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Summary:
•We use the notion of approximate identities introduced last week to prove a version of the Fourier

inversion theorem.
•We then use Fourier transforms to study the heat equation, obtaining both integral formulas for

solutions to the homogeneous and inhomogeneous equations as well as qualitative information.

A THEOREM ON APPROXIMATE IDENTITIES. We have the following generalisation of Example (c)
from last week’s lecture notes.

THEOREM 1. Let ψ : Rm → R1 satisfy
∫
Rm |ψ(x)| dx <∞,

∫
Rm ψ(x) dx = 1. Then the sequence {ψn}∞n=1

given by
ψn(x) = nmψ(nx)

is an approximate identity, at least for continuous, bounded functions (i.e., elements of the space Cb(R
m) to

be introduced momentarily).
Proof. The proof is almost identitical to that of the case m = 1. Let f : Rm → R1 be bounded and

continuous. Then we see that∫
Rm

f(x)ψn(x) dx =

∫
Rm

f(x)ψ(nx)nm dx =

∫
Rm

f
(u
n

)
ψ(u) du,

where we have made the change of variables u = nx, which gives du = nm dx since we are working on Rm.
Now this integral can be broken down as follows:∫

Rm

f
(u
n

)
ψ(u) du =

∫
Rm

[
f
(u
n

)
− f(0)

]
ψ(u) du + f(0),

since
∫
Rm ψ(u) du = 1. It thus suffices to show that the first term on the right-hand side above approaches

0 as n→∞. Let M = sup
x∈Rm

|f(x)|+ 1 (where sup
x∈Rm

|f(x)| denotes the least upper bound for |f(x)| on Rm),

let ε > 0, let δ > 0 be such that |f(x)− f(0)| < ε

2
∫
Rm
|ψ(u)| du

when |x| < δ, and let K ∈ Z, K > 0 be such

that ∫
|x|>K

|ψ(x)| dx < ε

2M
;

such a K clearly exists since
∫
Rm |ψ(x)| dx <∞. Furthermore, let N ∈ Z, N > 0 be such that N > K

δ , and
let n > N . Now we have∣∣∣∣∫

Rm

[
f
(u
n

)
− f(0)

]
ψ(u) du

∣∣∣∣ ≤ ∫
Rm

∣∣∣[f (u
n

)
− f(0)

]∣∣∣ |ψ(u)| du

=

∫
|x|<K

∣∣∣[f (u
n

)
− f(0)

]∣∣∣ |ψ(u)| du +

∫
|x|>K

∣∣∣[f (u
n

)
− f(0)

]∣∣∣ |ψ(u)| du

≤ ε

2
∫
Rm |ψ(u)| du

∫
|x|<K

|ψ(u)| du + 2M

∫
|x|>K

|ψ(u)| du ≤ ε

2
+
ε

2
= ε,

where we have used the fact that n > N implies K
n < δ, and replaced the integral over |x| < K one over Rm

in the last line. This completes the proof. QED.
The basic idea here is that the function f

(
u
n

)
looks like a very ‘zoomed-in’ version of f , so that since ψ

needs to be concentrated somewhere finite, if we zoom in f enough it will eventually cover essentially all of
the places where ψ is not trivially small; and since f is continuous, zooming in like this makes it look very
close to the single number f(0), and since

∫
Rm ψ(x) dx = 1, the resulting integral will be very close to f(0).

The foregoing ε-δ proof merely makes this rigorous.

A WORD ON FUNCTION SPACES, AND THE NATURE OF THE FOURIER TRANSFORM. We recall
that we have defined the space

L1(Rm) = {f : Rm → R1|
∫
Rm

|f(x)| dx <∞}.
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We now define the space of bounded continuous functions on Rm:

Cb(R
m) = {f : Rm → R1|f is bounded and continuous onRm}.

(Both spaces could also be defined with real-valued functions replaced by complex-valued ones; in that case,
|f(x)| in the definition of L1(Rm) means the modulus of the complex number f(x).)

We are now in a position to say more precisely what exactly the Fourier transform is. First of all,
we recall that a function f from a set A to a set B is a rule which assigns to each element a ∈ A an
element f(a) ∈ B. Now the Fourier transform is a function on functions, in the sense that for every function
in a certain class it gives another function in another class. We have shown how to define F [f ] for any
f ∈ L1(Rm); the result is another function on Rm whose rule is

F [f ](k) =

∫
Rm

f(x)e−2πik·x dx.

Now we claim that for f ∈ L1(Rm), F [f ] ∈ Cb(R
m). That F [f ] is bounded can be seen easily: for any

k ∈ Rm,

|F [f ](k)| = |
∫
Rm

f(x)e−2πik·x dx| ≤
∫
Rm

|f(x)e−2πik·x| dx =

∫
Rm

|f(x)| dx,

and this last quantity is finite since f ∈ L1(Rm). Since it is independent of k, we see that F [f ] is indeed
bounded on Rm, as claimed. To see that it is also continuous on Rm, we may proceed as follows: let
k0 ∈ Rm; then

lim
k→k0

F [f ](k) = lim
k→k0

F [f ](k) = lim
k→k0

∫
Rm

f(x)e−2πik·x dx

=

∫
Rm

f(x) lim
k→k0

e−2πik·x dx =

∫
Rm

f(x)e−2πik0·x dx = F [f ](k0),

where we can interchange the limit with the integral since f ∈ L1(Rm)1. This shows that F [f ] is continuous
on Rm, and hence that F [f ] ∈ Cb(Rm), as claimed.

The foregoing shows that we may think of the Fourier transform F as a function on functions, or perhaps
better put, a transformation or map on functions which takes elements of L1(Rm) to elements of Cb(R

m).2

It can be shown that the Fourier transform actually maps into the subspace of Cb(R
m) consisting of those

functions which go to zero at infty in a certain sense, but we shall not show that here.

FOURIER INVERSION THEOREM. A version of the Fourier inversion theorem was stated at the end of
last week’s notes; here we shall prove the following slightly modified version.

THEOREM 2. Suppose that f ∈ L1(Rm) ∩ Cb(Rm) (i.e., that f is in both L1 and Cb), and that f̂ ∈ L1.
Then we have

f(x) =

∫
Rm

f̂(k)e2πik·x dk.

Proof. This may be shown by using a particular approximate identity. (The one we shall use here is
not the only option, incidentally; actually there is a very broad range of possibilities.) For convenience, if
k ∈ Rm we shall write k = |k| for the norm of k. We work from the right-hand side to the left-hand side.

Now3 since f̂ ∈ L1(Rm), we may write∫
Rm

f̂(k)e2πik·x dk = lim
n→∞

∫
Rm

f̂(k)e−
k2

n2 e2πik·x dk,

1Again, this technically requires that we use the dominated convergence theorem for the Lebesgue integral.
2We note in passing that the inequality |F [f ](k)| ≤

∫
Rm |f(x)| dx implies that F is in fact a continuous map

from L1 to Cb, at least if we use appropriate norms to give these spaces topologies.
3Applying again the dominated convergence theorem of Lebesgue integration theory!
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since in the limit the quantity − k2

n2 → 0, so the exponential approaches 1. Substituting in the definition of

f̂(k), we have ∫
Rm

f̂(k)e−
k2

n2 e2πik·x dk =

∫
Rm

[∫
Rm

f(x′)e−2πik·x
′
dx′
]
e−

k2

n2 e2πik·x dk;

now because of the factor e−
k2

n2 , the integrand is in fact integrable over the product Rm×Rm, which implies
that we can interchange the order of integration, obtaining∫

Rm

[∫
Rm

e−
k2

n2 e−2πik·(x
′−x) dk

]
f(x′) dx′.

Now the integral in brackets is seen to be the Fourier transform of the Gaussian function e−
k2

n2 , evaluated
at the point x′ − x. From the results on homework 10, this is seen to be(

πn2
)m

2 e−π
2n2|x′−x|2 . (1)

Thus the full integral above becomes∫
Rm

(
πn2

)m
2 f(x′)e−π

2n2|x−x′|2 dx′.

Now setting

ψ(x) = π
m
2 e−π

2|x|2 ,

and noting that ψ ∈ L1(Rm),
∫
Rm ψ(x) dx = 1, and that the function in (1) above is just ψn(x) as defined

in Theorem 1, we see that, by Theorem 1, we have finally∫
Rm

f̂(k)e2πik·x dk = lim
n→∞

∫
Rm

(
πn2

)m
2 e−π

2n2|x−x′|2f(x′) dx′ = f(x),

as desired. QED.
The transformation on functions which takes a function f(k) in L1(Rm) to the function∫

Rm

f(k)e2πik·x dk

is called the inverse Fourier transform and is denoted F−1[f ]. The foregoing shows that, if f ∈ L1(Rm) ∩
Cb(R

m), then F−1[F [f ]] = f , i.e., that F−1 is indeed a left inverse to F . Identical arguments to those in
the proof just given show that also F [F−1[f ]] = f for such f . These formulas are also correct much more
generally: in fact, if f ∈ L1(Rm) is any function satisfying

∫
Rm |f(x)|2 dx < ∞, then these relations still

hold for f . We shall, however, not pursue such questions here but merely regard the above result as being
an example of the results which can be obtained. For the most part we shall work with Fourier transforms
and their inverses rather more formally.

HEAT EQUATION ON Rm. Consider the following problem on (0,+∞) ×Rm (points of which we shall
denote as (t,x)):

∂u

∂t
= ∇2u, u|t=0 = f.

Suppose that f ∈ L1(Rm), and suppose that u and all of its derivatives up to second order are in L1(Rm)4;
then, taking the Fourier transform of the above equation, we obtain (assuming that we may interchange the
order of integration and differentiation with respect to t)

∂û

∂t
= −4π2|k|2û, û|t=0 = f̂ .

4All we really need, of course, is for u to be such that we can take the Fourier transforms needed below. The
given conditions are sufficient but probably not necessary.
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Now the first equation is almost identical to the one we found when solving the heat equation on the unit
cube, and has the solution

û(t,k) = û(0,k)e−4π
2|k|2t = f̂(k)e−4π

2|k|2t.

Assuming that we may apply Fourier inversion, this gives rise immediately to the integral expression

u =

∫
Rm

f̂(k)e−4π
2|k|2te2πik·x dk.

This expression, however, is rather unsatisfactory, since calculating f̂ requires us to perform a rather difficult
integral, and then we are still faced with evaluating the above integral in order to finally obtain u; in other
words, the above expression requires two integrations. We may use properties of the Fourier transform to
reduce this to one, as follows. First, we note that

F−1[e−4π
2|k|2t](x) =

∫
Rm

e−4π
2|k|2te2πik·x dk =

∫
Rm

e−4π
2|k|2te−2πik·(−x) dk

=
( π

4π2t

)m
2

e−
π2|−x|2

4π2t =
1

(4πt)
m
2
e−
|x|2
4t .

This last expression is called the heat kernel; let us denote it by K(t,x). Thus we see that F [K](t,k) =

e−4π
2|k|2t, so that

û(t,k) = F [f ](k)F [K](t,k) = F [f ∗K],

where the convolution is performed only on the spatial variables. Fourier inversion then implies that we have

u(t,x) = (f ∗K)(t,x) = (K ∗ f)(t,x) =

∫
Rm

K(t,x− x′)f(x′) dx′

=
1

(4πt)
m
2

∫
Rm

e−
|x−x′|2

4t f(x′) dx′.

This is the desired formula for u in terms of f .
In order to apply this formula to concrete examples, of course, we would need to find a function f for

which the integral above is actually calculable. There are some examples in the textbook for which the above
integral can be determined in terms of the error function; for now we shall just comment on some qualitative
properties of solutions to the heat equation which emerge from it. The first of these is the result

lim
t→∞

u(t,x) = 0;

this can be seen from the above formula since the quantity 1

(4πt)
m
2
→ 0 as t→∞, while the integral simply

approaches
∫
Rm f(x′) dx′, which is finite since f ∈ L1(Rm). It can actually be seen even more clearly from

the formula for the Fourier transform for u above, namely

û(t,k) = f̂(k)e−4π
2|k|2t :

from this formula it is entirely obvious that û→ 0 as t→∞, so assuming that the inverse Fourier transform
is continuous in an appropriate sense, the same will be true also of u. Next we note that, at least assuming
f ∈ Cb,

lim
t→0+

u(t,x) = f(x).

To prove this fully rigorously would require an extension of Theorem 1 to the case of nonintegral n; we shall
content ourselves by investigating the limit5

lim
n→∞

u(
1

n2
,x).

5If the limit above exists, it will certainly be equal to the limit below. However, the limit below can exist
without the original limit existing (consider, for example, the function sin( 2π

t ), which is zero when t = 1
n2

but has no limit as t → 0): this is similar to the fact we learned in multivariable calculus, that a function
can have a limit at a point along a certain curve without having a full limit at that point.
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This is seen to be

lim
n→∞

nm

(4π)
m
2

∫
Rm

e−
n2|x−x′|2

4 f(x′) dx′;

since ∫
Rm

e−
n2|x|2

4 dx = (4π)
m
2 ,

we see that we may apply Theorem 1 to conclude that this limit is in fact f(x), as desired.
The foregoing has the following curious consequence: any function f ∈ L1(Rm)∩Cb(Rm) is the limit of

a sequence of functions which have infinitely many derivatives. To see this, we need the following result about
convolutions (which is worth knowing in its own right). Suppose that f, g ∈ L1(Rm), and that ∂jf ∈ L1(Rm)
for some j. Then we have

∂j(f ∗ g)(x) = ∂j

∫
Rm

f(x− x′)g(x′) dx′ =

∫
Rm

(∂jf)(x− x′)g(x′) dx′ = ((∂jf) ∗ g)(x);

in other words, ∂j(f ∗ g) = (∂jf) ∗ g. Note that we did not need to assume anything about differentiability
(or even continuity) of g here; thus this result shows that the convlution of two functions is at least as smooth
(i.e., possesses at least as many derivatives) as the smoother of the two factors. Now the heat kernel

K(t,x) =
1

(4πt)
m
2
e−
|x|2
4t

clearly possesses derivatives of all orders in x, for all t > 0; since any solution to the heat equation is just the
convolution of K with the initial data f , we see that any such solution must have derivatives of all orders in
x for all t > 0. In other words, the functions

u(
1

n2
,x)

must have infinitely many derivatives in x for all n. But these functions converge to f , meaning that f
is indeed a limit of functions with infinitely many derivatives, as claimed. We say that the heat equation
smooths out its initial data. (This is a general property of the class of equations known as parabolic equations
of which the heat equation is the simplest example. The wave equation, which we shall study next week, is
a member of the class of hyperbolic equations and transports singularities rather than smoothing them out.)

Finally, we show how Fourier techniques can be used to solve the inhomogeneous heat equation. To this
end, consider the following problem on Rm:

∂u

∂t
= ∇2u+ g, u|t=0 = f.

If we assume as usual that all necessary Fourier transforms exist, then Fourier transforming gives

∂û

∂t
= −4π2|k|2û+ ĝ, û|t=0 = f̂ .

The first equation again becomes a simple linear first-order ordinary differential equation which may be
solved using the integrating factor e4π

2|k|2t. Multiplying both sides by this factor and rearranging, we obtain

e4π
2|k|2tĝ = e4π

2|k|2t ∂û

∂t
+ 4π2|k|2e4π

2|k|2tû =
∂

∂t

[
e4π

2|k|2tû
]
,

so replacing t by s and integrating with respect to s from 0 to t,

e4π
2|k|2sû(s,k)

∣∣∣s=t
s=0

=

∫ t

0

e4π
2|k|2sĝ(s,k) ds

e4π
2|k|2tû(t,k)− û(0,k) =

∫ t

0

e4π
2|k|2sĝ(s,k) ds

û(t,k) = e−4π
2|k|2tf̂(k) +

∫ t

0

e−4π
2|k|2(t−s)ĝ(s,k), ds. (2)

5
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The first term is just the expression we obtained before, as it should be since that is just the case g = 0,
and in that case the second term vanishes. Now the second term looks somewhat like a convolution integral,
though not quite because of the limits; it turns out that this type of integral is the kind of convolution
appropriate for the so-called Laplace transform usually encountered in introductory classes on ordinary
differential equations.6 At any rate, assuming that we may interchange the order of the t integral with the k
integral appearing in F−1, we may take the inverse Fourier transform of this expression as before to obtain

u(t,x) = K(t,x) ∗ f(x) +

∫ t

0

K(t− s,x) ∗ g(s,x) ds,

where all convolutions are with respect to the variable x.
As with the case of the homogeneous heat equation above, for this formula to be useful in practice we

would need functions f and g for which the above integrals are calculable. An (attempt at an) example of this
sort is given in Homework 11. For the moment let us do what we did when we discussed the homogeneous
heat equation and see what kinds of qualitative information we can determine from this solution. We see
that the first term, which is just the solution of the homogeneous equation with the given initial data, goes
to zero as t → ∞ and to f(x) as t → 0+, as before. Now let us consider the second term. Suppose that
g(t,x) = g0(x) for all t ≥ 0. Then ĝ(t,k) = ĝ0(k) for all k. Returning now to the expression for the Fourier
transform of u in equation (2) above, we see that

4π2|k|2û(t,k) = 4π2|k|2
[
e−4π

2|k|2tf̂(k) + ĝ0(k)e−4π
2|k|2t

∫ t

0

e4π
2|k|2s ds

]
= 4π2|k|2e−4π

2|k|2tf̂(k) + ĝ0(k)e−4π
2|k|2te4π

2|k|2s
∣∣∣t
0

= 4π2|k|2e−4π
2|k|2tf̂(k) + ĝ0(k)

[
1− e−4π

2|k|2t
]
,

from which it is clear that in the limit t→∞ we have

4π2|k|2û = ĝ0(k).

But (assuming that the functions involved are such that we can take the inverse Fourier transform of both
sides) this is nothing but the equation −∇2u = g0! From this we see that (at least for suitable functions f
and g0) in the limit as t→∞, u converges to the solution to the Poisson equation ∇2u = −g0 on Rm. This
should be compared with our earlier result, when working on a bounded region, that if the heat equation
were solved with nonhomogeneous boundary conditions, in the limit as t→∞ the solution would converge
to the solution to Laplace’s equation on that region with the same boundary conditions. In the current case,
since we are solving on the whole space Rm, there are no real boundary conditions (the only relevant one
are that u should be in L1), but our work here shows that a similar result holds for the inhomogeneous heat
equation.

6The Laplace transform takes account of initial conditions while the Fourier transform extends from −∞ to
+∞, i.e., over the whole range of the variable. We might have a chance to say a little bit about the Laplace
transform towards the end of the course.
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