∂u
∂t = ∇2u+ g(x, t), u|t=0 = f

has solution
u(t,x) = Kt(x) ∗ f(x) +

∫ t
0Kt−s(x) ∗ g(s,x) ds.

In practice it may be simpler to solve both of these problems by working directly with Fourier transforms.
More general equations such as ∂u

∂t = ∇2u+n ·∇u can be solved in this way. See notes for July 30 – August
1 and Homework 12, and the practice problems for week 12 and the final.
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Wave equation: bounded domains. Again, let X denote one of Q, C, and B. The problem on (0,+∞)×X

∂2u

∂t2
= ∇2u, u|t=0 = f,

∂u

∂t

∣∣∣∣
t=0

= g, u|∂X = 0

can be solved by expanding f =
∑

I aIeI , g =
∑
I bIeI , where aI = (f,eI )

(eI ,eI)
and bI = (g,eI)

(eI ,eI)
, and also

u =
∑

I cI(t)eI ; the equation and initial conditions then give

c′′I (t) = λIcI(t), cI(0) = aI , c′I(0) = bI .

This is a simple second-order constant-coefficient ordinary differential equation and can be solved easily.
Here eI and λI denote the appropriate eigenfunctions and eigenvalues, as above. The frequencies are

√−λI .
See the notes for August 6 – August 8 for an example on the disk.
Wave equation on R3. The problem on (0,+∞)×R3

∂2u

∂t2
= ∇2u, u|t=0 = f,

∂u

∂t

∣∣∣∣
t=0

= g

can be solved using Fourier transforms, obtaining ∂2û
∂t2 = −4π2|k|2û, û|t=0 = f̂ , ∂û

∂t

∣∣
t=0

= ĝ. Ultimately,

u(t,x) =
∂

∂t

[
1

4πt

∫

St(x)

f(x′) dS′
]
+

1

4πt

∫

St(x)

g(x′) dS′,

where St(x) is the sphere of radius t centred at x.

More general equations on Rm. The problem on (0,+∞)×Rm

∂u

∂t
= ∇2u+ n · ∇u+ bu, u|t=0 = f

can be solved by taking Fourier transforms, obtaining

∂û

∂t
= −4π2|k|2û+ 2πin · kû+ bû, û|t=0 = f̂ ,

whence
û = e−4π2t|k|2+2πitn·k+btf̂ ,

which can be inverted using properties of the Fourier transform to obtain u.
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1. [8 marks℄ Solve the following boundary-value problem on the unit ube

Q = f(x; y; z)jx; y; z 2 [0; 1℄g:

r

2
u = 0; uj∂Q =

�

1; z = 1

0; otherwise

:

We have from class that the general solution to ∇2u = 0 on Q with u|x=0 = u|x=1 = u|y=0 = u|y=1 = 0 is

u =

∞∑

ℓ=1

∞∑

m=1

sin ℓπxsinmπy
(
aℓmsinhπ

√
ℓ2 +m2z + bℓmcoshπ

√
ℓ2 +m2z

)
. [2 marks]

The boundary conditions then give

u|z=0 = 0 =

∞∑

ℓ,m=1

sin ℓπxsinmπy (bℓm) , [1 mark] so bℓm = 0 [1 mark]

u|z=1 = 1 =

∞∑

ℓ,m=1

sin ℓπxsinmπy
(
aℓmsinhπ

√
ℓ2 +m2

)
[1 mark]

aℓmsinhπ
√
ℓ2 +m2 = 4

∫ 1

0

∫ 1

0

sin ℓπxsinmπy dy dx = 4

(∫ 1

0

sin ℓπx dx

)(∫ 1

0

sinmπy dy

)
[1 mark]

= r

(
− 1

ℓπ
cos ℓπx

∣∣∣∣
1

0

)(
− 1

mπ
cosmπy

∣∣∣∣
1

0

)

=
4

π2ℓm

(
1− (−1)ℓ

)
(1− (−1)m) , [1 mark]

so the solution is

u =

∞∑

ℓ=1,ℓ odd

∞∑

m=1,m odd

16

π2ℓmsinhπ
√
ℓ2 +m2

sin ℓπxsinmπysinhπ
√
ℓ2 +m2z. [1 mark]

NOTES. 1 mark was given if the form for the expansion was not quite correct. Writing out a sum over only
ℓ and m odd (as done here) was not required. Taking the initial value of ℓ and m to be 0 instead of 1 should
typically result in a deduction of 0.5 marks, since in this case the final expression is meaningless.
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2. [22 marks℄ Solve the following boundary-value problem on the spherial shell

f(r; �; �)j1 < r < 2g:

r

2
u = 0; ujr=1 =

(

0; 0 � � <

π
2

sin 2�;

π
2
< � � �

; ujr=2 =

(

sin 2�; 0 � � <

π
2

0;

π
2
< � � �

:

Reall Legendre's equation: (1�x

2
)P

′′
ℓ � 2xP

′
ℓ + `(`+1)Pℓ = 0. [Can you see a

ertain Pℓm hiding here?℄ The following identities may be useful: P

′
ℓ+1� xP

′
ℓ =

(`+1)Pℓ, (2`+1)Pℓ = P

′
ℓ+1�P

′
ℓ−1. [Hint: the algebra is probably easiest if you

write everything in terms of derivatives of Pn for various n before integrating.℄

Your answer may inlude Pn(0) for values of n for whih this is nonzero. You

may also use the normalisation integral for Pℓm:
R 1

−1 P
2
ℓm(x) dx =

(ℓ+m)!

(ℓ−m)!
2

2ℓ+1
.

We have the general solution

u(r, θ, φ) =

∞∑

ℓ=0

ℓ∑

m=0

Pℓm(cos θ)
[
cosmφ

(
αℓmr

ℓ + βℓmr
−(ℓ+1)

)
+ sinmφ

(
γℓmr

ℓ + δℓmr
−(ℓ+1)

)]
. [1 mark]

The first boundary condition [1 mark] then gives

αℓm + βℓm = 0, all ℓ,m [1 mark]

γℓm + δℓm = 0, m 6= 2 [0.5 marks]
∞∑

ℓ=2

Pℓ2(cos θ) (γℓ2 + δℓ2) =

{
0, 0 ≤ θ < π

2
1, π

2 < θ ≤ π
[1 mark]

Similarly, the second boundary condition [1 mark] gives

2ℓαℓm + 2−(ℓ+1)βℓm = 0, all ℓ,m [1 mark]

2ℓγℓm + 2−(ℓ+1)δℓm = 0, m 6= 2 [0.5 marks]
∞∑

ℓ=2

Pℓ2(cos θ)
(
2ℓγℓ2 + 2−(ℓ+1)δℓ2

)
=

{
1, 0 ≤ θ < π

2
0, π

2 < θ ≤ π
[1 mark]

Since the matrix (
1 1
2ℓ 2−(ℓ+1)

)
has inverse

1

2−(ℓ+1) − 2ℓ

(
2−(ℓ+1) −1
−2ℓ 1

)
,

we see that αℓm = βℓm = 0 for all ℓ, m [1 mark], while γℓm = δℓm = 0 for all m 6= 2 [1 mark]. We now need
to expand the two functions appearing in the remaining two conditions. To do this, we note that

Pℓ2(x) = (1− x2)P ′′
ℓ [0.5 marks] = 2xP ′

ℓ − ℓ(ℓ+ 1)Pℓ[0.5 marks] = 2
[
P ′
ℓ+1 − (ℓ+ 1)Pℓ

]
− ℓ(ℓ+ 1)Pℓ

= 2P ′
ℓ+1 − (ℓ + 2)(ℓ+ 1)Pℓ = 2P ′

ℓ+1 −
(ℓ+ 2)(ℓ+ 1)

2ℓ+ 1

(
P ′
ℓ+1 − P ′

ℓ−1

)

=
4ℓ+ 2−

(
ℓ2 + 3ℓ+ 2

)

2ℓ+ 1
P ′
ℓ+1 +

(ℓ+ 2)(ℓ+ 1)

2ℓ+ 1
P ′
ℓ−1 = − ℓ(ℓ− 1)

2ℓ+ 1
P ′
ℓ+1 +

(ℓ+ 2)(ℓ+ 1)

2ℓ+ 1
P ′
ℓ−1,

[3.5 marks]
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so ∫
Pℓ2(x) dx = − ℓ(ℓ− 1)

2ℓ+ 1
Pℓ+1 +

(ℓ + 2)(ℓ+ 1)

2ℓ+ 1
Pℓ−1 + C.

Thus (making the change of variables x = cos θ, as usual)

[
(ℓ+ 2)!

(ℓ− 2)!

2

2ℓ+ 1

]
[0.5 marks]

(
2ℓγℓ2 + 2−(ℓ+1)δℓ2

)
= − ℓ(ℓ− 1)

2ℓ+ 1
Pℓ+1 +

(ℓ+ 2)(ℓ+ 1)

2ℓ+ 1
Pℓ−1

∣∣∣∣
1

0

[0.5 marks]

=
ℓ2 + 3ℓ+ 2− ℓ2 + ℓ

2ℓ+ 1
+
ℓ(ℓ− 1)

2ℓ+ 1
Pℓ+1(0)−

(ℓ+ 2)(ℓ+ 1)

2ℓ+ 1
Pℓ−1(0)

= 2 +
ℓ(ℓ− 1)

2ℓ+ 1
Pℓ+1(0)−

(ℓ + 2)(ℓ+ 1)

2ℓ+ 1
Pℓ−1(0), [1 mark]

while since P ′
ℓ+1, P

′
ℓ−1 are even or odd as ℓ is [1 mark],

[
(ℓ+ 2)!

(ℓ− 2)!

2

2ℓ+ 1

]
(γℓ2 + δℓ2) = (−1)ℓ

[
2 +

ℓ(ℓ− 1)

2ℓ+ 1
Pℓ+1(0)−

(ℓ+ 2)(ℓ+ 1)

2ℓ+ 1
Pℓ−1(0)

]
.

[0.5 marks] [0.5 marks]
Thus finally
(
γℓ2
δℓ2

)
=

(ℓ− 2)!

(ℓ+ 2)!

2ℓ+ 1

2

1

2−(ℓ+1) − 2ℓ

(
2−(ℓ+1) −1
−2ℓ 1

)(
(−1)ℓ

1

)

·
[
2 +

ℓ(ℓ− 1)

2ℓ+ 1
Pℓ+1(0)−

(ℓ + 2)(ℓ+ 1)

2ℓ+ 1
Pℓ−1(0)

]

=
(−1)ℓ

2−(ℓ+1) − 2ℓ

[
2ℓ+ 1

(ℓ+ 2)(ℓ+ 1)ℓ(ℓ− 1)
+

1

2(ℓ+ 2)(ℓ+ 1)
Pℓ+1(0)−

1

2ℓ(ℓ− 1)
Pℓ−1(0)

]

·
(
2−(ℓ+1) − (−1)ℓ

−2ℓ + (−1)ℓ

)

[3.5 marks]

and we have the final answer

u =
∞∑

ℓ=2

Pℓ2(cos θ)sin 2φ
2ℓ+ 1

(ℓ + 2)(ℓ+ 1)ℓ(ℓ− 1)
(
2−(ℓ+1) − 2ℓ

)

·
[
rℓ
(
(−1)ℓ2−(ℓ+1) − 1

)
− r−(ℓ+1)

(
(−1)ℓ2ℓ − 1

)]

+
∞∑

ℓ=2,ℓ odd

Pℓ2(cos θ)sin 2φ
1

2−(ℓ+1) − 2ℓ

[
1

2(ℓ+ 2)(ℓ+ 1)
Pℓ+1(0)−

1

2ℓ(ℓ− 1)
Pℓ−1(0)

]

·
[
rℓ
(
(−1)ℓ2−(ℓ+1) − 1

)
− r−(ℓ+1)

(
(−1)ℓ2ℓ − 1

)]
. [0.5 marks]

NOTES. One can also use the alternative (less general) form for the solution

u(r, θ, φ) =

∞∑

ℓ=0

ℓ∑

m=0

Pℓm(cos θ) (aℓm cosmφ+ bℓmsinmφ)
(
cℓmr

ℓ + dℓmr
−(ℓ+1)

)
.

However, in either case it is necessary to solve systems for all of the coordinates; and concluding too quickly
that (for example) aℓm = 0 for all ℓ and m led to lost marks. (This is analogous to problem 3 on the
midterm.) Additionally, the identity (2ℓ+1)Pℓ = P ′

ℓ+1 −P ′
ℓ−1 only applies to Pℓ, not to the Pℓ2 with which

we need to work here: attempting to solve the problem that way probably led to little credit being given.
Beyond the foregoing, most lost marks on this problem were probably due to algebraic errors or simply

not finishing.
The alert reader will note that the marks above add up to 22.5, not 22. This was an inadvertant slip

on the part of the instructor which was felt not to be serious enough to attempt to correct once it was
discovered. Thus this problem had effectively 0.5 bonus marks attached to it.
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3. [9 marks℄ Solve the following boundary-value problem on the ylinder

f(�; �; z)j� < 1; 0 < z < 2g:

r

2
u = 0; ujz=0 = ujz=2 = 0; ujρ=1 = z os 2�:

We have the general expansion

u(ρ, φ, z) =

∞∑

m=0

∞∑

n=1

Im

(nπ
2
ρ
) [

cosmφβnmsin
nπ

2
z + sinmφδnmsin

nπ

2
z
]
; [1.5 marks]

applying the boundary condition [1 mark] gives

δnm = 0 for alln,m [1 mark]

βnm = 0 for allm 6= 2 [0.5 marks]
∞∑

n=1

I2

(nπ
2

)(
βn2sin

nπ

2
z
)
= z; [1 mark]

thus (since
∫ 2

0
sin2 nπ2 z dz = 1 [0.5 mark])

βn2I2

(nπ
2

)
=

∫ 2

0

zsin
nπ

2
z dz [0.5 marks] =

[
− 2

nπ
z cos

nπ

2
z

∣∣∣∣
2

0

+
4

n2π2
sin

nπ

2
z

∣∣∣∣
2

0

]
[1 mark]

=
4

nπ
(−1)n+1, [1 mark]

so βn2 = 4(−1)n+1

nπI2(nπ
2 )

[0.5 marks], and the solution is

u(ρ, φ, z) =

∞∑

n=1

I2

(nπ
2
ρ
)
cos 2φ(−1)n+1 4

nπI2
(
nπ
2

) sin nπ
2
z. [0.5 marks]

NOTES. Probably the single most common mistake on this problem was forgetting the factor of 1
2 in the z

separation constant, i.e., using nπ instead of nπ
2 in the foregoing. This fails to give a correct answer since

{sinnπz} is not a complete set on the interval [0, 2]. This generally resulted in the deduction of 0.5 marks.
As with problem 1, beginning the sum for n at 0 instead of 1 should generally result in a deduction of 0.5
marks.
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4. [12 marks℄ Suppose that n 2 Z, n > 0. Solve the following problem on

(0;+1)�R

3
, using Fourier transforms:

�u

�t

= r

2
u+ (4�t)

− 3
2
e

−x2

4t
; ujt=0 =

�

�

n

2

�− 3
2

e

−n2|x|2
:

Find the limit of the solution as n ! 1. What does the initial data behave

like in this limit?

We have, upon Fourier transforming in space,

∂û

∂t
= −4π2|k|2û [1 mark] + (4πt)−

3
2

(
π
1
4t

) 3
2

e−4π2|k|2t

= −4π2|k|2û+ e−4π2|k|2t [1 mark]

û|t=0 =
( π
n2

)− 3
2
( π
n2

) 3
2

e−
π2|k|2

n2

= e−
π2|k|2

n2 [1 mark]

whence, using the integrating factor e4π
2|k|2t [1 mark],

∂

∂t

(
e4π

2|k|2tû
)
= 1,

û = [û(0) [1 mark] + t [1 mark]] e−4π2|k|2t

= te−4π2|k|2t + e−|k|2π2(4t+ 1
n2 ), [0.5 marks]

whence we obtain upon inverse transforming

u = t
( π

4π2t

) 3
2

e−
|x|2
4t [1 mark] +

(
π

π2
(
4t+ 1

n2

)
) 3

2

e
− |x|2

4t+ 1
n2 [1 mark]

=
1

8π
3
2 t

1
2

e−
|x|2
4t [0.5 marks] +

1
(
π
(
4t+ 1

n2

)) 3
2

e
− |x|2

4t+ 1
n2 [1 mark].

In the limit as n→ ∞, the second term becomes simply 1

(4πt)
3
2
e−

|x|2
4t , and the whole solution is

u =
1

(4πt)
3
2

(1 + t)e−
|x|2
4t . [1 mark]

Since ∫

R3

π− 3
2 e−|x|2 dx = π− 3

2

(π
1

) 3
2

= 1,

and ( π
n2

)− 3
2

e−n
2|x|2 = n3

[
π− 3

2 e−|nx|2
]
,

we see that the initial data is an approximate identity and behaves like the delta function δ(x) in the limit
n→ ∞.[1 mark]
NOTES. Probably the most common mistake here was incorrectly taking the forward or inverse Fourier
transform of a Gaussian. I think almost nobody correctly found the indicated limit of the initial data (many
people said it was zero, which is true only for x 6= 0).
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5. (a) [19 marks℄ Solve the following problem on (0;+1)�B, where B is the

unit ball f(r; �; �)jr < 1g:

�u

�t

= r

2
u; ujt=0 = r

2
sin

2
�sin 2�; uj∂B = 0:

[If you wish to use quantities like �ℓn, you must de�ne them expliitly.℄ Find

the limit of the solution as t! +1.

(b) [4 marks℄ Suppose that the ondition uj∂B = 0 were replaed by the ondi-

tion uj∂B = os �. Explain how you would solve the problem in this ase (you

need not atually alulate anything). What would you expet the limit of the

solution to be in this ase as t! +1? [You need not give an expliit formula,

but your answer must be a de�nite funtion, not just a desription in words.℄

(a) The Laplacian on B with Dirichlet boundary conditions has eigenfunctions

jℓ (κℓnr)Pℓm(cos θ)

{
cosmφ
sinmφ

[1 mark]

(where κℓn, n = 1, 2, . . ., is the nth positive root of jℓ [0.5 marks]) with corresponding eigenvalues λℓnm =
−κ2ℓn [1 mark]. Suppose that we expand u in this basis as

u =

∞∑

ℓ=0

ℓ∑

m=0

∞∑

n=1

jℓ (κℓnr)Pℓm(cos θ) (aℓnm cosmφ+ bℓnmsinmφ) . [1 mark]

Then substituting into the equation gives

∞∑

ℓ=0

ℓ∑

m=0

∞∑

n=1

jℓ (κℓnr)Pℓm(cos θ) (a′ℓnm cosmφ+ b′ℓnmsinmφ) [1 mark]

=

∞∑

ℓ=0

ℓ∑

m=0

∞∑

n=1

−κ2ℓnjℓ (κℓnr)Pℓm(cos θ) (aℓnm cosmφ+ bℓnmsinmφ) ,

[1 mark]

so
a′ℓnm = −κ2ℓnaℓnm, [1 mark] b′ℓnm = −κ2ℓnbℓnm, [1 mark]

and
aℓnm(t) = aℓnm(0)e−κ

2
ℓnt, [1 mark] bℓnm(t) = bℓnm(0)e−κ

2
ℓnt.[1.5 marks]

The initial values can be obtained from u|t=0:

∞∑

ℓ=0

ℓ∑

m=0

∞∑

n=1

jℓ (κℓnr)Pℓm(cos θ) (aℓnm(0) cosmφ+ bℓnm(0)sinmφ) = r2sin 2θsin 2φ. [1 mark]
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Since P22(cos θ) = 3sin 2θ, we see that bℓnm(0) = 0 unless ℓ = m = 2 [0.5 marks], and aℓnm = 0 for all ℓ, n,
m [1 mark]; finally

∞∑

n=1

b2n2(0)j2 (κ2nr) =
r2

3
, [1 mark]

b2n2(0) =
2

j23 (κ2n)
[1 mark]

∫ 1

0

r4

3
j2 (κ2nr) dr[1 mark] =

2

3j23 (κ2n)

√
π

2κ2n

∫ 1

0

r
7
2 J 5

2

(
λ 5

2 ,n
r
)
[0.5 marks]dr

=
2

3j23 (κ2n)

√
π

2

1

κ
3
2
2n

J 7
2
(κ2n) [1 mark] =

2

3j23 (κ2n)κ2n
j3(κ2n)

=
2

3j3 (κ2n)κ2n
, [0.5 marks]

and the final solution is

u =

∞∑

n=1

j2 (κ2nr)P22(cos θ)sin 2φ
2

3j3 (κ2n)κ2n
e−κ

2
2nt. [0.5 marks]

Since κ2n > 0 for all n, we see that u→ 0 as t→ +∞. [1 mark]
(b) In this case we would first solve the problem on B

∇2U1 = 0, U1|∂B = cos θ, [1 mark]

and then solve on (0,+∞)×B

∂u2
∂t

= ∇2u2, u2|t=0 = r2sin 2θsin 2φ− U1, u2|∂B = 0; [1 mark]

the full solution would be u = U1 + u2 [1 mark]. We expect lim
t→+∞

u = U1 [1 mark] in this case.

NOTES. Probably the biggest single reason for deducted marks in (a) was not deriving the equations satisfied
by the coefficients, but rather assuming the solutions from the outset. For (b), the single biggest quantitative
error was probably taking u2|t=0 = r2sin 2θsin 2φ− cos θ, or even dropping the subtracted term altogether.

Starting the n sum at 0 instead of 1 should not result in lost marks (since n is just a counter, which can
just as well be started at 0 as at 1, though in class we always started it at 1).

The curious asymmetry in marking the expressions for aℓnm(t) and bℓnm(t) was not intended to create
any asymmetry in practice, in that if only one appeared, it would be given the higher mark. (I probably had
some reason in mind when I wrote 1 mark for a and 1.5 marks for b, but I have long since forgotten what it
was.)
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6. [24 marks℄ Solve the following problem on the unit disk D = f(�; �)j� < 1g:

�

2
u

�t

2
= r

2
u; uj∂D = 0; ujt=0 = 0;

�u

�t

�

�

�

�

t=0

= �

2
sin 2�:

[As in problem 5, if you wish to use quantities like �mi, you must de�ne them

expliitly.℄ What is the lowest frequeny ourring? [A symboli answer is

suÆient.℄

In this case we have the eigenfunctions Jm (λmiρ)

{
cosmφ
sinmφ

[1 mark] (where λmi is the ith positive root of

Jℓm(x) [0.5 marks]) with eigenvalues −λ2mi [1 mark]. Expanding u as

u =
∞∑

m=0

∞∑

i=1

Jm (λmiρ) (ami cosmφ+ bmisinmφ) , [1 mark]

we have, upon substituting into the equation,

∞∑

n=0

∞∑

i=1

Jm (λmiρ) (a
′′
mi cosmφ+ b′′misinmφ) [1 mark]

=

∞∑

m=0

∞∑

i=1

Jm (λmiρ)
(
−λ2mi

)
(ami cosmφ+ bmisinmφ) , [1 mark]

so that the ami and bmi satisfy

a′′mi = −λ2miami, [1 mark] b′′mi = −λ2mibmi, [1 mark]

so
ami(t) = αmi cosλmit+ βmisinλmit, bmi(t) = γmi cosλmit+ δmisinλmit. [1 mark]

Now we see that

ami(0) = αmi, a′mi(0) = λmiβmi, bmi(0) = γmi, b′mi(0) = λmiδmi;

and these initial values can be determined from the initial conditions for u:

0 = u|t=0 =

∞∑

m=0

∞∑

i=1

Jm (λmiρ) (ami(0) cosmφ+ bmi(0)sinmφ) [1 mark]

so αmi = γmi = 0 for all m, i [1 mark];

ρ2sin 2φ = ut|t=0 =

∞∑

m=0

∞∑

i=1

Jm (λmiρ) (a
′
mi(0) cosmφ+ b′mi(0)sinmφ) , [1 mark]

so a′mi(0) = 0 for all m, i [1 mark], which gives βmi = 0 and ami(t) = 0 for all t, all m, i [2 marks], while
b′mi(0) = 0 for all m 6= 2 [0.5 marks] , which gives δmi = 0, hence bmi(t) = 0 for all t [0.5 marks], for m 6= 2
[1 mark]; finally,

ρ2 =

∞∑

i=1

J2 (λ2iρ) b
′
2i(0), [1 mark]
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so

b′2i(0) =
2

J2
3 (λ2i)

∫ 1

0

ρ3J2 (λ2iρ) dρ =
2

J2
3 (λ2i)

1

λ2i
J3 (λ2i) =

2

λ2iJ3 (λ2i)
, [3.5 marks]

whence

δ2i =
2

λ22iJ3 (λ2i)
[1 mark]

and we have finally for u

u(t, ρ, φ) =

∞∑

i=1

2

λ22iJ3 (λ2i)
J2 (λ2iρ) sin 2φsinλ2it. [1 mark]

The lowest frequency is thus λ21

2π . [1 mark]
NOTES. As with problem 5, probably the biggest reason for lost marks was starting directly with the
solutions for the coefficients rather than deriving them as here. For the last part of the question, an answer
λ21 was also acceptable (missing the factor of 2π did not result in lost marks): while technically only λ21

2π is
the frequency, λ21 is the so-called angular frequency, and since we didn’t spend much time on this point in
class I didn’t see a point in deducting marks for missing the 2π.

As with problem 5, starting the i sum at 0 should not result in lost marks.
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7. [18 marks℄ Solve the following problem on the unit ube Q (de�ned in

problem 1):

r

2
u = sin 4�xsin 2�y os�z;

�u

�n

�

�

�

�

∂Q

= 0; u(

1

2

;

1

2

;

1

2

) = 0:

(Here

∂
∂n

denotes the derivative in the normal diretion to the surfae �Q.)

We have the eigenfunctions cos ℓπx cosmπy cosnπz [2 marks], with eigenvalues −π2
(
ℓ2 +m2 + n2

)
[1 mark].

Expanding u as

u(x, y, z) =

∞∑

ℓ=0

∞∑

m=0

∞∑

n=0

aℓmn cos ℓπx cosmπy cosnπz, [1 mark]

we see that the equation gives

∞∑

ℓ,m,n=0

−π2
(
ℓ2 +m2 + n2

)
aℓmn cos ℓπx cosmπy cosnπz = sin 4πxsin 2πy cosπz, [1 mark]

whence we see that

−π2
(
ℓ2 +m2 + n2

)
aℓmn = nℓnmnn

∫

Q

sin 4πxsin 2πy cosπz cos ℓπx cosmπy cosnπz dV, (1)

where nℓ =

{
2, ℓ 6= 0
1, ℓ = 0

is the appropriate normalisation constant. Now we see that the integral above

vanishes for n 6= 1, while

∫ 1

0

sin 2kπx cos ℓπx dx[0.5 marks] =
1

2

∫ 1

0

sin [(2kπ + ℓπ)x] + sin [(2kπ − ℓπ)x] dx[1 mark]

[
= 0 if ℓ = 2k

]
[1 mark]

= −1

2

[
1

(2k + ℓ)π
cos [(2k + ℓ)πx]

∣∣∣∣
1

0

+
1

(2k − ℓ)π
cos [(2k − ℓ)πx]

∣∣∣∣
1

0

]
,

[0.5 marks] ℓ 6= 2k

=
1

2π

(
1− (−1)ℓ

)( 1

2k + ℓ
+

1

2k − ℓ

)
=

2k

π

(
1− (−1)ℓ

) 1

4k2 − ℓ2
,

[1 mark]

so for (ℓ,m, n) 6= (0, 0, 0) we have

aℓmn =





0, n 6= 1, or m = 2,[0.5 marks] or ℓ = 4 [0.5 marks]
nℓnm

8

π2 (1−(−1)ℓ)(1−(−1)m) 1

16−ℓ2

· 1

4−m2 [1 mark]· −1

π2(ℓ2+m2+1)

, otherwise

=

{
0[0.5 marks], n 6= 1, or m or ℓ even[0.5 marks]

− 128
π2

1
16−ℓ2

1
4−m2 [0.5 marks] 1

π2(ℓ2+m2+1) [1 mark], otherwise.
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Now if ℓ = m = n = 0, then the integral in (1) is zero, as is the left-hand side. Thus this equation is consistent
but tells us nothing about a000 [1 mark]. However, since our series for u only has nonzero coefficients for ℓ,
m, n all odd, and

cos
ℓπ

2
cos

mπ

2
cos

nπ

2
= 0 [1 mark]

in such a case, the final condition gives a000 = 0 [1 mark]. Thus

u =

∞∑

ℓ,m=1,ℓ,m odd

−128

π2

1

16− ℓ2
1

4−m2

1

π2 (ℓ2 +m2 + 1)
cos ℓπx cosmπy cosπz. [1.5 marks]

NOTES. Again, some marks were lost by simply assuming the general form of the solution to Poisson’s
equation rather than deriving it as here (though this is less of an issue than with 5 and especially 6). Marks
were also lost for being insufficiently careful with the term a000.
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8. [9 marks℄ Solve the following problem on R

3
(here x is the �rst oordinate

of x = (x; y; z)):

�u

�t

= r

2
u+

�u

�x

; ujt=0 = e

−|x|2
:

We have the Fourier transform:

∂û

∂t
= −4π2|k|2û[1 mark] + 2πik1û[1 mark], û|t=0 = π

3
2 e−π

2|k|2 .[1 mark]

The equation gives

∂

∂t

(
e(4π

2|k|2−2πik1)tû[1 mark]
)
= 0,

û = û(0)e−(4π
2|k|2−2πik1)t

= π
3
2 e−π

2|k|2(4t+1)e2πik1t.[1 mark]

Since

F−1
[
π

3
2 e−π

2|k|2(4t+1)
]
= π

3
2

(
1

π(4t+ 1)

) 3
2

e−
|x|2
4t+1 =

1

(4t+ 1)
3
2

e−
|x|2
4t+1 , [2 marks]

we see by properties of Fourier transforms that

u =
1

(4t+ 1)
3
2

e−
1

4t+1 (y
2+z2+(x+t)2). [2 marks]

NOTES. Again, probably the biggest issue with this problem was the mishandling of the relevant Fourier
transforms. Another issue which came up was failure to use the property

F [f(x− x0)](k) = e−2πik·x0 f̂(k).

Some solutions wrote effectively F
[
∂u
∂x

]
= ∂û

∂x , probably by analogy with a similar (though correct) formula

for ∂u
∂t : unfortunately this formula is not only wrong in actuality but meaningless even in principle, since

û is a function of k and t and hence does not depend on x. The point behind the analogous formula
for ∂u

∂t is that we are taking a function of (t,x) and transforming only in x, meaning that t is essentially
a parameter with respect to which we can differentiate either before or after transforming (assuming, as
always, that our functions are sufficiently well-behaved that we are allowed to take the derivative inside the
integral representing the Fourier transform). x, however, is one of the variables with respect to which we
are transforming; i.e., it will be one of the variables over which we integrate, and hence it does not appear
in the transformed function and it makes no sense to speak of the derivative of the transform with respect
to it. More explicitly:

F
[
∂u

∂t

]
=

∫

R3

∂u

∂t
e−2πik·x dx =

∂

∂t

∫

R3

ue−2πik·x dx

=
∂

∂t
F [u] =

∂û

∂t
,

while attempting to do the same thing with ∂u
∂x leads to

F
[
∂u

∂x

]
=

∫

R3

∂u

∂x
e−2πik·x dx,

and now there is no way to take the derivative outside of the integral since the integral over x includes an
integral over x: one needs instead to do an integration by parts, which leads to the formula

F
[
∂u

∂x

]
= 2πik1û

used here, as derived in class. (Here k1 represents the component of k corresponding to x.)
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{ End of exam booklet {
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We give a brief review of complex numbers, and some results which we shall need in this course.
DEFINITION. A complex number is a number of the form a + ib, where a, b ∈ and i satisfies i2 = −1. If
a+ ib and c+ id are two complex numbers, we define their sum, difference, product, and quotient as follows:

(a+ ib) + (c+ id) = (a+ c) + i(b+ d)

(a+ ib)− (c+ id) = (a− c) + i(b− d)

(a+ ib) · (c+ id) = (ac− bd) + i(bc+ ad)

1

c+ id
=

c

c2 + d2
+ i

−d
c2 + d2

=
c− id

c2 + d2
, c2 + d2 6= 0

a+ ib

c+ id
= (a+ ib) · 1

c+ id
=

(ac+ bd) + i(bc− ad)

c2 + d2
, c2 + d2 6= 0.

If z = a + ib is a complex number, we call a its real part and b its imaginary part , and write a = Re z,
b = Im z. The conjugate of z is the number z = a− ib. The quantity

√
zz =

√
a2 + b2 is called the norm of

z, and is denoted |z|; note that it is equal to the norm of the vector a + b in 2.1 (We note in passing that
c2 + d2 = 0 if and only if both c and d are zero; thus requiring c2 + d2 6= 0 is equivalent to saying that at
least one of c and d is nonzero.)

COMMENTARY. Essentially, the above definitions say that complex numbers obey all of the usual rules of
algebra, supplemented by the condition i2 = −1. It turns out to be convenient to require them to also
behave in a natural way with respect to the operations of the calculus, as in the following.2

DEFINITION. Let f : [a, b] → , and suppose that f1 = Re f and f2 = Im f are differentiable. Then we define

f ′(t) = f ′
1(t) + if ′

2(t)

(compare to the definition of a tangent vector to a plane parametric curve). If f1 and f2 are integrable, then
we define ∫ b

a

f(t)dt =

∫ b

a

f1(t)dt+ i

∫ b

a

f2(t)dt.

DEFINITION. A sequence {zn} of complex numbers is said to converge to the complex number z if the
sequence {|zn − z|} of real numbers converges to 0. (It can be shewn that this is equivalent to saying that
Re zn converges to Re z and Im zn converges to Im z.) Convergence of a series as convergence of its partial
sums is defined as for real series.

COMMENTARY. Suppose that
∞∑
n=0

anx
n is a power series with radius of convergence R > 0 (we include the

case R = ∞). If z = a + ib is such that |z| < R, then it can be shewn that
∞∑
n=0

anz
n converges also. This

allows us to extend functions with convergent power series representations (such as ex, sinx, cosx, etc.) to
the complex plane. In particular, if we define ez in this way for z ∈ , then it can be shewn that (exercise)

eiθ = cos θ + isin θ.

1There are, in fact, some deep connections here, and various parts of two-dimensional calculus have some
analogue in complex analysis. Three-dimensional vector calculus is related to a still higher kind of number,
called a quaternion. Quaternions are very interesting and useful for some purposes (and have nice connections
to the concept of spin in quantum mechanics) but we do not need them here (and unfortunately shall probably
not have occasion to use them anywhere in this course).
2Note that we are developing here only a very small part of the theory of complex analysis – in particular,
all of our functions are functions of a real variable, and we differentiate only with respect to real variables.
As those of you who have had complex analysis are aware, the true power and depth of complex analysis
only comes out when one considers derivatives with respect to a complex variable.
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We review some concepts and methodology from linear algebra.
DEFINITION. Let V and W be two vector spaces1. A map T : V →W is called a linear transformation if it
satisfies T (αv + βw) = αT (v) + βT (w) for all v, w ∈ V and all scalars α, β.

DEFINITION. Let V be a vector space, and let S ⊂ V . We say that S spans V if for all v ∈ V there are
w1, . . . , wn ∈ S and scalars α1, . . . , αn such that v = α1w1+· · ·+αnwn. We say that S is linearly independent
if for any w1, . . . , wn ∈ S the equation α1w1 + · · · + αnwn = 0 has only α1 = · · · = αn = 0 as a solution.
If S both spans V and is linearly independent then it is called a basis for V . In this case, the number of
elements of S is called the dimension of V . It could be finite or infinite2.

EXAMPLE. If V = n or V = n, then




1
0
0
...
0



,




0
1
0
...
0



, . . . ,




0
0
...
0
1




is a basis for V .

DEFINITION. Let V ,W be vector spaces with bases B = {v1, . . . , vn}, D = {w1, . . . , wm}, and let T : V →W
be a linear transformation. Then the basis representation of T with respect to B and D, [T ]DB , is defined as
follows. For each vk ∈ V , T (vk) ∈ W can be expressed in a unique way as a linear combination of elements
of D, say

T (vk) = a1kw1 + · · ·+ amkwm.

We define

[T ]DB =




a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn


 .

In linear algebra courses, one learns about the properties of these matrices, and how to transform from
one basis to another, but we do not need all this at the moment.

DEFINITION. Let V be a vector space, and let T : V → V . If v ∈ V , v 6= 0, is such that T (v) = λv for some
scalar λ, then v is said to be an eigenvector of T with eigenvalue λ. If there is a basis B = {v1, . . . , vn} of
V , each element of which is an eigenvector of T , then T is said to be diagonalisable.

In this case, it is not hard to see that [T ]BB is a diagonal matrix, with the kth element being the eigenvalue
corresponding to vk.

1I am not going to give the formal definition of a vector space here. Roughly, a vector space is a collection of
objects (which can be vectors in n but can also be other things, such as functions) which can be added and
multiplied by scalars (real or complex numbers) in such a way that vector addition and scalar multiplication
interact as one would expect. Those of you who have never seen abstract vector spaces can think of n or n

for the time being.
2For the benefit of those who know a little set theory, we note that in the case of an infinite-dimensional
vector space V , by ‘the number of elements of S’ we mean the cardinality of S. Much of the numerology of
finite-dimensional linear algebra can be carried over to the infinite-dimensional case in this way. However,
in this case an (algebraic) basis as defined here is not particularly useful and one prefers to use something
like an orthogonal basis, as we shall see later, where one is able (essentially) to represent elements of V as
infinite linear combinations of elements of S.
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DEFINITION. Let V be a complex vector space. An inner product on V is a map (·, ·) : V × V to satisfying
the following properties:

1. (av + bw, u) = a(v, u) + b(w, u) for all v, w, u ∈ V and all a, b ∈ ;
2. (v, u) = (u, v) for all v, u ∈ V ;
3. (v, v) ≥ 0 for all v ∈ V , and (v, v) = 0 if and only if v = 0.
The first and second properties imply that (·, ·) is conjugate linear in the second argument, i.e., (v, aw+

bu) = a(v, w)+ b(v, u). This is sometimes combined with property 1 above to say that (·, ·) is a sesquilinear3

map. (It would be bilinear , i.e., linear in each argument separately, if it weren’t for the conjugate on the a
and b.)

The text has an introduction to inner products in section 0.3, and we shall go over similar material from
a slightly different perspective in class.

3While I have never checked this, ‘sesqui’ apparently means ‘one-and-a-half’, as in sesquicentennial, or 150th
anniversary.
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We give a brief review of integration of piecewise-defined functions. Suppose that we have a function
F : [a, b] → (or would work just as well), suppose that a0 = a < a1 < · · · < an = b is some finite
sequence of numbers in [a, b], let Fk : [ak−1, ak] → (k = 1, 2, . . . , n) be continuous1, and suppose that for
each k = 1, 2, . . . , n we have

F (x) = Fk(x) for allx ∈ [ak−1, ak],

in other words, that we have the piecewise definition

F (x) =





F1(x), x ∈ [a, a1]
F2(x), x ∈ [a1, a2]

...
Fn(x), x ∈ [an−1, b]

Then it can be shewn that F is integrable on [a, b], and

∫ b

a

F (x) dx =

n∑

k=1

∫ ak

ak−1

Fk(x) dx.

If some Fk is zero, then its integral over its domain [ak−1, ak] will also be zero, and hence it will not contribute
to the sum and may be dropped.

The foregoing applies in particular when we are computing the coefficients in the expansion of a function
(say f(x)) on [a, b] in terms of a complete orthogonal set of functions on [a, b]; see, for example, the solution
to problem 2 on homework 3. In particular, since coefficients in such an expansion do not depend on x, and
must therefore take into account the function values over the entire interval, in cases where f has a piecewise
definition it will be necessary to use a formula like that above to calculate inner products involving f .

1‘Integrable’ would work just as well here.
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We review the definition and an elementary property of the Wronskian. We recall that the notation
f (n)(x) denotes the nth derivative of the function f .

DEFINITION. Let f1, . . . , fn : (a, b) → , a, b ∈ ∪ {−∞,+∞}, and suppose that the first n− 1 derivatives of
all n functions exist on (a, b). Then the Wronskian of f1, . . . , fn is the function W : (a, b) → defined by

W (x) =

∣∣∣∣∣∣∣∣

f1(x) f2(x) . . . fn(x)
f ′
1(x) f ′

2(x) . . . f ′
n(x)

...
...

. . .
...

f
(n−1)
1 (x) f

(n−1)
2 (x) . . . f

(n−1)
n (x)

∣∣∣∣∣∣∣∣
.

EXAMPLES.
(a) Let (a, b) = , f1(x) = x, f2(x) = x2. Then the Wronskian of f1 and f2 is given by

W (x) =

∣∣∣∣
x x2

1 2x

∣∣∣∣
= 2x2 − x2 = x2.

(b) Let (a, b) = , f1(x) = ex, f2(x) = e−x. Then the Wronskian of f1 and f2 is

W (x) =

∣∣∣∣
ex e−x

ex −e−x
∣∣∣∣

= −1− 1 = −2.

The importance of the Wronskian can be seen from the following proposition.

PROPOSITION. Suppose that the functions f1, f2, . . . , fn : (a, b) → possess derivatives of up to order n− 1
and are linearly dependent on (a, b). Then their Wronskian is zero everywhere on (a, b).

Proof. Since the functions f1, f2, . . . , fn are linearly dependent on (a, b), there must exist constants
c1, c2, . . . , cn such that for all x ∈ (a, b) we have

c1f1(x) + c2f2(x) + · · ·+ cnfn(x) = 0.

Since c1, c2, . . . , cn are all constants, we may differentiate this equation k times to obtain

c1f
(k)
1 (x) + c2f

(k)
2 (x) + · · ·+ cnf

(k)
n (x) = 0,

where k = 1, . . . , n− 1. Thus we see that for each x ∈ (a, b), the vectors



f1(x)
f ′
1(x)
...

f
(n−1)
1 (x)


 ,




f2(x)
f ′
2(x)
...

f
(n−1)
2 (x)


 , . . .




fn(x)
f ′
n(x)
...

f
(n−1)
n (x)




are linearly dependent. Thus the matrix

D =




f1(x) f2(x) . . . fn(x)
f ′
1(x) f ′

2(x) . . . f ′
n(x)

...
...

. . .
...

f
(n−1)
1 (x) f

(n−1)
2 (x) . . . f

(n−1)
n (x)




is not full-rank, so its determinant |D| must be zero. But |D| is exactly the Wronskian of f1, f2, . . . , fn, so
this completes the proof of the proposition. QED.

From this it follows that if the Wronskian is not identically zero on (a, b), then f1, f2, . . . , fn must be
linearly independent on (a, b).

EXAMPLES.
(c) From examples (a) and (b) above, we see that x and x2 are linearly independent on , as are ex and

e−x.


