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Summary:
•We provide some analogies between our work with Fourier transforms and our previous work with

orthogonal expansions.
•We then derive the eigenfunctions for the Laplacian on a disk with Dirichlet boundary conditions and

use them together with Fourier transforms to study the wave equation on a disk.
• Finally, we derive the solution to the initial value problem for the wave equation on R3 (and indicate

how to derive a similar formula in dimensions 1 and 2). We indicate its qualitative content and sketch
an example of its use. In an appendix, we show how to use similar methods to solve the inhomogeneous
wave equation.

ANALOGIES BETWEEN FOURIER TRANSFORM METHODS AND ORTHOGONAL EXPANSIONS.
Suppose that D is some bounded region in Rm, and that {eI}I∈I is a complete orthonormal set of
eigenfunctions for the Laplacian on D with homogeneous Dirichlet boundary conditions, for some set
I. Then we know that any ‘reasonable’ function can be expanded as a series u =

∑
I∈I uIeI , where

uI = (u, eI) =
∫
D
u(x)eI(x) dx. Now we may view the coefficients uI as giving a function from the set of

indices I to the complex numbers C (for the problems we have dealt with, the coefficients have generally
been real; this is because we have used real functions u and real eigenfunctions eI); we shall write such a
function as ũ : I → C, so that ũ(I) = (u, eI). Let us denote the set of all such sequences by CI (there is a
nice sense in which this set is a Cartesian product of I copies of C, but it veers off into set theory and we
shall not treat it here). Then the foregoing shows that we may define a transform O : L1(D)→ CI1 by

O[u](I) = ũ(I) = (u, eI) =

∫
D

u(x)eI(x) dx;

in other words, O[u] is the function from I to C which, for every I ∈ I, gives the coefficient (u, eI). (If the

set {eI}I∈I were not assumed to be normalised, then of course we would use (u,eI)
(eI ,eI) instead here.) We then

have the expansion

u(x) =
∑
I∈I
O[u](I)eI(x).

Suppose that we let O ⊂ CI denote the set of maps v : I → C such that the series∑
I∈I

v(I)eI(x)

converges in some appropriate sense, and such that this sum is in L1(D);2 then we expect that O actually
maps into O (much as we were able to show that F actually maps into Cb(R

m)). If we now define the map

O−1 : O→ L1(D)

by

O−1[v](x) =
∑
I∈I

v(I)eI(x),

then we see that (as our notation indicates) O−1[O[u]](x) = u(x), O[O−1[v]](I) = v(I), i.e., that O−1 is
actually an inverse to O.

We may make the following comparison between the foregoing and the Fourier transform:

F [f ](k) =

∫
Rm

f(x)e−2πik·x dx = f̂(k)

F−1[f̂ ](x) =

∫
Rm

f̂(k)e2πik·x dk = f(x)

O[u](I) =

∫
D

u(x)eI(x) dx = ũ(I)

O−1[ũ](I) =
∑
I∈I

ũ(I)eI(x) = u(x)

1As with the Fourier transform, which, we recall, we showed in the previous set of lecture notes could be
viewed as a map F : L1(Rm) → Cb(R

m), one can define O for various different function spaces. We use
L1(D) here for convenience; doing so requires only that the eigenfunctions of the Laplacian are bounded on
D, which is true for all of the cases we have studied in this course.
2Again, the exact spaces used here are not as important as the general idea.
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The transform O possesses some (though certainly not all) of the properties of the transform F . As an
example, we compute the transform of the Laplacian of a function. (As usual, we assume that all relevant
transforms exist.) This can be done two ways. The way most closely related to our derivation of a similar
property for the Fourier transform is as follows (note that this is the first place we use the fact that the
eigenfunctions satisfy homogeneous Dirichlet boundary conditions):

O[∇2u](I) =

∫
D

∇2u(x)eI(x) dx =

∫
D

∇ ·
(
∇u(x)eI(x)

)
−∇u(x) · ∇eI(x) dx

=

∫
∂D

n · ∇u(x)eI(x) dS −
∫
D

∇ ·
(
u(x)∇eI(x)

)
− u(x)∇2eI(x) dx

= −
∫
∂D

u(x)n · ∇eI(x) dS +

∫
D

u(x)∇2eI(x) dx =

∫
D

u(x)λIeI(x) dx

= λI

∫
D

u(x)eI(x) dx = λIO[u](I);

here we assume that, since u is a series of functions satisfying homogeneous Dirichlet boundary conditions,
it satisfies them itself. This result should be compared to the corresponding result for the Fourier transform:

F [∇2u](k) = −4π2|k|2F [u](k).

Another way of deriving the above result for O[∇2u](I) which is much closer to our usual methods for
manipulating orthogonal expansions (and also more general) is as follows. Writing ũ(I) = O[u](I), we have

u(x) =
∑
I∈I

ũ(I)eI(x);

assuming that we may differentiate term-by-term, we have

∇2u(x) =
∑
I∈I

ũ(I)∇2eI(x) =
∑
I∈I

λI ũ(I)eI(x).

But this shows that

O[∇2u](I) = (∇2u, eI) =

(∑
J∈I

λJ ũ(J)eJ , eI

)
= λI ũ(I) = λIO[u](I),

by our usual manipulations with orthogonal expansions. This is our desired result.
The other major property of the Fourier transform, that of turning convolution into multiplication, does

not have so happy a fate with O; the details are quite beyond the scope of this course, but we provide an
outline in Appendix I at the end for those who are interested. (This Appendix can be skipped entirely,
though it does give another perspective on where convolution comes from.)

Given this property, we may proceed to solve the heat equation using O in a fashion exactly analogous
to that by which we solved the heat equation using F . To this end, consider the problem

∂u

∂t
= ∇2u, u|t=0 = f, u|∂D = 0.

If we apply O to the entire problem, we obtain the transformed problem

∂ũ(t, I)

∂t
= λI ũ(t, I), ũ|t=0 = f̃(I);

from this we easily obtain
ũ(t, I) = f̃(I)eλIt,
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whence
u = O−1[ũ](x) =

∑
I∈I

f̃(I)eλIteI(x),

where
f̃(I) = (f, eI).

This is identical to the result we obtained by our usual methods (see, for example, our treatment of the heat
equation on the cube in the lecture notes for July 9 – 11).

The point of this is to try to make the Fourier method a little bit more understandable, rather than to
suggest that we ought to use this method with orthogonal expansions! (Though we certainly can if we like.)

EIGENFUNCTIONS AND EIGENVALUES FOR THE LAPLACIAN ON A DISK. Let D = {(ρ, φ)|ρ < a},
for some positive number a, and consider the problem

∇2u = λu, u|∂D = 0.

Now the Laplacian in polar coordinates can be obtained from the Laplacian in cylindrical coordinates by

dropping the final ∂2

∂z2 ; thus this equation becomes

∂2u

∂ρ2
+

1

ρ

∂u

∂ρ
+

1

ρ2

∂2u

∂φ2
= λu.

We proceed as usual by looking for separated solutions to this equation. Thus suppose that u = P (ρ)Φ(φ);
substituting in and dividing through by u then gives

P ′′

P
+

1

ρ

P ′

P
+

1

ρ2

Φ′′

Φ
= λ.

As usual, since only the term Φ′′

Φ depends on φ, it must be constant; and since φ is an angular variable which
is only defined up at an additive term of a multiple of 2π, our usual logic shows that this constant must be
the negative square of an integer, i.e., that there must be an m ∈ Z such that Φ′′

Φ = −m2. From this we
obtain readily the two solutions Φ1(φ) = cosmφ, Φ2(φ) = sinmφ. Substituting this back in, we obtain for
P

P ′′

P
+

1

ρ

P ′

P
− m2

ρ2
= λ,

or

P ′′ +
1

ρ
P ′ +

(
−λ− m2

ρ2

)
P = 0.

This is seen, after scaling by
√
−λ, to be simply Bessel’s equation; in other words, we must have

P (ρ) = Jm(
√
−λρ).

Somewhat more carefully: if −λ ≥ 0 then we obtain the above formula; if −λ < 0 then we would obtain
Im(
√
λρ). Since we require homogeneous Dirichlet boundary conditions on the boundary, i.e., at ρ = a, we

must choose Jm and not Im. This forces λ ≤ 0, say λ = −µ2. Now the boundary condition gives

P (a) = Jm(µa) = 0,

whence we see that µ = λmi
a for some i, where λmi denotes as usual the ith positive zero of Jm. Thus we

have the eigenfunctions

Jm

(
λmi
a
ρ

)
cosmφ, Jm

(
λmi
a
ρ

)
sinmφ,

with the eigenvalues

λ = −λ
2
mi

a2
.
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This set of eigenfunctions is seen to be complete, since the Bessel function factors are in ρ.

THE WAVE EQUATION ON A DISK. The wave equation,

1

c2
∂2u

∂t2
= ∇2u,

describes the motion of waves on elastic membranes, in gasses and fluids, and in various other circumstances
(at least as long as the quantity u is not large so that nonlinear effects can be neglected). Here c is a
parameter called the wave speed (we shall see the reason for this terminology later, when we discuss the
wave equation on Rm); we shall occasionally set it equal to 1 for convenience – any formula with c = 1 can
be turned into a formula for general c by multiplying t by c at each occurrence. Now consider the following
problem on (0,+∞)×D:

∂2u

∂t2
= ∇2u, u|∂D = 0;

this problem could describe the vibrations of a circular drumhead (in that case, u would represent the vertical
deflection from the equilibrium plane of the drumhead, so the Dirichlet condition u|∂D = 0 means physically
that the edge of the drumhead is fixed and immobile). Here we have specified no initial conditions. If we
Fourier transform in t, we obtain, using f as our Fourier variable,

−4π2f2û = ∇2û, û|∂D = 0;

from this we see that −4π2f2 must be an eigenvalue of the Laplacian on D, which means that we must have

f = ±λmi
2πa

for some m and i; more specifically, for f not of this form we must have û(f,x) = 0 for all x. While we shall
not pause to give a precise derivation of the following, this means that any solution u must be simply a sum
(rather than an integral) over frequencies; specifically, since 2πiλmi2πa t = iλmit

a , we have

u(t,x) =

∞∑
m=0

∞∑
i=1

Jm

(
λmi
a
ρ

)[
e
iλmit

a (ami cosmφ+ bmisinmφ) + e−
iλmit

a (cmi cosmφ+ dmisinmφ)
]
.

Here the coefficients can be complex to make u real.
Let us now consider the slightly different problem

∂2u

∂t2
= ∇2u, u|t=0 = f,

∂u

∂t

∣∣∣∣
t=0

= g, u|∂D = 0.

For this problem we shall begin by expanding u in a series in terms of the eigenfunctions found above. We
could proceed in the usual fashion; for the sake of illustration, we shall use the transform O introduced
above. Transforming with O, the above problem becomes

∂2ũ

∂t2
= −λ

2
mi

a2
ũ, ũ|t=0 = f̃ ,

∂ũ

∂t

∣∣∣∣
t=0

= g̃.

From the equation, we see that the general solution is of the form (writing I = (m, i, σ), where σ = 1 for the
eigenfunction with cosmφ and σ = −1 for the eigenfunction with sinmφ)

ũ(t, I) = a(I) cos
λmi
a
t+ b(I)sin

λmi
a
t;

applying the initial conditions gives

ũ|t=0 = a(I) = f̃(I),

∂ũ

∂t

∣∣∣∣
t=0

=
λmi
a
b(I) = g̃(I),

b(I) =
a

λmi
g̃(I),
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so that

ũ(t, I) = f̃(I) cos
λmi
a
t+ g̃

a

λmi
sin

λmi
a
t,

and the solution is

u(t,x) =

∞∑
m=0

∞∑
i=1

[[
f̃(m, i, 1) cos

λmi
a
t+ g̃(m, i, 1)

a

λmi
sin

λmi
a
t

]
Jm

(
λmi
a
ρ

)
cosmφ

+

[
f̃(m, i,−1) cos

λmi
a
t+ g̃(m, i,−1)

a

λmi
sin

λmi
a
t

]
Jm

(
λmi
a
ρ

)
sinmφ

]
.

The same result could of course be obtained by our usual methods. We now give a specific example.

EXAMPLE. Solve the following problem on D:

∂2u

∂t2
= ∇2u, u|t=0 = 1,

∂u

∂t

∣∣∣∣
t=0

= 0, u|∂D = 0.

We first determine the transform O[1]:

O[1](m, i,±1) =
2

(cosmφ, cosmφ)a2J2
m+1(λmi)

∫
D

Jm

(
λmi
a
ρ

){
cosmφ
sinmφ

dx,

whence we see that O[1](m, i,±1) = 0 unless m = 0 and we take the +1 in the third slot, and that in that
case

O[1](0, i, 1) =
1

πa2J2
1 (λ0i)

∫ 2π

0

∫ a

0

J0

(
λ0i

a
ρ

)
ρ dρ dφ

=
2

a2J2
1 (λ0i)

a2

λ2
0i

(xJ0(x)) |λmi0 =
2

λ0iJ1(λ0i)
;

we note that the factors of a cancel only because of the value of m involved. Clearly O[0] = 0, so substituting
back into the general formula above, we have the solution

u(t,x) =

∞∑
i=1

2

λ0iJ1(λ0i)
cos

λ0i

a
tJ0

(
λ0i

a
ρ

)
.

This is, of course, what we would expect to obtain had we started by writing out the general series expansion
for u and then substituted it into the equation.

THE WAVE EQUATION ON Rm. We now come to the last major topic of the course, namely the treatment
of the initial value problem for the wave equation on Rm. Thus we seek solutions to the following problem:

∂2u

∂t2
= ∇2u, u|t=0 = f,

∂u

∂t

∣∣∣∣
t=0

= g.

(The treatment of the nonhomogeneous version, where there is a term F added to the right-hand side, is
beyond the scope of the course proper but will be sketched in Appendix II.) We approach this problem in
a fashion analogous to that in which we approached the corresponding version on D. We begin by Fourier
transforming:

∂2û

∂t2
= −4π2|k|2û, û|t=0 = f̂ ,

∂û

∂t

∣∣∣∣
t=0

= ĝ.

Now the first equation above clearly has the general solution

û(t,k) = a(k) cos 2π|k|t+ b(k)sin 2π|k|t,
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where a(k) and b(k) are two arbitrary functions. Applying the initial conditions, we obtain

û|t=0 = a(k) = f̂(k),

∂û

∂t

∣∣∣∣
t=0

= 2π|k|b(k) = ĝ(k),

b(k) =
1

2π|k|
ĝ(k),

so that

û(t,k) = f̂(k) cos 2π|k|t+ ĝ(k)
sin 2π|k|t

2π|k|
,

exactly analogous to the result we obtained above on D. (We note also that the above function is defined
for all k, even though b(k) as given above is undefined for k = 0.) We note that the result here is valid
for all m; thus the Fourier transform of the solution does not depend in any way on the dimension of the
space involved. (This is analogous to the situation for Poisson’s equation: if one solves ∇2u = f by Fourier
transform, one finds u = − 1

4π2|k|2 f(k), regardless of the dimension.)

We would now like to take the inverse Fourier transform of the above expression. Now the properties
of the Fourier transform show that

F−1[f̂ ĝ](x) = (f ∗ g)(x)

for any appropriate functions f and g; thus if we could recognise the two functions cos 2π|k|t and sin 2π|k|t
2π|k|

as Fourier transforms, we would be able to write u as a sum of two convolution integrals. We note that the
former is the time derivative of the latter, which suggests that we start with the latter function. This is
where the dimension of the space comes into play. The main case for us here will be m = 3 (and this is the
only case we covered systematically in class), but we shall indicate what happens when m = 1 or m = 2.3

Let us denote the inverse transform we seek by M(t,x); then

M(t,x) = F−1

[
sin 2π|k|t

2π|k|

]
(x)

=

∫
Rm

sin 2π|k|t
2π|k|

e2πik·x dk.

Before proceeding, we note that this function is real: its conjugate is just∫
Rm

sin 2π|k|t
2π|k|

e2πik·x dk,

which can be turned back into the original integral by using the substitution k′ = −k. This will be important
below. Now it can be shown that for any m > 1 (we shall say more about the case m = 1 below), the m-
dimensional volume element dk can be decomposed into the following (for simplicity, we shall write k = |k|
where convenient):

dk = km−1 dk dΩ,

where dΩ is an angular element; when m = 2 it is simply dθ, while when m = 3 it is sin θdθdφ (this is called
an element of solid angle, in analogy with the element of angle dθ which one obtains in the case m = 2); when

3We shall not, however, treat higher values of m since these involve progressively more pathological ‘func-
tions’: we shall see in a moment that when m = 3 we get a Dirac delta function; for m = 5 we would get
a second derivative of a Dirac delta function, and so on. (Even dimensions turn out to be somewhat more
complicated than odd dimensions.) While these derivatives can be defined in a rigorous sense, doing so is
beyond the scope of this course.

6



APM346, 2019 August 6 – August 8 Nathan Carruth

m > 3 it is a similar angular measure in m−1 angular variables obtained by parametrising the m−1-sphere.
(For example, we may parametrise the 4-sphere thus (letting ψ represent the normal polar angle in 3-space):

w = cos θ

z = sin θ cosψ

x = sin θsinψ cosφ

y = sin θsinψsinφ,

and for higher dimensions we may proceed by induction.) This general parametrisation is not important,
beyond knowing that for all m we can parametrise it in such a way that, for fixed x, we have (writing r = |x|)

k · x = |k|r cos θ

where θ is one of the angles parametrising the m − 1-sphere, and which runs from 0 to π. (This is clearly
true for m = 2 in polar coordinates – taking the x axis along x – and for m = 3 in spherical coordinates
– take the z axis along x – and these are the only situations we are really concerned with here.) Thus we
may rewrite the above integral as, letting S1 denote the unit m− 1-sphere (the unit circle if m = 2, the unit
sphere if m = 3) ∫

S1

∫ ∞
0

sin 2πkt

2πk
e2πikr cos θkm−1 dk dΩ.

Now as noted above, this integral is always a real number; thus we may replace the complex exponential
with its real part, obtaining ∫

S1

∫ ∞
0

sin 2πkt

2πk
cos (2πkr cos θ) km−1 dk dΩ.

Now if m is odd (for example, if m = 3), the integrand is an even function of k, so this integral equals

1

2

∫
S1

∫ ∞
−∞

sin 2πkt

2πk
cos (2πkr cos θ) km−1 dk dΩ =

∫
S1

∫ ∞
−∞

sin 2πkt

2πk
e2πikr cos θkm−1 dk dΩ.

The point behind all of these manipulations is that the integral over k here is now quite clearly the inverse
Fourier transform of the function km−1 sin 2πkt

2πk on R1, evaluated at the point r cos θ – in other words, we
have reduced a three-dimensional inverse Fourier transform to a one-dimensional one. The factor of km−1

indicates that the inverse transform of this function will be the m−1th derivative of the inverse transform of
sin 2πkt

2πk , which we now derive. (This is the reason why the function M becomes increasingly less well-behaved
in higher dimensions.)

Directly calculating the inverse Fourier transform of sin 2πkt
2πk is not easy, so we shall proceed as we did

in class by finding a function whose Fourier transform it is. Let

χ(x) = χ[−t,t](x) =

{
1, x ∈ [−t, t]
0, x /∈ [−t, t] ;

χ is just a rectangular bump function. The Fourier transform of χ is

F [χ](k) =

∫ ∞
−∞

χ(x)e−2πikx dx =

∫ t

−t
e−2πikx dx =

∫ t

−t
cos 2πkx dx

=
sin 2πkx

2πk

∣∣∣∣t
−t

=
sin 2πkt

πk
,

where we have made use of the fact that cos is an odd function and sin an even function. Thus we see that

F−1

[
sin 2πkt

2πk

]
(x) =

1

2
χ(x).

7



APM346, 2019 August 6 – August 8 Nathan Carruth

It is worth noting that, were we working in dimension m = 1, this would be the only inverse Fourier transform
we would need, i.e., this would be our function M . We shall not give the details here.

From this we obtain (pretending for the moment that χ is a twice-differentiable function, even though
it is not even continuous at x = ±t)

F−1

[
k2 sin 2πkt

2πk

]
(x) = − 1

4π2
F−1

[
−4π2k2 sin 2πkt

2πk

]
(x)

= − 1

8π2
χ′′(x),

and we see that our function M is

M = − 1

16π2

∫ 2π

0

∫ π

0

χ′′(r cos θ)sin θ dθ dφ

= − 1

8π

[
−1

r
χ′(r cos θ)

]∣∣∣∣θ=π
θ=0

= − 1

8πr
· 2χ′(r) = − 1

4πr
χ′(r),

where we have used the fact that χ′ is odd since χ is even (again, pretending that χ′ were a normal
function!). We are, now, thus faced with the task of computing χ′(r), for r > 0 (remember that r = |x|).
Clearly χ′(r) = 0 for r 6= t. We claim that in fact χ′(r) = −δ(r − t). The simplest way to see this is as
follows. Let H denote the Heaviside function

H(x) =

{
0, x < 0
1, x > 0

.

Now suppose that H ′ could be defined in such a way that integration by parts were still valid4, if f were
any function vanishing as x→∞, we would have∫ ∞

−∞
H ′(x)f(x) dx = H(x)f(x)|∞−∞ −

∫ ∞
−∞

H(x)f ′(x) dx

= −
∫ ∞

0

f ′(x) dx = −f(x)|∞0 = f(0),

so that H ′(x) does indeed behave as a delta function. Now on r > 0, we have χ(r) = H(t−r), so (proceeding
formally) we have χ′(r) = −H ′(t− r) = −δ(t− r) = −δ(r− t), as claimed. [Another, perhaps more rigorous,
way of seeing this is as follows. Let {φn} be the approximate identity given by

φn(x) = nπ−
1
2 e−n

2x2

,

and define

Φn(x) =

∫ x

0

φn(u) du;

then we have, doing a change of variables to v = nu,

Φn(x) =

∫ nx

0

φ(v) dv,

whence it is evident that for x > 0 we have Φn(x)→ 1
2 as n→∞, while Φn(x)→ − 1

2 as n→ −∞; in other
words, we have for all x 6= 0 the limit

lim
n→∞

Φn(x) = H(x)− 1

2
.

4This is in fact the way in which differentiation of functions such as H and ‘functions’ (distributions) such as
δ may be defined rigorously: one requires that the normal integration-by-parts formulas hold and proceeds
formally.
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Thus, assuming that we can interchange differentiation with the limit, we obtain

H ′(x) = lim
n→∞

Φ′n(x) = lim
n→∞

φn(x),

and this latter limit ‘is’ just the delta function δ(x) since {φn} is an approximate identity.] Thus, finally, we
have for M

M(t,x) =
1

4π|x|
δ(|x| − t) =

1

4πt
δ(|x| − t).

The inverse transform of ĝ sin 2π|k|t
2π|k| , which we shall denote u2(t,x), is thus equal to the convolution integral

1

4πt

∫
R3

g(x− x′)δ(|x′| − t) dx′.

Let us now set up a spherical coordinate system in x′; then the above integral becomes

1

4πt

∫ 2π

0

∫ π

0

∫ ∞
0

g(x− x′)δ(r′ − t)r′2 dr′sin θ′ dθ′ dφ′ =
1

4πt

∫ 2π

0

∫ π

0

∫ ∞
0

g(x− x′)δ(r′ − t) dr′t2 sin θ′ dθ′ dφ′

=
1

4πt

∫
St(0)

g(x− x′) dS′ =
1

4πt

∫
St(x)

g(x′′) dS′′,

where in the last equation we have made the substitution x′′ = x − x′, which translates the sphere St(0)
to the sphere St(x). (Here St(x) = {x′||x − x′| = t} is the sphere – not ball! – of radius t centred at x.)
The second-to-last equality holds for the following reasons: first of all, the delta function forces the point
x′ in g(x− x′) to lie on the sphere; second, the remaining parts of the volume element, t2sin θ′ dθ′ dφ′, give
exactly the surface area element on a sphere of radius t.

This is thus the desired formula for the inverse Fourier transform of the second part of our expression
for û obtained above.

To work out the first part, we proceed rather formally as follows, assuming that we can interchange
F−1 and ∂

∂t :

F−1
[
f̂(k) cos 2π|k|t

]
(x) =

∂

∂t
F−1

[
f̂(k)

sin 2π|k|t
2π|k|

]
(x)

=
∂

∂t

[
1

4πt

∫
St(x)

f(x′) dS′

]
.

Thus finally we have the following formula for u:

u(t,x) =
∂

∂t

[
1

4πt

∫
St(x)

f(x′) dS′

]
+

1

4πt

∫
St(x)

g(x′) dS′;

or, putting back in the speed c,

u(t,x) =
1

c

∂

∂t

[
1

4πct

∫
Sct(x)

f(x′) dS′

]
+

1

4πct

∫
Sct(x)

g(x′) dS′. (1)

We note a qualitative result which follows from this: the solution u at a point x and a time t only depends
on the initial data on (or, at any rate, in the case of f , infinitesimally close to) the sphere (not the ball!) of
radius ct centred at x – in other words, on the initial data on the set of points exactly a distance ct from
the point x. This means that signals propagate at exactly the speed c. (As mentioned in class – though the
derivation does not follow in the way indicated there, since the function km−1 becomes odd and one cannot
extend the integral to all of R1 as done here and suggested there – this property of the wave equation does
not hold in two dimensions; and the author has seen it suggested that this is the reason why thunder is
usually heard to continue even though the lightning flash (and hence the source of the thunder) is essentially

9



APM346, 2019 August 6 – August 8 Nathan Carruth

instantaneous: a lightning flash – and hence the intial data for the thunder – is essentially a long straight
line, meaning that the source will possess cylindrical symmetry, and the wave will be essentially the same as
a two-dimensional wave.)

We now give a concrete example.

EXAMPLE. Solve the following problem on R3:

∂2u

∂t2
= ∇2u, u|t=0 = 0,

∂u

∂t

∣∣∣∣
t=0

=

{
1, |x| ≤ 1
0, |x| > 1

.

Let g(x) = ∂u
∂t

∣∣
t=0

. By our foregoing work, it suffices to evaluate integrals of the type∫
St(x)

g(x′) dS′;

but a little reflection shows that this is just the area of that part of St(x) which lies inside the unit ball
B1(0) = {x||x| ≤ 1}. This is thus a problem in geometry rather than calculus. We may distinguish four
separate cases: (i) Bt(x) ⊂ B1(0); (ii) B1(0) ⊂ Bt(x); (iii) B1(0) ∩Bt(x) = ∅; (iv) everything else. For case
(i) to hold we must have |x|+ t ≤ 1, for then |x−x′| < t implies |x′| < t+ |x| < 1; also, in this case we have
clearly ∫

St(x)

g(x′) dS′ = area(St(x)) = 4πt2.

For case (ii) to hold we must have t − |x| ≥ 1, for then |x′| < 1 implies |x′ − x| ≤ |x′| + |x| < 1 + |x| < t;
and the integral will vanish unless x = 0 and t = 1, in the which case it equals 4π. For case (iii) to hold we
must have |x| − t ≥ 1, for then |x′| < 1 implies |x′ − x| ≥ |x| − |x′| ≥ 1 + t − |x′| > t; and in this case the
integral is also clearly zero. Finally, in case (iv) we have |x|+ t > 1, |t− |x|| < 1, and we see geometrically
(try drawing a picture of the situation in two dimensions!) that the intersection of St(x) with B1(0) is a
spherical cap with central half-angle θ satisfying

1 = |x|2 + t2 − 2t|x| cos θ,

i.e., cos θ = |x|2+t2−1
2t|x| . The area of such a spherical cap is given by

∫ 2π

0

∫ θ

0

t2sin θ′ dθ′ dφ′ = 2πt2
∫ 1

cos θ

dx = 2πt2(1− cos θ)

= 2πt2
2t|x| − |x|2 − t2 + 1

2t|x|
=
πt

|x|
(
1− (t− |x|)2

)
.

We thus see that the second part u2 of the solution u depends only on x (which makes sense, since the
original problem was spherically symmetric), and that we have in particular (remembering the overall factor
of 1

4πt )

u2(t,x) =
1

4πt


4πt2, |x|+ t ≤ 1

πt
|x|
(
1− (t− |x|)2

)
, |x|+ t > 1, |t− |x|| < 1

0, otherwise

=


t, |x|+ t ≤ 1

1−(t−|x|)2
4|x| , |x|+ t > 1, |t− |x|| < 1

0, otherwise

.

Since in this case f = 0, the first part of the solution will vanish and the above formula for u2 gives in fact
the full solution u. Let us consider what it means qualitatively. Let us fix some observation point x and
consider u(t,x) as a function of t only. We identify two cases: (i) |x| ≤ 1; (ii) |x| > 1. In case (i), we see that
at time t = 0 we have u = 0, while for t ≤ 1 − |x| we have u(t,x) = t by the above formula. Now suppose
that t > 1 − |x|, but that we still have |t − |x|| < 1: this means that −1 + |x| < t < 1 + |x|, but the first
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inequality is trivial since −1 + |x| < 0, so only the second inequality is meaningful, and we see that overall

we have |t− 1| < |x|. In this case we have u(t,x) = 1−(t−|x|)2
4|x| , which is a segment of a parabola going from

u(1− |x|,x) =
1− (1− 2|x|)2

4|x|
=

4|x| − 4|x|2

4|x|
= 1− |x|

to

u(1 + |x|,x) =
1− 1

4|x|
= 0.

Finally, if |x|+ t > 1 and |t− |x|| ≥ 1, which in this case means (as indicated above) that t > 1 + |x|, then
we have u(t,x) = 0. Thus we have finally

u(t,x) =


t, 0 ≤ t ≤ 1− |x|

1−(t−|x|)2
4|x| , 1− |x| ≤ t ≤ 1 + |x|
0, t ≥ 1 + |x|

;

note that these three functions agree on the endpoints (except in the special case x = 0), so that the resulting
function u is continuous in time. This means that u(t,x) first grows linearly, then drops of quadratically to
zero, and finally stays at zero for all future time.

Now suppose that |x| > 1; in this case, the first case for u2 above never happens, so we are only
concerned with the cases |t− |x|| < 1 and |t− |x|| ≥ 1. The first case gives −1 + |x| < t < 1 + |x|, while the
second case (naturally) gives everything else; thus we have simply

u(t,x) =

{
1−(t−|x|)2

4|x| , −1 + |x| < t < 1 + |x|
0, otherwise

.

In this case, u is zero up to time −1 + |x| (this is the minimum time it takes for a signal to pass from the
unit ball to the point x); it then exhibits a quadratic increase and decrease, before dropping to zero at time
1 + |x| (which is the maximum time it takes for a signal to pass from the unit ball to the point x), after
which it remains zero for all time. In other words, then, at points x outside the unit ball, the solution is a
quadratic pulse of width 2 whose height is inversely proportional to the distance |x| of the point from the
origin.

We may use our work in this example to quickly do one more example, as follows.

EXAMPLE. Solve the following problem on R3:

∂2u

∂t2
= ∇2u, u|t=0 =

{
1, |x| ≤ 1
0, |x| > 1

,
∂u

∂t

∣∣∣∣
t=0

= 0.

In this case only the first term in the solution for u remains, and we have by equation (1)

u(t,x) =


1, |x|+ t < 1
|x|−t
2|x| , |x|+ t > 1, |t− |x|| < 1

0, |x|+ t > 1, |t− |x|| > 1

,

where we have dropped the boundary points since the function u2(t,x) derived above is not in general
differentiable there. If we proceed with the same type of analysis that we performed in the previous example,
we see that for a fixed x with |x| < 1, we have

u(t,x) =


1, 0 ≤ t < 1− |x|
|x|−t
2|x| , 1− |x| < t < 1 + |x|
0, t > 1 + |x|

;

we note that this function is not continuous. Qualitatively, at a point inside the unit ball u is uniformly
equal to 1 until the time 1− |x|, which is the least amount of time required for a signal to pass from outside
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the unit ball to the point x; after that it jumps discontinuously to the value 1 − 1
2|x| , before continually

decreasing up to time t = 1 + |x|, at which point it jumps again from the value − 1
2|x| to 0, where it stays for

all time.
Similarly, for a fixed x with |x| > 1, we have

u(t,x) =

{ |x|−t
2|x| , −1 + |x| < t < 1 + |x|
0, |t− |x|| > 1

,

which is not continuous either. This is a general feature of solutions to the wave equation with discontinuous
initial data: whereas the heat equation smooths out initial discontinuities, the wave equation propagates
them. Qualitatively, in this case we see that u is initially zero, and stays zero until time −1+ |x|, which is the
minimum amount of time required for a signal from inside the unit ball to reach the point x; then it jumps
discontinuously to the value 1

2|x| before decreasing linearly to the value − 1
2|x| at time t = 1 + |x| (which,

similarly, is the maximum amount of time for a signal from inside the unit ball to reach x), whereupon it
jumps discontinuously back to 0. Thus we have again a single pulse, but the front and back edges are now
discontinuous jumps, unlike the previous example.

These two examples end the examinable material for this course. (The last result done in class on
August 8, about solutions to Laplace’s equation, will be added to the notes on Green’s functions.) The
following appendices are not examinable (though some of the formulas in Appendix I may shed light on why
we define convolution the way we do). The author thanks you for your patience, and hopes that you have
gained something from your studies through this course. He would be happy to receive feedback on these
notes at ncarruth@math.toronto.edu.

APPENDIX I. We would like to know what becomes of convolution under O. To do this, we first consider in
more detail exactly how the Fourier transform turns convolution into multiplication. Suppose that f and g
are two suitable functions such that all needed Fourier transforms exist and can be inverted. Then we have

F [f ∗ g](k) =

∫
Rm

[∫
Rm

f(x− x′)g(x′) dx′
]
e−2πik·x dx

=

∫
Rm×Rm

f(x− x′)g(x′)e−2πik·x dx′ dx

=

∫
Rm×Rm

f(x− x′)e−2πik·(x−x′)g(x′)e−2πik·x′ dx′ dx

,

from which the result follows after the change of variables u = x − x′, v = x′. We note that the crucial
property above was that the expansion functions (the analogoues of the eigenfunctions eI) satisfied the
property

e−2πik·x = e−2πik·(x−x′)e−2πik·x′ ;

mathematically, if we set for convenience ek(x) = e−2πik·x, then the ek are so-called homomorphisms from the
Abelian group Rm (under vector addition) to the group of complex numbers of unit modulus {z ∈ C||z| = 1}
– in other words, they take addition of vectors to multiplication of complex numbers:

ek(x + y) = ek(x)ek(y).

Now on a general region D, it does not make sense to ask whether the eigenfunctions eI satisfy a similar
property, since if x, y ∈ D there is no reason at all to expect that x + y ∈ D.5 Thus there does not appear
to be any way to generalise this property of F to O.

5One could, however, ask whether there were not a more general group structure on D. The mathematical
field of harmonic analysis studies the extension of the transforms here to situations where the domains of
the functions are topological groups. These groups are not, however, in general, open subsets of Rm.
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With some reflection, though, we note that ek(x) is a homomorphism in k as well as in x (this is actually
a rather trivial observation, since k and x appear in ek(x) interchangeably, i.e., ek(x) = ex(k)):

ek+l(x) = ek(x)el(x).

From this we can show that the inverse Fourier transform also maps convolutions to products: suppose that
we have two Fourier representations

f(x) =

∫
Rm

f̂(k)e−2πik·x dk, g(x) =

∫
Rm

ĝ(k′)e−2πik′·x dk′;

then we may write their product as

f(x)g(x) =

∫
Rm×Rm

f̂(k)ĝ(k′)e−2πi(k+k′)·x dk dk′

=

∫
Rm×Rm

f̂(k′′ − k′)ĝ(k′)e−2πik′′·x dk′′ dk′ =

∫
Rm

[∫
Rm

f̂(k′′ − k′)ĝ(k′) dk′
]
e−2πik′′·x dk′′

= F−1[f ∗ g](x),

where as before we have performed the change of variables k′′ = k + k′. (We note that the same kind of
procedure could be used with the forward Fourier transform F .) Now for the eI the prospects of generalising
this result are brighter since, for the index sets we have studied, if I, J ∈ I, then in fact we also have
I+J ∈ I. This suggests that, while O might not turn convolutions into products, perhaps O−1 turns (some
generalised form of) convolutions into products. We investigate this in more detail. Suppose that we have
two expansions

u =
∑
I∈I

ũ(I)eI , v =
∑
I∈I

ṽ(I)eI ;

then we may write, as before,

uv =
∑
I,J∈I

ũ(I)ṽ(J)eIeJ .

In general, though, there is now no clear way to proceed, since we do not know anything about the eI .
Suppose that we still had the result eIeJ = eI+J (none of the sets of eigenfunctions we have dealt with
actually satisfy this property); then the above sum would become

uv =
∑
I,J∈I

ũ(I)ṽ(J)eI+J =
∑
K∈I

∑
J∈I

ũ(K − J)ṽ(J)eK ,

from which we see that
O[uv](I) =

∑
J∈I

ũ(I − J)ṽ(J).

In general, the best we can hope for is some sort of expansion

eIeJ =
∑
K∈I

πIJKeK ;

such an expansion surely exists, assuming anyway that the eigenfunctions eI are not too pathological, and
allows us to write

uv =
∑

I,J,K∈I
ũ(I)ṽ(J)πIJKeK ,

where
πIJK = (eIeJ , eK),

13



APM346, 2019 August 6 – August 8 Nathan Carruth

meaning that

O[uv](K) =
∑
I,J∈I

ũ(I)πIJK ṽ(J).

This is probably the closest we can come to generalising the property of mapping convolutions into products
enjoyed by the Fourier transform. If πIJK is zero for most values of the parameters IJK, then this result
may still be useful; if not, it is probably just a curiousity.

We give an example.

EXAMPLE. Let us consider the simple case of the eigenfunctions of the Laplacian on the unit square with
Dirichlet boundary conditions. We have not considered this case directly but a quick review of our derivation
of the eigenfunctions of the Laplacian on the unit cube shows that the eigenfunctions are eI = sin `πxsinmπy,
where I = (`,m), `,m ∈ Z, `,m > 0. Thus in this case, letting I = (`,m), J = (`′,m′), and K = (`′′,m′′),
we have

πIJK =

∫
Q

sin `πxsinmπysin `′πxsinm′πysin `′′πxsinm′′πy dx dy.

Now ∫ 1

0

sin `πxsin `′πxsin `′′πx dx =
1

2

∫ 1

0

[cos(`− `′)πx− cos(`+ `′)πx] sin `′′πx dx

=
1

4

∫ 1

0

sin (`′′ + `− `′)πx− sin (`′′ − `+ `′)πx

− sin (`′′ + `+ `′)πx+ sin (`′′ − `− `′)πx dx,

which we shall not evaluate explicitly but only determine when it is zero. Clearly,
∫ 1

0
sinnπx = 1

nπ (1−(−1)n)
is zero exactly when n is even; thus the above integral will be zero unless at least one of the quantities

`′′ + `− `′, `′′ − `+ `′, `′′ + `+ `′, `′′ − `− `′

is odd; but the first two are odd together, as are the last two, and thus the integral will vanish unless at
least one of

`′′ + `− `′, `′′ − `− `′

is odd. But these are also seen to be odd together, so we find at last that the integral will vanish unless

`′′ − `− `′

is odd. Since analogous results hold for the corresponding y integrals, we see that πIJK will be zero unless
the quantity

K − (I + J)

is odd (meaning that both of its components are odd). While this is not nearly as nice as requiring it to
vanish, it does tell us that πIJK vanishes for a sizeable number of indices IJK.

Similar triple products can (I believe) be worked out for the Legendre polynomials and the Legendre
functions, and probably Bessel functions as well. If anyone is interested in knowing more about this particular
topic, please let me know and I can provide more references.

APPENDIX II. SOLUTIONS TO THE NONHOMOGENEOUS WAVE EQUATION. We sketch a solution
to the nonhomogeneous wave equation on R3. Thus consider the problem

∂2u

∂t2
= ∇2u+ F, u|t=0 = f,

∂u

∂t

∣∣∣∣
t=0

= g.

Fourier transforming as usual, we have

∂2û

∂t2
= −4π2|k|2û+ F̂ , û|t=0 = f̂ ,

∂û

∂t

∣∣∣∣
t=0

= ĝ.
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Thus we must now solve an equation of the form

y′′ + α2y = h (2)

where α > 0 and h is some given function. We may do this by the method of variation of parameters (also
called variation of constants). (See [1], sections 3.4 and 3.6 (especially Theorem 3.6.4 and accompanying
discussion) for a treatment of this method in a general setting.) The general solution to the corresponding
homogeneous equation

y′′ + α2y = 0

is
y = a cosαx+ bsinαx,

where a = y(0) and b = y′(0)
α . The method of variation of parameters starts by looking for solutions to

equation (2) of the form
y = a(x) cosαx+ b(x)sinαx.

Differentiating once, we obtain

y′ = a′ cosαx+ b′sinαx+ α (−a(x)sinαx+ b(x) cosαx) .

We require the sum of the first two terms to vanish; then differentiating again, we obtain

y′′ = α (−a′sinαx+ b′ cosαx)− α2 (a(x) cosαx+ b(x)sinαx) ,

from which we see easily that

y′′ + αy = h = α (−a′sinαx+ b′ cosαx) .

Combining this with the requirement
a′ cosαx+ b′sinαx = 0,

we see that we now have the system

cosαxa′ + sinαxb′ = 0

−αsinαxa′ + α cosαxb′ = h.

Now the determinant of the coefficient matrix is just the Wronskian of the two solutions:

W =

∣∣∣∣ cosαx sinαx
−αsinαx α cosαx

∣∣∣∣ = α,

so that as long as we assume α 6= 0 we may solve the above system; in fact, we have (using our formula for
the inverse of a two by two matrix)(

a′

b′

)
=

1

α

(
α cosαx −sinαx
αsinαx cosαx

)(
0
h

)
=

(
−h sinαx

α
h cosαx

α

)
.

From this we have

a = y(0)− 1

α

∫ x

0

h(u)sinαudu

b =
1

α
y′(0) +

1

α

∫ x

0

h(u) cosαudu,

so that

y = y(0) cosαx+ y′(0)
sinαx

α
+

1

α

∫ x

0

h(u)sinαx cosαu− sinαu cosαxdu

= y(0) cosαx+ y′(0)
sinαx

α
+

∫ x

0

h(u)
sinα(x− u)

α
du.
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We now return to our original problem:

∂2û

∂t2
= −4π2|k|2û+ F̂ , û|t=0 = f̂ ,

∂û

∂t

∣∣∣∣
t=0

= ĝ.

The above formula gives

û(t,k) = f̂ cos 2π|k|t+ ĝ
sin 2π|k|t

2π|k|
+

∫ t

0

F̂ (s,k)
sin 2π|k|(t− s)

2π|k|
ds.

The first two terms are of course the same as those we obtained for the homogeneous equation above. We
see that we may invert this formula in much the same way as we did the formula for the solution to the
homogeneous problem previously. Specifically, we obtain

u(t,x) =
∂

∂t

[
1

4πt

∫
St(x)

f(x′) dx′

]
+

1

4πt

∫
St(x)

g(x′) dx′ +

∫ t

0

1

4π(t− s)

∫
St−s(x)

F (s,x′) dS′ ds.

Let us investigate the final term here, which is the only new thing. We see that the contribution which it
gives to u(x) is equal to the integral over all times from 0 to t of a quantity which at time s is (proportional
to) the integral over the sphere of radius t − s centred at x – in other words, the integral over the surface
from which a signal will take exactly the time t − s remaining to reach the point x. More succinctly, the
contribution F makes to u at the point x and time t is the integral over the set of all points (through all
of space-time, not just space) (s,x′) satisfying |x− x′| = t− s, i.e., the set of all points just able to send a
signal to x by time t.

We may write the above result more simply as follows. First, let us do a change of variables and write
u = t− s, x′′ = x′ − x; then the last integral above becomes∫ t

0

∫
Su(x)

1

4πu
F (t− u,x′) dS′ du =

∫ t

0

∫
Su(0)

1

4πu
F (t− u,x′′ + x) dS′′ du;

if we now introduce spherical coordinates (r′′, θ′′, φ′′) for x′′, we may write this integral as (noting that
dS′′ = u2sin θ′′ dθ′′ dφ′′ since it is the full surface-area element for the sphere of radius u)∫ t

0

∫ 2π

0

∫ π

0

1

4πu
F (t− u,x′′ + x) sin θ′′ dθ′′ dφ′′ u2 du =

∫
Bt(0)

F (t− r′′,x′′ + x)

4πr′′
dV

=

∫
Bt(x)

F (t− |x− x′|,x′)
4π|x− x′|

dV,

where we have changed back to x′ = x′′ + x in the last line, and noted that r′′ = |x′′| = |x − x′|. This
expression is related to the so-called retarded potential which is used in studying electromagnetic radiation.
We recognise the quantity 1

4π|x−x′| as being (up to a sign) the Green’s function for the Laplacian on R3;

what is different here is that we are integrating it against a function F (t− |x− x′|,x′) instead of a function
of x′ alone. In other words, roughly speaking, the effect of the source F on the solution u is obtained by
integrating against the ordinary Green’s function for the Laplacian, but using the retarded source function
F (t − |x − x′|,x′) at times which are such that a signal from the point of integration x′ can just reach the
observation point x by the observation time t.

We note that the above method of variation of parameters can be used with only slight modifications
to solve the nonhomogeneous wave equation on a bounded region, in a manner analogous to our solution to
the wave equation on a disk given above.
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