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Summary:
•We use the eigenfunctions and eigenvalues of the Laplacian on a cylinder, derived last week, to solve

a problem involving Poisson’s equation on a cylinder.
•We then derive the eigenfunctions and eigenvalues of the Laplacian on the unit ball.
•We give a method for solving Poisson’s equation and the heat equation with inhomogeneous boundary

conditions, and give an example in spherical coordinates.

EXAMPLE. Solve the following problem on the cylinder C = {(ρ, θ, z)|ρ < 1, 0 < z < 1}:

∇2u = zρ2 cos 2φ, u|∂C = 0.

From last time, we know that the eigenfunctions of the Laplacian on C are

enmi =

{
Jm (λmiρ) cosmφsinnπz
Jm (λmiρ) sinmφsinnπz

with corresponding eigenvalues
λnmi = −λ2

mi − n2π2.

Thus we must expand the function zρ2 cos 2φ in this basis. To do this, we compute as follows:

(
zρ2 cos 2φ, Jm (λmiρ) cosmφsinnπz

)
=

∫ 1

0

∫ 1

0

∫ 2π

0

zρ2 cos 2φJm (λmiρ) cosmφsinnπz dφ dz ρdρ

=

∫ 1

0

zsinnπz dz

∫ 1

0

ρ3Jm (λmiρ) dρ

∫ 2π

0

cos 2φ cosmφdφ,

which is seen to be zero when m 6= 2, while when m = 2 it becomes

(−1)n+1

nπ

J3 (λmi)

λmi
π,

whence the coefficient of Jm (λmiρ) cosmφsinnπz in the expansion of zρ2 cos 2φ when m 6= 2 is zero, while
when m = 2 it is

1
nπ (−1)n+1 J3(λ2i)

λ2i
π

1
2 ·

1
2J

2
3 (λ2i) · π

=
4(−1)n+1

nπλ2iJ3 (λ2i)
.

A similar calculation shows immediately that the coefficient of Jm (λmiρ) sinmφsinnπz is zero, since cos 2φ
is orthogonal to sinmφ for all m. Thus we have finally

zρ2 cos 2φ =

∞∑
n=1

∞∑
i=1

4(−1)n+1

nπλ2iJ3 (λ2i)
J2 (λ2iρ) sinnπz cos 2φ.

Given this, the solution to our original problem is almost immediate: we assume as usual that we have an
expansion of the form

u(ρ, θ, z) =
∞∑
n=1

∞∑
m=0

∞∑
i=1

Jm (λmiρ) sinnπz (cnmi cosmφ+ dnmisinmφ) ;

then, assuming that we may differentiate term-by-term, we have, since both Jm (λmiρ) cosmφsinnπz and
Jm (λmiρ) sinmφsinnπz are eigenfunctions of the Laplacian with the same eigenvalue λnmi = −λ2

mi− n2π2,

∇2u =

∞∑
n=1

∞∑
m=0

∞∑
i=1

(
−λ2

mi − n2π2
)
Jm (λmiρ) sinnπz (cnmi cosmφ+ dnmisinmφ)

=

∞∑
n=1

∞∑
i=1

4(−1)n+1

nπλ2iJ3 (λ2i)
J2 (λ2iρ) sinnπz cos 2φ,
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whence we see that dnmi = 0 for all n, m, i, while cnmi = 0 for all n and i unless m = 2 and

cn2i = − 4(−1)n+1

nπλ2iJ3 (λ2i) (λ2
2i + n2π2)

,

so that finally we have the solution

u(ρ, θ, z) =

∞∑
n=1

∞∑
i=1

4(−1)n

nπλ2iJ3 (λ2i) (λ2
2i + n2π2)

J2 (λ2iρ) sinnπz cos 2φ.

EXAMPLE. Solve the following problem on (0,+∞)× C:

∂u

∂t
= ∇2u, u|t=0 = zρ2 cos 2φ, u|(0,+∞)×∂Q = 0.

From the previous example, we have the expansion

zρ2 cos 2φ =

∞∑
k=0

∞∑
i=1

8

(2k + 1)πλ2iJ3 (λ2i)
J2 (λ2iρ) sin (2k + 1)πz cos 2φ.

Expanding u as

u =

∞∑
n=1

∞∑
m=0

∞∑
i=1

Jm (λmiρ) sinnπz (cnmi(t) cosmφ+ dnmi(t)sinmφ)

and substituting this into the heat equation ∂u
∂t = ∇2u as before, we see that

∞∑
n=1

∞∑
m=0

∞∑
i=1

Jm (λmiρ) sinnπz (c′nmi(t) cosmφ+ d′nmi(t)sinmφ)

=

∞∑
n=1

∞∑
m=0

∞∑
i=1

(
−λ2

mi − n2π2
)
Jm (λmiρ) sinnπz (cnmi(t) cosmφ+ dnmi(t)sinmφ) ,

whence equating coefficients of like terms gives the equations

c′nmi = −
(
λ2
mi + n2π2

)
cnmi

d′nmi = −
(
λ2
mi + n2π2

)
dnmi.

(1)

Now the initial condition gives

∞∑
n=1

∞∑
m=0

∞∑
i=1

Jm (λmiρ) sinnπz (cnmi(0) cosmφ+ dnmi(0)sinmφ)

=

∞∑
n=1

∞∑
i=1

4 (1− (−1)n)

nπλ2iJ3 (λ2i)
J2 (λ2iρ) sinnπz cos 2φ,

so

cnmi(0) =

{
0, m 6= 2,

4(1−(−1)n)
nπλ2iJ3(λ2i)

, m = 2

dnmi(0) = 0,

whence the system (1) gives dnmi(t) = 0 for all n, m, i and all t, while cnmi(t) = 0 for all t unless m = 2
and finally

cn2i(t) =
4 (1− (−1)n)

nπλ2iJ3 (λ2i)
e−(λ2

2i+n
2π2)t,

2
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so that the solution to our original problem is finally

u(ρ, θ, z) =

∞∑
n=1

∞∑
i=1

4 (1− (−1)n)

nπλ2iJ3 (λ2i)
e−(λ2

2i+n
2π2)tJ2 (λ2iρ) sinnπz cos 2φ

=

∞∑
k=0

∞∑
i=1

8

(2k + 1)πλ2iJ3 (λ2i)
e−(λ2

2i+(2k+1)2π2)tJ2 (λ2iρ) sin (2k + 1)πz cos 2φ.

EIGENVALUES AND EIGENFUNCTIONS FOR THE LAPLACIAN ON THE UNIT BALL. We now
turn our attention to the task of finding the eigenfunctions and eigenvalues of the Laplacian on the unit ball
with homogeneous1 Dirichlet boundary conditions. In other words, let B = {(r, θ, φ)|r < 1} denote the unit
ball in spherical coordinates, and consider the problem

∇2u = λu, u|∂B = 0.

We approach this problem as before, by separating variables; thus we set

u(r, θ, φ) = R(r)Θ(θ)Φ(φ),

and recalling that in spherical coordinates the Laplacian is given by

∂2u

∂r2
+

2

r

∂u

∂r
+

1

r2

∂2u

∂θ2
+

cot θ

r2

∂u

∂θ
+

1

r2sin 2θ

∂2u

∂φ2

we obtain, substituting into ∇2u = λu and dividing by u

R′′

R
+

2

r

R′

R
+

1

r2

Θ′′

Θ
+

cot θ

r2

Θ′

Θ
+

1

r2sin 2θ

Φ′′

Φ
= λ. (2)

Since only the quantity Φ′′

Φ depends on φ, this quantity must be constant. Considerations identical to
those used when solving Laplace’s equation in spherical and cylindrical coordinates and when finding the
eigenvalues of the Laplacian in cylindrical coordinates show that we must in fact have Φ′′

Φ = −m2, where
m ∈ Z, m ≥ 0, which has solutions {hi = cosmφ, Φ = sinmφ (the latter only for m > 0). Substituting this
back into equation (2) above, we obtain

λ =
R′′

R
+

2

r

R′

R
+

1

r2

Θ′′

Θ
+

cot θ

r2

Θ′

Θ
− m2

r2sin 2θ

=
R′′

R
+

2

r

R′

R
+

1

r2

(
Θ′′

Θ
+ cot θ

Θ′

Θ
− m2

sin 2θ

)
;

as when we solved Laplace’s equation in spherical coordinates (see notes for May 23 – 30), this implies
that the quantity in parentheses above is constant. By analogy with what we did there, we set it equal to
−`(`+ 1), where ` ∈ Z, ` ≥ 0. Then Θ must satisfy the equation

Θ′′ + cot θΘ′ +

(
`(`+ 1)− m2

sin 2θ

)
Θ = 0,

whence we see that Θ(θ) = P`m(cos θ), as when solving Laplace’s equation. We are thus left only with the
following equation for R:

R′′

R
+

2

r

R′

R
− 1

r2
`(`+ 1) = λ,

R′′ +
2

r
R′ +

(
−λ− `(`+ 1)

r2

)
R = 0.

1Since eigenvalue problems must of necessity be linear, it makes no sense to ask for an eigenfunction of the
Laplacian satisfying inhomogeneous boundary conditions; or at any rate, while one could certainly write out
the equations, it is hard to see how the resulting solutions could be of use.
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As it stands, this is close to Bessel’s equation (see notes for June 11 – 13, p. 2, Equation (2))

P ′′ +
1

ρ
P ′ +

(
λ2 − m2

ρ2

)
P = 0,

but it is not identical. We may transform it into Bessel’s equation by the following method. Let S = r
1
2R,

so that R = r−
1
2S; then we have

R′ = −1

2
r−

3
2S + r−

1
2S′,

R′′ =
3

4
r−

5
2S − r− 3

2S′ + r−
1
2S′′,

whence we see that

0 = R′′ +
2

r
R′ +

(
−λ− `(`+ 1)

r2

)
R

=

(
3

4
r−

5
2S − r− 3

2S′ + r−
1
2S′′

)
+

2

r

(
−1

2
r−

3
2S + r−

1
2S′
)

+

(
−λ− `(`+ 1)

r2

)
r−

1
2S

= r−
1
2

(
S′′ +

(
−r−1 +

2

r

)
S′ +

(
3

4
r−2 − 1

r2
− λ− `(`+ 1)

r2

)
S

)
= r−

1
2

(
S′′ +

1

r
S′ +

(
−λ−

`(`+ 1) + 1
4

r2

)
S

)
= r−

1
2

(
S′′ +

1

r
S′ +

(
−λ−

(
`+ 1

2

)2
r2

)
S

)
,

so that S must satisfy the equation

S′′ +
1

r
S′ +

(
−λ−

(
`+ 1

2

)2
r2

)
S = 0.

Now the boundary condition u|∂B = 0 means that R must satisfy R(1) = 0; since S = r
1
2R, this implies

that S(1) = 0 also. Thus S cannot be a modified Bessel function, which implies that we must have λ < 0
and (up to a multiplicative constant) S = J`+ 1

2
(
√
λr). Again, S(1) = 0 implies that

√
λ = κ`i for some i,

where κ`i denotes the ith positive zero of J`+ 1
2
(x) (thus, if we were to extend our earlier notation and let

λνi denote the ith positive zero of Jν(x) for any real ν ≥ 0, we have κ`i = λ`+ 1
2 ,i

; this latter expression is

the notation which we used in class). We thus obtain that up to a multiplicative constant

R = r−
1
2 J`+ 1

2
(κ`ir) .

It turns out to be convenient to take the multiplicative constant to be
√

π
2 . The resulting functions are

called spherical Bessel functions and are denoted by j`, ` ∈ Z, ` ≥ 0; explicitly,

j`(x) =

√
π

2x
J`+ 1

2
(x).

We thus obtain finally that the eigenfunctions for the Laplacian on the unit ball are

em`i =

{
j` (κ`ir)P`m(cos θ) cosmφ
j` (κ`ir)P`m(cos θ)sinmφ

,

with corresponding eigenvalue
λm`i = −κ2

`i.

We note that the eigenvalue does not depend on m (though it does depend on both ` and i).
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We now derive the orthogonality properties of the j`. First, we note without proof that the Bessel
functions Jν satisfy the same orthogonality relations as the Jm for all real (not just integer) ν ≥ 0, namely∫ 1

0

xJν (λνix) Jν (λνjx) dx =

{
0, i 6= j

1
2J

2
ν+1 (λνi) , i = j

.

From this we may derive the orthogonality property of the spherical Bessel functions, as follows:∫ 1

0

x2j` (κ`ix) j` (κ`jx) dx =
π

2
√
κ`iκ`j

∫ 1

0

xJ`+ 1
2

(
λ`+ 1

2 ,i
x
)
J`+ 1

2

(
λ`+ 1

2 ,j
x
)
dx

=

{
0, i 6= j

π
4λ

`+1
2
,i
J2
`+ 1

2 +1

(
λ`+ 1

2 ,i

)
, i = j ,

whence we see that {j` (κ`ix)} is an orthogonal set on the interval [0, 1] with the normalisation integral

∫ 1

0

x2j2
` (κ`ix) dx =

π

4λ`+ 1
2 ,i

J2
`+ 1

2 +1

(
λ`+ 1

2 ,i

)
=

1

2

√ π

2λ`+ 1
2 ,i

J`+1+ 1
2

(
λ`+ 1

2 ,i

)2

=
1

2
j2
`+1 (κ`i) .

From this it follows, as before, that {em`i} is a complete orthogonal set on the unit ball B with respect to
the inner product

(f(r, θ, φ), g(r, θ, φ)) =

∫ 1

0

∫ π

0

∫ 2π

0

f(r, θ, φ)g(r, θ, φ) dφ sin θdθ r2dr

=

∫ 1

0

∫ π

0

∫ 2π

0

f(r, θ, φ)g(r, θ, φ)r2sin θ dφ dθ dr.

(Note that the quantity r2sin θ dφ dθ dr is just the volume element dV in spherical coordinates; in other
words, the integral above is simply

∫∫∫
B
fgdV .) This allows us to solve Poisson’s equation and the heat

equation on B, as we did with the unit cube Q and the cylinder C before.

EXAMPLE. Solve the following problem on B:

∇2u = rsin θsinφ, u|∂B = 0.

We begin, as usual, be expanding the function on the right-hand side in the basis of eigenfunctions
{em`i} appropriate to the problem; thus we write

rsin θsinφ =

∞∑
m=0

∞∑
`=m

∞∑
i=1

j` (κ`ir)P`m(cos θ) (am`i cosmφ+ bm`isinmφ) ,

where

bm`i =
(rsin θsinφ, j` (κ`ir)P`m(cos θ)sinmφ)

(j` (κ`ir)P`m(cos θ)sinmφ, j` (κ`ir)P`m(cos θ)sinmφ)

am`i =
(rsin θsinφ, j` (κ`ir)P`m(cos θ) cosmφ)

(j` (κ`ir)P`m(cos θ) cosmφ, j` (κ`ir)P`m(cos θ) cosmφ)
.

Since (sinφ, cosmφ) = 0 for all m, we see that we have am`i = 0 for all m, `, i; similarly, bm`i = 0 for all `
and i unless m = 1, in the which case we may compute (recalling that {P`m(x)}∞`=m is a complete orthogonal
set on [−1, 1] for all m ≥ 0, and that P11 = sin θ)

(rsin θsinφ, j` (κ`ir)P`1(cos θ)sinφ) =

∫ 1

0

∫ π

0

∫ 2π

0

rsin θsinφj` (κ`ir)P`1(cos θ)sinφdφ sin θdθ r2dr

=

∫ 1

0

r3j` (κ`ir) dr

∫ π

0

sin θP`1(cos θ)sin θ dθ

∫ 2π

0

sin 2φdφ
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which is zero unless ` = 1, while if ` = 1 it is (using the normalisation
∫ 1

−1
P 2
`m(x) dx = (`+m)!

(`−m)!
2

2`+1 , which in

our case becomes
∫ 1

−1
P 2

11(x) dx = 4
3 , and remembering that κ1i = λ 3

2 ,i
)

4π

3

∫ 1

0

r3j1 (κ1ir) dr =
4π

3

√
π

2κ1i

∫ 1

0

r
5
2 J 3

2

(
λ 3

2 ,i
r
)
dr

=
4π

3

√
π

2κ1i

J 5
2

(
λ 3

2 ,i

)
λ 3

2 ,i

=
4π

3κ1i
j2 (κ1i)

whence using the normalisation integrals for j1, P11, and sinφ we obtain

b11i =
2

κ1ij2 (κ1i)
,

while bm`i = 0 unless m = ` = 1. (Note the similarity of the above form to that derived for ordinary
(nonspherical) Bessel functions when expanding expressions like ρm on a cylinder.) Thus we have finally the
expansion

rsin θsinφ =

∞∑
i=1

2

κ1ij2 (κ1i)
j1 (κ1ir) sin θsinφ.

Writing now

u =

∞∑
m=0

∞∑
`=m

∞∑
i=1

j` (κ`ir)P`m(cos θ) (cm`i cosmφ+ dm`isinmφ) ,

we see that

∇2u =

∞∑
m=0

∞∑
`=m

∞∑
i=1

−κ2
`ij` (κ`ir)P`m(cos θ) (cm`i cosmφ+ dm`isinmφ) ;

equating this to the expansion for the function rsin θsinφ obtained above gives, as usual, cm`i = − 1
κ2
`i

am`i = 0

for all m, `, i, while dm`i = − 1
κ2
`i

bm`i is zero unless m = ` = 1, in the which case

d11i = − 2

κ3
1ij2 (κ1i)

,

and we have finally

u =

∞∑
i=1

− 2

κ3
1ij2 (κ1i)

j1 (κ1ir) sin θsinφ.

A similar example could clearly be worked for the heat equation, along the lines of the pair of examples given
in cylindrical coordinates above; we leave the formulation and solution of such a problem to the reader.

INHOMOGENEOUS BOUNDARY CONDITIONS. Consider now the problem (say on B)

∇2u = f, u|∂B = g,

where neither f nor g is identically zero. This problem may be solved by first solving the two ancillary
problems

∇2u1 = f, u1|∂B = 0,

∇2u2 = 0, u2|∂B = g,

the second of which may be solved using the methods developed for solving Laplace’s equation on a ball,
and the first of which may be solved using the eigenfunctions just derived. If we then set u = u1 + u2, we
see that

∇2u = ∇2u1 +∇2u2 = f + 0 = f,

u|∂B = u1|∂B + u2|∂B = 0 + g = g;

6
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in other words, u = u1 + u2 is a solution to our original problem.
This method clearly applies to any of the regions Q, C, B we have studied.
In the hope that the foregoing is sufficiently clear as it stands, we skip giving any examples to talk about

a similar method for the heat equation. In this case, we are given the problem

∂u

∂t
= ∇2u, u|t=0 = f, u|(0,+∞)×∂B = g.

As in the case of Poisson’s equation just considered, this may be solved by decomposing u as a sum of
solutions to two ancillary problems. The decomposition is a bit more subtle in this case. We first give some
motivation. Recall from our previous work that solutions to the heat equation with homogeneous boundary
data converge to 0 as t→ +∞. A more careful consideration of the series solutions given above shows that
in fact also ∂u

∂t → 0 as t → +∞.2 Now if ∂u
∂t = 0, then the heat equation becomes simply ∇2u = 0, i.e., it

becomes Laplace’s equation. Noting that u = 0 is the unique solution to Laplace’s equation on B satisfying
u|∂B = 0, we see that in this (admittedly very special!) case the solution to the heat equation with boundary
data u|∂B = 0 converges to the solution to Laplace’s equation on B with the same boundary data.

It turns out that this is true for inhomogeneous boundary data also, as we shall now show. Thus let U1

be the solution to the problem on B
∇2U1 = 0, U1|∂B = g

(which is just a boundary-value problem for Laplace’s equation on the unit ball, and hence is a problem we
know how to solve). Now let us define u1 : (0,+∞) × B → R1 by u1(t, x, y, z) = U1(x, y, z); then we see
that u1 is a solution to the problem

∂u1

∂t
= ∇2u1, u1|t=0 = U1, u1|(0,+∞)×∂B = g,

since in this case ∂u1

∂t = 0. (Note that the initial condition is a bit silly since in fact u1 = U1 for all t; but it
is certainly true nonetheless.) Since the problem we wish to solve is

∂u

∂t
= ∇2u, u|t=0 = f, u|(0,+∞)×∂B = g,

this suggests taking the other part of the solution to be the function u2 satisfying

∂u2

∂t
= ∇2u2, u2|t=0 = f − U1, u|(0,+∞)×∂B = 0,

which we can solve using the eigenfunction methods developed earlier. Letting u1 and u2 be these two
solutions, and taking u = u1 + u2, we see that

∂u

∂t
=
∂u1

∂t
+
∂u2

∂t
= 0 +∇2u2 = ∇2u1 +∇2u2 = ∇2u,

u|t=0 = u1|t=0 + u2|t=0 = U1 + f − U1 = f,

u|(0,+∞)×∂B = u1|(0,+∞)×∂B + u2|(0,+∞)×∂B = g + 0 = g,

so that u = u1 + u2 is indeed a solution to our original problem, as desired.

EXAMPLE. We give a simple example of the foregoing to illustrate the procedure. Consider the following
problem on B:

∂u

∂t
= ∇2u, u|t=0 = rsin θsinφ, u|(0,+∞)×∂B = cos θ.

2Note that this does not follow from the preceding statement: consider, for example, the function f(t) =
1
t sin t

3; we have clearly f(t)→ 0 as t→ +∞, while f ′(t) = − 1
t2 sin t3 + 3tsin t3, which does not converge to

any limit as t→ +∞.

7
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We first solve the problem
∇2U1 = 0, U1|∂B = cos θ;

now on ∂B we have cos θ = z, since ∂B = {(r, θ, φ)|r = 1}; since z satisfies ∇2z = 0, we see that the solution
to this equation is just U1 = z = r cos θ. Thus we are left with the problem

∂u2

∂t
= ∇2u2, u|t=0 = rsin θsinφ− r cos θ, u|(0,+∞)×∂B = 0.

Now some reflection3 indicates that the initial data here may be expanded as

∞∑
i=1

2

κ1ij2 (κ1i)
j1 (κ1ir) (sin θsinφ− cos θ)

(the point is that the sum above is just to expand the function r in the basis {j1 (κ1ir)}, and hence is
insensitive to which combination of {P1m cosmφ,P1msinmφ} the function r is multiplied by). Thus by
standard methods (whose details we invite the reader to fill in as an exercise!) we have

u2(t, x, y, z) =

∞∑
i=1

2

κ1ij2 (κ1i)
e−κ

2
1itj1 (κ1ir) (sin θsinφ− cos θ) ,

and thus we have finally the solution

u = u1 + u2 = r cos θ +

∞∑
i=1

2

κ1ij2 (κ1i)
e−κ

2
1itj1 (κ1ir) (sin θsinφ− cos θ)

=

∞∑
i=1

2

κ1ij2 (κ1i)
j1 (κ1ir)

(
e−κ

2
1itsin θsinφ+

(
1− e−κ

2
1it
)

cos θ
)
.

We note that this solution does indeed converge to the solution u1 = r cos θ to Laplace’s equation with
the given inhomogeneous boundary conditions, as claimed. We also note the nice interpolation that occurs
term-by-term in the above sum between the initial data (for which the angular dependence is sin θsinφ) and
the final value (for which the angular dependence is cos θ).

3The author is reminded of a comment in the aforementioned textbook Classical Electrodynamics by J. D.
Jackson to the effect that ‘adroit use of the recurrence relation leads to ...’, and of the exasperated reaction
of his electrodynamics instructor upon finding this sentence: ‘Oh, J. D.!’ The author apologises for making
a slightly similar remark here. He hopes that working out the details is somewhat more straightforward than
for the corresponding result in Jackson!
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