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Summary:
e We introduce the modified Bessel functions I,,, in greater detail, and show how they can be used to

solve certain boundary-value problems for Laplace’s equation on a cylinder.
e We then show how to use J,, and I, together to solve the most general kind of boundary-value

problem for Laplace’s equation on a cylinder.
e We show how to solve Laplace’s equation on a rectangular prism using rectangular coordinates in

three dimensions, and point out that the most general problem requires using three separate series.
e We then give a brief introduction to the eigenvalue problem for the Laplacian, including why it is

useful.
MODIFIED BESSEL FUNCTIONS. Recall that Laplace’s equation in cylindrical coordinates is given by
Pu 100 1P

9p2 " pdp  p?O¢?
while substituting in the separated u = P(p)®(¢)Z(z) and dividing by u gives the equation
Pl/ P/ 1 @/I Z//
PP Ee 7

=0,

:O’

from which we see that we must have both %' and 27” constant. If we are considering problems on the
whole range [0, 27] of ¢, then ® must be periodic with period 27, and this means that %/ = —m? for some

m € Z, m > 0. This leaves the question as to what Z7” is. Previously we considered the case where Z7N >0
and then showed that this together with the boundary condition u|,—; = 0 gave rise to solutions for P of
the form Jy, (Amip), where A.,; is the ith zero of J,,. At the end of the last set of lecture notes (June 11 —
13), we gave a brief discussion of the case where Z7” < 0. We would now like to treat this in greater detail.

Thus suppose that Z7” = —u?, where we may assume g > 0. This means that Z(z) = ccos pz + dsin uz
for some constants ¢ and d, and that P satisfies the equation

1 2
P”—I—P/—(MQ‘FWLQ)P:O-
p p

We see that this is formally the same as the equation satisfied by J,,(Ap), but with A = iu. This suggests
that a solution to this equation which is well-behaved at 0 is

P(p) = Jmn(ipp).

However, we have so far only defined J,,, for real values of the independent variable, so it is not clear a priori
what this expression should mean. Recall though that we defined J,,, via the power series

Zk'm+k ( )2k+m’

which converges for all real x. It can be shown that this power series also converges for all complex x also,
and thus we define J,,(x) for any complex number x to be equal to the sum of the above power series. (This
is analogous to how we used the power series expansion e* = ) > 0 n, to define e® when x is a complex
number; in the case 2 = i, that gives rise to the formula e’ = cos  + isin 6, cf. the review sheet on complex

numbers.) Thus the solution above is

o Z/Lp 2k+m
P(p): m Zﬂp Z m+k < )

k=
- ( 1) 2 wp 2k+m 0 ( 1)k up -
:kzzokv(erk)v k+ (2> =k2=0,€,(m+k),( 1)ki (2)
m > 1 o 2k+m
- kzzo kl(m + k)! (7)
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Since it is convenient to have functions of a real variable take real values, we drop the factor of i and define
the modified Bessel function of degree m to be

o L e 1 z\ 2k+m
I (z) =i ™ Jp(ix) = kZ:O otk (5) .

It is useful to note the similarity between the pair J,,,(z), I, (x) and the pair sinz, sinh z; see the notes for
June 11 — 13, p. 10 for discussion.
Given the foregoing, then, we see that the general separated solution to Laplace’s equation on a cylinder

(well-behaved at p = 0) in the case where ZZ/ = —p? is given by

I (up)(a cosme + bsin mae)(ccos pz + dsin pz). (1)
We now face the problem of determining which values for u are appropriate. Recall that when dealing with
the case 27 =A% > 0, the values for A\ were determined by the boundary condition u|,—, = 0, which forced

Jm(Aa) = 0, which meant that Aa = A,,; for some i (where A,,;, again, is the ith zero of J,,), or A = Ami
This suggests that in the present case p should be determined by a boundary condition in z.! We now give
an example to show which kinds of boundary-value problems make use of separated solutions of the foregoing
type.

EXAMPLE. Solve on {(p,¢,2)[p <1, 0<z<1}:

V2u =0, ul.—o=ul.—1 =0, up—1 = 1.

Since we have the conditions u|,—g = u|,—; = 0, we see that the solution must be oscillatory in the
z-direction, so that we must use the above form of separated solution, i.e., our general solution will be a
series in solutions of the type in equation (1). Applying the z boundary conditions u|,—o = u|,—1 = 0 gives
¢c=0,sinp =0, so u =nm, where n € Z and we may take n > 0 (this is exactly the same as what we did
to implement the boundary conditions u|,—¢ = u|,=1 = 0 when we solved Laplace’s equation in rectangular
coordinates earlier on in the course). Thus the general solution to Laplace’s equation on the above region
which satisfies the first two boundary conditions above will be (absorbing d into a and b)

o0 oo
= E E m (N7 P) (G cOSMP + by sin me)sin nrz.
=1 m=0

We note that {cosm¢sinnrz,sinmesinnrzin,m € Z,m > 0,n > 0} is a complete orthogonal set on
{(¢, 2)|¢ € [0,27],z € [0,1]} with respect to the inner product

(76,2002 = [ " / £(6,2)9( ) d= dos

this can be shewn exactly as was done for the set { Py, cos me, Py, sinme|m, ¢ € Z,m > 0,¢ > m} previously
(by first expanding in ¢, obtaining z-dependent coefficients, and then expanding each of these coeflicients in
a series in sinnnz, for example). The relevant normalisation integrals are

)

27 1
(cosm¢sinnrz, cosmesinnrz) = / cos® mao do / sin’nrzdz =
0

“‘ﬁ l\3\>l

2w
(sinmgsinnrz, sinmesin nrwz) = / sin ?ma d(b/ sin’nrzdz =
0

'Note that this is in accordance with how we have determined separation constants so far: they are deter-
mined by boundary conditions in the oscillatory directions, not in the nonoscillatory ones.
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We now need only to determine a,,,, and by, by implementing the final boundary condition u|,—; = 1. This

gives
(o) o)

Z Z I, (nm) (@pam cOs M + bymsin me)sinnrz = 1;

n=1m=0

by our general results on expansions in complete orthogonal sets, we may write

1, cos mgsinnmz 2 [t
AnmIm(nT) = ( : ¢ ) = — / / cosmosinnrwz dz do
(cosmgsinnrz, cosmesinnrz) 7 )y Jo

2 2 1 o A )
= ;/0 C05m¢d¢/o sinnmzdz = { nw(l Of 1) ), 2#8 )

1. si . ) 27 1
bpm L (nmr) = (1, sin msin r72) =— sinmgsinnnz dz dp = 0,
) o 0

(sin mesin nrz, sin mesin nwz

where we have used orthogonality of the set {cosmae,sinm¢|m € Z,m > 0} together with the fact that

cos0 - ¢ = cos0 = 1 and the integral fol sinnrzdz = -=(1 — (—1)"). Thus our final solution is given by
(noting that 1 — (=1)" = 0, n even, 2, n odd)

o0

4 1 Io((2k + 1)p)
_2 2% + 1)
B ﬂ’;%—&—l To(2h 5 D)) S 2k + 1mz

The above method can clearly be used with any problem of the form
V2u =0, ’LL‘Z:() = u|z:1 =0, u|p:1 = f((ba Z)v

for suitably well-behaved functions f(¢, z). Should we be working on a cylinder like {(p, ¢, 2)|p < a,0 < z <
b}, the only difference would be that we would take p = 5 instead of y = nm. The a factor would only show
up in the coefficients, not in the separation constants (just as, when we solved problems with u|,—; = 0, the
length of the cylinder did not show up in the separation constants, only the radius). We now consider how
to treat still more general problems.

GENERAL BOUNDARY VALUE PROBLEMS ON A CYLINDER. We shall proceed by means of an
example.
EXAMPLE. Solve on {(p, ¢, z)|p < 2,0 < z < 3}:

V2u=0, ul.—o=0, u|.—3=p?cos2o, Ul p—2 = 2¢.

This problem does not look quite exactly like anything we have encountered before. By this point we
have had a great deal of experience solving problems of the form

V=0, ul.—o=0, ul.—g=p>cos2¢, ul—=0, (2)
and in the previous example we saw how to solve problems like
V2u=0, u|l,—o=1ul|.—3=0, Ul p=2 = 20, (3)

but the current problem is not of either of these forms: actually it looks rather like a mix of the two! It turns
out that this is exactly the key to solving it, too: since the equation V2u = 0 is linear and homogeneous,
the sum of any two solutions is still a solution; thus if we let u; denote the solution to problem (2) and ugy
the solution to problem (3), then u = u; + up will still solve V2u = 0, and a moment’s thought shows that
it satisfies all of the boundary conditions of the original problem.

[We pause to note that this is a very general technique. As we have had occasion to note multiple
times, when solving Laplace’s equation we must have at least one direction which is not oscillatory. But
nonoscillatory functions do not form complete orthogonal sets, so this means that there will be at least

3
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one part of the boundary on which we cannot specify arbitrary boundary data (and must in general have

homogeneous boundary data). We can solve general problems with nonhomogeneous boundary data on all

boundaries using the above method: split the problem up into multiple (in three dimensions we never need

more than 3) subproblems, each of which has nonhomogeneous data on at most one set of boundaries; if this

is done correctly, so that the nonhomogeneous data do not add on top of each other when the solutions are

added, the sum of the solution to each subproblem will be the solution to the original problem, just as here.]
Let us consider first problem (2):

V2u1 =0, u1].—0=0, uil.—3=p>cos2¢, ul,—2=0.

We see that the general solution satisfying the third boundary condition will be of the form

up = Z Z I ( 5 ) (amn cos M@ + bypsin mo) <cmncosh 3 z + dpynsinh 5 z) .

Before proceeding we pause to indicate another way of writing out this sum which is more convenient in cases
where we have inhomogeneous data on both ends of the cylinder (here, where we have u;|,—¢ = 0, it does
not make that much difference). This comes from noting that sometimes it can be hard or even impossible
to determine the individual quantities @y, bmn, etc.: what we obtain naturally are various products of these
quantities, e.g., GmnCmn, etc.. (This impossibility of determining the individual factors in these products is
the reason why we constantly speak of ‘absorbing’ (e.g.) dyn Into amy and by, etc..) However, a moment’s
thought shows that we actually don’t care about the individual quantities either: the only things that matter
for the solution are exactly the products @,nCmn, €tc., which we are able to calculate. Thus it makes sense
to get rid of unknowable and irrelevant quantities and write out the sum only in terms of knowable and
relevant ones. Further, since we typically think of expanding in ¢ first, it makes sense to write the series in
such a way that the cos ¢ terms and sin ¢ terms are clearly separated. Thus instead of the above form, we
consider the alternate form

— Amn A Amn
up = Z Z Im (2 p> l(amncosh 5 % + Bmnsinh 5 z) cos m¢

>\mn . )‘mn .
+ <’ymncosh TZ + dmnsinh 22) sin mgb] .

This is exactly equivalent to the above form, with the definitions

Umn = AmnCmn, ﬂmn = amndmn7 Ymn = bmncmna (Smn = bmndmn7

and moreover it is exactly these four quantities which can be determined uniquely in terms of the boundary
data.
With this expression in hand, we may now determine the coefficients from the boundary data, as follows

(recall that the normalisation for J,, ()‘2 p) is (Jm ()‘2 p) s JIm (’\2 p)) = 32222 .1 (M) = 202 1 (M)

= = Amn .

0=u|—0 = Z Z Jm ( 5 p> [ COS MO + Ymnsinma]
m=0n=1

ﬁ(oa Im ()\gnﬂ> cosme) = 0,

o =
mn 27TJH2,L+1

mn = —=5————(0, J | ——p | sinme) =0,
7 27TJ72n+1 (/\mn)( < 2 p) ?)

4
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a result we could also have obtained by inspection (though it is important to remember the logic that goes
behind it). The other boundary condition then gives

0= ul‘z:l = Z ZJm <)\7;n

m=0n=1

1 ( ? cos26 7, (Amn ) ¢> (pzjg ((*;Mp))) "9
pecos2@,Jm | ——p ) cosm = mn) .
2m T3 1 (Amn) 2 +10 m # 2

Omnsinh 5 = 37 o) <p2 cos 2¢, Jp, (2p> smmqﬁ) =0,

P) [5mn$inh 5 cos Mm@ + dpypsinh 5 sinma| ,

Bmnsinh Amn

m+1
where we have used orthogonality of the set {cosme,sinm¢}. Now we may calculate further (making the
change of variables z = 22z p)
Aon 2 Ao 16 [ 16 Aon
(P Jz( 2 P)) :/ p*J (2,0) pdp = T/ 2 Jy () de = —a° Js(x)
2 0 2 >\2n 0 /\Qn 0
_ 16J3 (o)
B >\2n '
whence we have
A2n 8
psinh 20 = S
Pansin 2 A2nds(Nan)
8
Pan = o 220 T3 (Agn)
and finally
> 8 )\271, . )\2?7,
Uy = Jo | —p ) sinh — 2z cos 2¢.
' ; Agnsinh 222 T (Ag,) ( 2 p) 2 ¢

We now turn to problem (3). In this case, as shewn in the previous example, the general solution
satisfying the first two boundary conditions will be of the form

= Z Z I,(nmp) (ammn cos me + by,psin me) sin n%z

m=0n=1
The final boundary condition gives

oo o0

2¢ = ug|p—2 = Z Z L, (2n7) (@mn cOS M + bypypsin me) sin %z

m=0n=1
As before, we may calculate the coefficients a,,, and b,,, using our general formula for coefficients in
orthogonal expansions, viz. (assuming for the moment that m > 0) —

) ) 27 3
A Lm (2n7) = — (zgzﬁ, cos masin ﬂz) = — / / z¢ cos maesin LI do

) 27 3
—/ ¢ cos mqbdqﬁ/ zsin@z dz
3 0 3

3

2 1 03 n 9 o

_ 37 ( ¢sinmao + chosqu) . (—mzcos ?z—i— 7T2sm 32) . =0,
2 27
bnIm (2n) (zq%sin mepsin njz) = —/ / zZ@sin mesin n—ﬂz dz d¢
3 3 0 0 3
3

3—/ s1nm¢d¢/0 zsin %z dz

2 1 1 o3 9 ’ 36
= 37 <—m¢COSTn¢ + m2$1nm¢> . (—mz COS %Z + msin ngTrZ) . = (—1)’”%
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while for m = 0 we have by, = 0 by definition and

3

1 27
aonlo(2nm) = 3 (Z¢, sin ngﬂz) = @ §¢>2 (nng coS %z + %sin 7?2) .
47 9 12
_ - 71 n+l_Y —_ 71 n+17.
g (DT =)
This gives finally
12
= ()" —— =0 0
aogn = (—1) nTy@nm)’ Umn =0, m # 0,
36
bn:(]a bmn: -1 niv Oa
0 (=1) amnly, (2nt) m#
and hence the solution
— 12 o 36 n
_ n+1 . .
ug = ;(—1) 771[0(27”)] o(nmp)sin —z m§:: ;:: 77rmnlm(2n7r) I, (nmp)sin m¢sin 5
Thus we obtain as the final solution to our original problem
(oo} oo
Aop, ) . Aop . 12 . onm
Jo | —p | sinh — 2z cos 2¢ + )" = [y(nmp)sin — 2
nz::l Agnsinh 222 J3 Aon) ( 2 P 2 ¢ ;( ) nlo(2nm) o(nmp)sin =
+ i i(fl)"LIm(nﬂp)sinmqﬁsin T,
mmnly, (2nt) 3

LAPLACE’S EQUATION IN THREE-DIMENSIONAL RECTANGULAR COORDINATES. In three-
dimensional rectangular coordinates, Laplace’s equation has the form

8%u  0%u  O%u

2y = 2= _— _— =
Vu_8$2+8y2+822

We attempt to solve this by the method of separation of variables. Thus we look for solutions of the form
u= X(x)Y(y)Z(z); substituting in and dividing by u, we obtain

X// Y/I Z//

— +—=+—==0. 4

X + Y + Z )
By standard arguments ( X7” depends only on x, and nothing else on the left-hand side depends on z, and
analogously for the remaining terms) we have that there must be constants 1, po, us such that

X"=mX, Y'=wY, Z"=uZ

Note that we have not yet attempted to determine the signs of these constants. Substituting in to equation
(4), we have
H1+ p2 + pg =0.

Thus we see that at least one of 1, o, us must be positive and at least one must be negative. (We ignore
for the moment the case where all of them are zero.) Which are positive and which are negative depends on
the type of problem we wish to solve. We shall indicate the general method for determining this by means
of a specific example.

EXAMPLE. Solve on {(z,y, z)|x,y,z € [0,1]}:

Viu = 0, u|x=0 = u|;c=1 = u|z=0 = U|z=1 =0, uly—O =0, u|y—1 =1

6
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We begin by looking for separated solutions of V2u = 0 which satisfy the homogeneous boundary
conditions; thus we look for solutions X (x)Y (y)Z(z) which satisfy X (0) = X (1) = Z(0) = Z(1) = 0. Now it
can be shewn that any linear combination of sinh and cosh can vanish at at most one point (I should have
given the proof a long time ago; it is very simple: if acoshx + bsinhz = 0, then letting o = %(a +b) and
B = 1(a—b), we have

ae® + e =0

ae®* + =0
62I——é,
@

which has at most one real solution z (and none if g > 0)). Similarly, any linear function can vanish at at
most one point. This implies that neither X nor Z can be a linear combination of sinh and cosh, nor can
they be linear; since X and Z are either linear combinations of sinh and cosh (when g; > 0), or are linear
(when p; = 0), or are linear combinations of sin and cos (when p; < 0), the latter case must obtain. This
implies that XT'/ and 27” must both be negative, i.e., that 3 = —A\?, uz = —\2 for some \;, A3 > 0. Hence
we must have pp > 0, say gz = A2, A > 0. The equation p; + po + 3 = 0 then gives

A3 =M+ A3

(This illustrates the general procedure for determining when we take p; > 0 and when we take p; < 0:
the u; corresponding to coordinates which have homogeneous boundary data at both ends will be negative,
while the remaining one will be positive. If we have inhomogeneous data along more than one coordinate
direction, we should split the problem up into multiple subproblems as we did in the previous example.)

The general separated solution is thus

(acos A1z + bsin A\jz)(ccos A3z + dsin A\3z)(ecosh Agy + fsinh Aay).

Now X (0) = X (1) = 0 implies that a = 0, A\; = n, exactly as we found when we solved Laplace’s equation
on a rectangle; similarly, now, Z(0) = Z(1) = 0 implies that ¢ = 0, A3 = mm. Thus the general separated
solution satisfying the first four boundary conditions is

sin nwzsin mnz (ecosh ymv/n2 +m? + fsinhymry/n2 + m2> ,

and the general solution will be a series in these solutions, i.e.,

oo oo
u = Z Z sin nwasin mmrz (anmcosh ymv/n? +m?2 + b,y,sinhyrv/n2 + m2) )

n=1m=1
The boundary conditions in y now give

oo oo

0=uly=0 = Z Z sin nrazsin mrz(anm ),

n=1m=1

whence we see that (since, similarly to what we mentioned in the first example above, {sin nrzsin mnz|n, m €
Z,n,m > 0} is a complete orthogonal set on [0, 1] x [0, 1] with respect to the standard inner product, with
normalisation constant (sinnwzsinmmz, sinnrasinmrz) = 1)

anm = 4(0,sin nrasinmnz) = 0.
(We could have implemented this condition at the level of the separated solutions, and written our original
series for u without the cosh term; we have proceded this way in order to emphasise that when the boundary

data on one side of the cube are inhomogeneous, the direction perpendicular to that side (here, y) should be
treated differently than the other sides. In particular, the full procedure as illustrated here would allow us to

7
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also treat the case where the boundary data at y = 0 were not homogeneous, and this could not in general
be implemented at the level of the separated solution.) Similarly, the other boundary condition gives

oo o0

1 =uly=1 = E E bymsin nwrsin mmzsinh wv/n2 + m2,

n=1m=1

whence we obtain

1
bpmsinh my/n2 + m2 = 4(1, sinnrasinmnz) = 4/ / sin nrasinmrz dx dz
o Jo
1 1 4
= 4/ sinmmcdz/ sinmrzdz = —(1—(=1)")(1 - (=1)™),
0 0 nm

which is 0 if either of n or m is even and % when both are odd. Thus we have

16
(2k +1)(2¢ + 1)sinh m/(2k + 1)2 + (20 + 1)2

bogy1,2041 =

and finally the solution

u = sin (2k + 1)mxsin (24 4 1)wzsinhymy/ (2k + 1)2 + (20 + 1)2.
,;); (2k +1)(2¢ + 1)sinh m/(2k + 1)2 + (20 + 1)2 ( ) ( ) ym/( s )

(The example I did in class was actually much simpler than this, involving just a single separated
solution as the final answer. I didn’t realise I was doing a different problem until I was almost finished
typing it up though — and anyway it doesn’t hurt to see another (and more complicated!) example.)

EIGENFUNCTIONS OF THE LAPLACTIAN. The next topics which we wish to treat are Green’s functions,
the heat equation, and the wave equation (though we may take some time off to talk about Fourier transforms
at some point). The study of all of these, especially of the first two, benefit from a knowledge of the
eigenfunctions of the Laplacian, so we now turn to that topic. First we give an example from linear algebra
as motivation. (See also the examples we gave related to diagonalisation in the first week or two of the
course.)

EXAMPLE. Let A be an n X n matrix, and = and y be column vectors of length n. Consider the equation
Ax = y. If we know the inverse matrix A~!, then we can solve this by writing z = A~1y. In general, though,
finding the inverse of a matrix is hard. If A were diagonal, though, it would be easy, since the inverse of a
diagonal matrix

d 0 0 --- 0
0 d 0 --- 0
D= . . .
0o 0 0 --- dy
is 1
dy o o0 --- 0
0 dy' 0 -~ 0
D= . . .o .
0 0 0 - d;t
More abstractly, suppose that {eq,...,e,} were a basis of eigenvectors for the matrix A; suppose also that

A is symmetric, so that this set can be taken to be orthogonal.

[This can be shewn in an analogous fashion to how we showed that the Legendre polynomials and Bessel
functions formed orthogonal sets. For simplicity we work with the standard real inner product. Symmetry
of A means that for any vectors v and w, we have

(’U,AU)) = ivl(Aw)z = i iviAijwj = i iviAjiwj = (Av,w),
i=1

i=1 j=1 i=1 j=1
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so if e; and e; are eigenvectors corresponding to distinct eigenvalues, say A; and A;, then we may write
(e, Aej) = Aj(ei, e;) = (Ae;, €;) = Ai(e;, €5),

so (Aj — A;)(e;,e5) = 0 and (e;,e;) = 0 since A; # Aj. (In the event that e; and e; belong to the same

eigenvalue, they can be taken orthogonal by applying the Graham-Schmidt process if needed.)]
Then we can write

whence the system Az =y becomes

n n ( e_)

E )\leel: E Y, & €e;.
; — (e;, ;)
i=1 =1

Since {e;} is a basis, this implies that \;z; = ((g;z))’ )

Note that this procedure did not require us to invert any matrix; in fact, the computations involved were
nothing more than the taking of inner products and multiplication and division. (Finding the eigenvectors
of A, of course, is highly nontrivial, so this method is not necessarily any faster overall at solving a single
system.)

The idea behind this example may be applied to, among other things, the study of a generalisation
of Laplace’s equation called Poisson’s equation. So far we have only studied the homogeneous equation
V2u = 0; however, there are many cases (such as, for example, when one has a source of heat inside a region
and wishes to find the equilibrium temperature distribution, or when one has a nonzero charge density inside
a region and wishes to find the electrostatic potential) when one wishes to solve an equation of the form
V?2u = f for some function f. Generally one still has boundary conditions which u is also required to satisfy.
Suppose now that there were a complete orthogonal set of (nonzero) functions {e;}, where i is an abstract
index, such that V2e; = Aje;, and such that each e; satisfied the relevant boundary conditions. Then we
would be able to expand the function f as

fvei
fZéei,ei))ei’

and also any potential solution u as

u = E U; €.
i

Substituting both of these into the equation VZu = f, we obtain

ZAiuiei = Z U e1) €i;

(ei, i)
since the set {e;} is orthogonal and does not contain 0, this implies that for each 4

(fv ei)

(eireq)

Ay =

9
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If A; # 0 for all 4, then we may solve this for u; and then substitute in to the expansion u =), u;e; to obtain
a series expansion for the solution u to Poisson’s equation in the functions e;, much as we have been doing
for solutions to Laplace’s equation (though the eigenfunctions e; may well be different from the orthogonal
bases we have used so far). If A; = 0 for some ¢ then things are more complicated. From equation (5) it
is evident that in this case there can be no solution (at least, not one expressible as a series in the {e;}) if
(f,ei) # 0. If, however, we happen to have (f,e;) = 0 whenever A; = 0, then clearly there will still be a
solution; though it is not necessarily unique, since the w; will not be determined by equation (5). We may
obtain a unique solution by requiring u; = 0 for such i. Thus we see that the equation V2u = f will have
a unique solution if we restrict both f and u to lie in the space of functions which are orthogonal to all
eigenfunctions of V2 with zero eigenvalues. We shall probably have more to say on this point later.

Let us assume for the moment, for simplicity, that none of the eigenvalues are zero (or that we have
restricted f and u as just indicated, and then restricted ¢ to run over the eigenfunctions corresponding to
nonzero eigenvalues). Then we may write the solution u as

_ 1 (fvei) .
‘T z; A (eren)

now if our inner product (f,e;) were given by an integral, say (writing things schematically for generality)
(f,ei) = [ p f€da’, then we may express this equation as follows (formally interchanging summation and
integration):

u(x)z;em)w | raa@an = [ (Z(f)())Al) fa) da.

A function G(z,z) such as that in the parentheses above is called a Green’s function for the given boundary-
value problem. We shall study such functions systematically starting next week. The above expression gives
(at least formally) the Green’s function in terms of the eigenfunctions and eigenvalues of the Laplacian for
the given boundary conditions.

[The formula above has a formal analogue in linear algebra as well. We may write the formula as

u(z) = / G(z,2")f(2") da’.
D
Now the solution to an equation Ax = y can be written as

=3 A Y
J

if we think of ¢ as corresponding to x, j as corresponding to z’, and ) as corresponding to [, then we

see that in some sense G corresponds to (V2)71; i.e., the integral operator given above involving G is an
‘inverse’ to the Laplacian.]

Another place where the eigenfunctions of V2 are useful is in studying the heat equation % = V2u.
Suppose that we are interested in studying this equation subject to certain boundary conditions on « (which
are constant in time), and suppose that we have a complete orthogonal set of eigenfunctions {e;} for the

Laplacian V? subject to these boundary conditions. Then we could write for each time ¢, as before,
u(t,x) = Zui(t)ei(x),
i

and substituting this into the heat equation gives
i i

whence we have u}(t) = A;u;(t), i.e., the system completely decouples, exactly as we discussed in the first

couple weeks of class. This last equation has solution u;(t) = ui,oeAit, and thus our solution u is

u = E ui,oeAltei,
[

where the constants w;o are to be determined from the initial condition u|,—¢, exactly as we determine
coefficients in orthogonal expansions for Laplace’s equation using boundary conditions. We shall go over all
of this in more detail later on in the course.
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