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Summary:
• By separating variables in Laplace’s equation in cylindrical coordinates, we derive Bessel’s equation,

and use it to derive the Taylor series expansion for Bessel functions on nonnegative integer order.
•We then discuss the orthogonality and completeness properties of these functions.
• Finally, we then use these Taylor series expansions to deduce differentiation and recursion relations for

the Bessel functions of nonnegative integer order, and say a few words about modified Bessel functions.

SEPARATION OF VARIABLES IN CYLINDRICAL COORDINATES. Recall (see the lecture notes for
the week of May 23) that the Laplacian in cylindrical coordinates (ρ, φ, z) (which is related to Cartesian
coordinates (x, y, z) by x = ρ cosφ, y = ρsinφ, z = z) is given by

∇2f(ρ, φ, z) =
∂2f

∂ρ2
+

1

ρ

∂f

∂ρ
+

1

ρ2

∂2f

∂φ2
+
∂2f

∂z2
.

We are interested (as usual) in solving the equation ∇2u = 0, on a region possessing cylindrical symmetry,
subject to certain conditions imposed on the boundary of that region. As before, we shall proceed by
looking first for separated solutions u = P (ρ)Φ(φ)Z(z),1 and then investigating whether the full solution
can be expressed as a series of solutions of this type.

Substituting this ansatz into Laplace’s equation and dividing by u as usual, we obtain the equation

(1)
1

P

d2P

dρ2
+

1

ρ

1

P

dP

dρ
+

1

ρ2

1

Φ

d2Φ

dφ2
+

1

Z

d2Z

dz2
= 0.

We note that the last term depends only on Z, and is moreover the only term on the left-hand side dependant

on Z, and must therefore be constant. Similarly, the term 1
Φ
d2Φ
dφ2 is the only term dependant on φ and must

therefore also be constant. To proceed further, we must (as for the case of spherical coordinates) know
something more about the region over which we wish to solve Laplace’s equation. Let us suppose that we
are interested in solving over a region which involves a full range of the angular variable φ (for example, a
cylinder {(ρ, φ, z)|ρ < a, b ≤ z ≤ c, 0 ≤ φ ≤ 2π}). Then, just as for spherical coordinates, u and therefore Φ

must be periodic in φ with period 2π. Now Φ satisfies the equation d2Φ
dφ2 = µΦ for some constant µ; requiring

Φ to be periodic forces µ ≤ 0, say µ = −m2, giving Φ = a cosmφ + bsinmφ for some a and b; further
requiring the period to be 2π gives m ∈ Z. We may take m ≥ 0 without loss of generality.2

The treatment of the constant corresponding to Z is more involved. To provide some context, we first
recall our treatment of Laplace’s equation on a square. Recall that in that case separated solutions of the
form u = X(x)Y (y) satisfied the equation

1

X

d2X

dx2
+

1

Y

d2Y

dy2
= 0,

from which it is easy to see that both terms must be constant, meaning that we must have X ′′ = µX,
Y ′′ = −µY . The question then arises as to whether µ should be positive or negative (or 0, but we shall
not consider that case here). Clearly, µ > 0, say µ = m2, implies that we have the general solutions
Y = asinmy + b cosmy, X = csinhmx + bcoshmx, i.e., Y will be oscillatory while X will be exponential,
while µ < 0, say µ = −m2, implies the exact opposite: X = csinmx + b cosmx, Y = asinhmy + bcoshmy,
i.e., X will be oscillatory while Y will be exponential. For the boundary-value problems which we have
considered so far, we had conditions like X(0) = X(1) = 0, which forced us to choose X to be oscillatory

1Here P is the capital form of the Greek letter ρ, not the capital form of the English letter p.
2Note that if m = 0, the general solution for Φ is not a cosφ+ bsinmφ = a but rather a+ bφ; since φ is not
periodic as a function of φ, we must have b = 0, meaning that the solution is in fact just Φ = a for some
constant a. For notational simplicity we shall write Φ = a cosmφ+ bsinmφ as the general solution for all m,
even m = 0, with the implicit understanding that when m = 0 we shall always (for definiteness) take b = 0
(otherwise b would be undefined in this case). This device can be avoided by considering the complex basis
eimφ instead, but we shall not do that here.
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and hence Y to be exponential. Had we had instead conditions like Y (0) = Y (1) = 0, we would have been
forced to take instead Y to be oscillatory and hence X to be exponential.

It turns out that the same duality holds in the present case.3 Thus, depending on the given boundary
conditions, we may be forced to take Z to be oscillatory, in the which case P will be non-oscillatory; or we
may be forced to take P to be oscillatory, in the which case Z will be non-oscillatory. (In general, we will
have a sum of solutions, one of each type.) Without prejudicing the final result, then, let us write for the
moment

d2Z

dz2
= ελ2Z,

where λ ∈ R, λ ≥ 0, and ε = ±1.4 Substituting this and the equation for Φ into equation (1) above, we
obtain for P the equation

(2)
d2P

dρ2
+

1

ρ

dP

dρ
+

(
ελ2 − m2

ρ2

)
P = 0.

If λ = 0 this equation has the general solution (much as for the r-dependent factor in separated solutions in
spherical coordinates) P = arα+ + brα− , where α± are the solutions to α(α+ 2) = m2. In this case, we have
also Z = c+ dz, whence we obtain the general separated solution

u = (arα+ + brα−) (c+ dz) (e cosmφ+ fsinmφ) .

Suppose now that λ > 0, and define a new function Q : [0,∞) → R by Q(x) = P
(
x
λ

)
; equivalently, by

P (ρ) = Q(λρ). Substituting this into equation (2) above for P gives

0 = λ2Q′′(λρ) +
λ

ρ
Q′(λρ) +

(
ελ2 − m2

ρ2

)
Q(λρ)

= λ2

[
Q′′(λρ) +

1

λρ
Q′(λρ) +

(
ε− m2

λ2ρ2

)
Q(λρ)

]
,

whence we obtain, writing x = λρ,

d2Q

dx2
+

1

x

dQ

dx
+

(
ε− m2

x2

)
Q = 0.

When ε = 1 this is called (see [1], p. 38) Bessel’s equation for functions of order m. We now restrict to this
case for the moment; thus we consider the equation

(3)
d2Q

dx2
+

1

x

dQ

dx
+

(
1− m2

x2

)
Q = 0.

3You may wonder why this did not play so central a part in our treatment of Laplace’s equation in spherical
coordinates. In spherical coordinates, assuming we solve on a region which covers a full range of φ and θ,
we have natural boundary conditions on the corresponding factors of the separated solution Φ (identical to
that here) and Θ (that it be finite at both θ = 0 and θ = π, i.e., at both poles, or equivalently, on the
z-axis) which turned out to force both of them to be oscillatory. Thus the only remaining factor, R(r), was
forced to be the non-oscillatory (though not, we might note, in this case, exponential). This would not have
happened had we solved Laplace’s equation on a wedge, say for θ ∈

[
π
4 ,

3π
4

]
– in that case we would have

to consider (in general) both oscillatory and non-oscillatory solutions in the θ direction, which could lead to
oscillatory solutions in the r direction. [Note. You may recall that when we discussed the equation for R we
had a restriction on the separation constant (namely – see the lecture notes for the week of May 23, p. 8 –
α > 1

4 ); were this condition not satisfied, the solutions in the r direction could become oscillatory. We shall
not pursue this further here.]
4The observant reader may note that we could drop ε by letting λ be a complex number, with say <λ ≥ 0
for definiteness. It turns out that the so-called modified Bessel functions, which are the non-oscillatory
counterparts of the oscillatory Bessel functions to be derived presently, are obtained from the latter by just
this kind of transformation. We shall have more to say about all this below.
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We wish to derive a power-series representation for the solutions to this equation. To do this, it is convenient
to make another change of variables by setting Q(x) = xmq(x) for some function q; this gives

Q′ = mxm−1q + xmq′, Q′′ = m(m− 1)xm−2q + 2mxm−1q′ + xmq′′,

whence, upon substituting into equation (3), we obtain

0 = xmq′′ + 2mxm−1q′ +m(m− 1)xm−2q + xm−1q′ +mxm−2q + xmq −m2xm−2q

= xmq′′ + (2m+ 1)xm−1q′ +
(
m(m− 1) +m−m2

)
xm−2q + xmq

= xm
(
q′′ +

2m+ 1

x
q′ + q

)
,

whence finally

(4) q′′ +
2m+ 1

x
q′ + q = 0.

Now suppose that q can be expanded in a Taylor series about x = 0 as

q =

∞∑
n=0

anx
n;

substituting into equation (4) then gives

0 =

∞∑
n=0

n(n− 1)anx
n−2 + (2m+ 1)nanx

n−2 + anx
n

= (2m+ 1)a1x
−1 +

∞∑
n=2

n(n− 1)anx
n−2 + (2m+ 1)nanx

n−2 + an−2x
n−2

= (2m+ 1)a1x
−1 +

∞∑
n=0

xn ((n+ 1)(n+ 2)an+2 + (2m+ 1)(n+ 2)an+2 + an) ,

since the first two terms in the series on the first line vanish for n = 0 and n = 1 except for the (2m+1)a1x
−1

term. Since the final series above contains no terms with negative powers of x, the term (2m+1)a1x
−1 must

vanish, meaning that (since here m is a nonnegative integer) we must have a1 = 0. The series itself must
then vanish, which gives the recurrence relation

(n+ 2)(2m+ n+ 2)an+2 + an = 0,

an+2 = − 1

(n+ 2)(2m+ n+ 2)
an,

an = − 1

n(2m+ n)
an−2,

where in the last line we have simply replace n+ 2 by n everywhere. Since we have a1 = 0 by the foregoing,
this recurrence relation implies that an = 0 for all odd n, so that the power series for q only has even-order
terms. Moreover, inspection of the recurrence relation above shows that we have the general formula

a2k =
(−1)k(2m)!!

(2k)!!(2m+ 2k)!!
a0

=
(−1)k2mm!

2kk!2m+k(m+ k)!
a0 =

(−1)km!

4kk!(m+ k)!
a0,
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where as for odd numbers we define (2k)!! = (2k)(2k − 2) · · · 4 · 2 = 2kk!. (This formula may be proved by

mathematical induction as follows: when k = 0 the coefficient above is simply (−1)0m!
400!(m+0)! = 1, proving the

base case; supposing it holds for 2k − 2, we have

a2k = − 1

(2k)(2m+ 2k)

(−1)k−1m!

4k−1(k − 1)!(m+ k − 1)!
a0

=
(−1)km!

4kk(k − 1)!(m+ k)(m+ k − 1)!
a0

=
(−1)km!

4kk!(m+ k)!
c0,

proving that it holds for 2k as well, and hence for all indices.) As with our definition of the Legendre
polynomials, we are free to define a0; we set a0 = 1

2mm! , so that

a2k =
(−1)k

22k+mk!(m+ k)!
,

q =

∞∑
k=0

(−1)k

22k+mk!(m+ k)!
x2k,

Q = xmq =

∞∑
k=0

(−1)k

k!(m+ k)!

(x
2

)2k+m

.

This function represented by this series is called the Bessel function of order m and denoted Jm(x).
Pulling everything back together, then, we see that the solution of equation (2) with ε = 1 which has a

power series expansion about x = 0 is given by Jm(λρ). Now when ε = 1 we have for Z the equation

d2Z

dz2
= λ2Z,

which has the general solution Z = ccoshλz + dsinhλz. Thus the general separated solution to Laplace’s
equation in this case is

u = Jm(λρ) (a cosmφ+ bsinmφ) (ccoshλz + dsinhλz) .

We have already restricted m to be a nonnegative integer, but note that there is as yet no restriction on
λ. This is analogous to the situation we were in when solving Laplace’s equation in a square in rectangular
coordinates: the general solution was in terms of functions sinmx, cosmx, etc., where m was fixed only
by the boundary conditions in the x direction. Thus we expect λ to be fixed by the boundary conditions
obtaining in ρ. By requiring our solution to be regular at x = 0, we have already given one boundary
condition. Now consider the boundary condition u|ρ=a = 0; this gives for λ the equation

Jm(aλ) = 0.

It can be shewn that this equation has an infinite number of solutions. In the case a = 1, we label them
λm,i, i = 1, 2, . . .; in the case of general a, then, the correct values of λ are 1

aλm,i, i = 1, 2, . . .. Unfortunately,
unlike for sine and cosine, there is no explicit formula for the λm,i, so we shall have to be content with just
this notation. (It can be shewn – though we shall not do so here – that the zeroes are discrete (meaning
that they do not ‘pile up’, i.e., have no accumulation point), and that as i → ∞ for fixed m, the spacing
becomes constant (see [1], p. 506).)
ORTHOGONALITY AND COMPLETENESS. We would now like to know something about the orthogo-
nality and completeness properties of these Bessel functions. We first note one possible point of confusion
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which has not arisen in any of our previous studies. Legendre polynomials are complete in the sense that
any suitably well-behaved function on [−1, 1] can be expanded in a series

∞∑
`=0

a`P`(x);

similarly, associated Legendre functions P`m for fixed m are complete in the sense that any suitably well-
behaved function on [−1, 1] can be expanded in the analogous series

∞∑
`=m

a`P`m(x).

This might lead us to expect that the completeness result for Bessel functions would state that any suitably
well-behaved function on some appropriate interval (perhaps their domain of definition, [0,∞)) can be
expanded in a series of the form

∞∑
m=0

amJm(x)

(this is termed a Neumann series). It turns out that various results of this form are true (see [1], Chapter
XVI). However, some reflection shows that they are not actually relevant for our current setting.5 Roughly,
this is because the index m is already ‘used’ in some sense by the orthogonal basis {cosmφ, sinmφ}. More
precisely, we expect that a general solution to the boundary-value problem we are looking at can be expressed
in the form

u =
∑
i

∞∑
m=0

Jm

(
1

a
λm,iρ

)
(am,i cosmφ+ bm,isinmφ)

(
cm,icosh

1

a
λm,iz + dm,isinh

1

a
λm,iz

)
.

Now since this series by construction satisfies the boundary condition u|ρ=a = 0, the only boundary conditions
we might have to fit are on surfaces of constant z, say z = L. Suppose for the sake of definiteness that we
were given the condition u|z=L = 1. Then we would need to find an expansion (on the interval [0, a], we
should note)

1 =
∑
i

∞∑
m=0

Jm

(
1

a
λm,iρ

)(
a′m,i cosmφ+ b′m,isinmφ

)
(the constants a′m,i and b′m,i will be related but not identical to the constants am,i and bm,i in the full
expansion). As before, we may think of fixing ρ and using orthogonality of the basis {cosmφ, sinmφ} to
determine which m-valeus are present; clearly, we have only m = 0. Thus we are left with the expansion
problem

1 =
∑
i

a′′0,iJm

(
1

a
λm,iρ

)
;

in other words, working the expansion out in the φ direction gets rid of the index m. (This is analogous to
what we did when considering expansions of functions on the sphere in terms of the basis {P`m(cos θ) cosmφ,
P`m(cos θ)sinmφ}, whereby we fixed θ and expanded in {cosmφ, sinmφ} to obtain functions cm(θ), dm(θ),
which were then expanded in a series of P`m(cos θ) with m fixed.) This result also points us in the direction
of the correct completeness result for Bessel functions in our current situation; namely, we expect that for
any nonnegative integer m, a suitably well-behaved function on the interval [0, a] will have an expansion of
the form

(5)

∞∑
i=1

aiJm

(
1

a
λm,iρ

)
,

5This is not to say that they are not useful for solving boundary-value problems – just that they are not
needed for the type of boundary-value problem we are investigating at the moment.
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where { 1
aλm,i}

∞
i=1 is the set of zeroes of Jm(ax) = 0. It turns out that this result is correct (though we shall

not prove it here); the expansion above is called a Fourier-Bessel series. (See [1], Chapter XVIII, especially
18.24.)6

Given the correctness of the above series expansion, we can determine the coefficients ai if we have
an appropriate orthogonality result for the functions Jm

(
1
aλm,iρ

)
on the interval [0, a]. We shall prove

an appropriate orthogonality result in the same way we proved orthogonality for the associated Legendre
functions; see the lecture notes for the week of June 4, pp. 7–8. We first rewrite Bessel’s equation as (here
P = Jm(λρ))

1

ρ

d

dρ

(
ρ
dP

dρ

)
− m2

ρ2
P = −λ2P.

Let us denote the operator on the left-hand side by L, meaning that we denote the entire left-hand side by
LP ; thus Bessel’s equation becomes simply the eigenvalue equation for L, LP = −λ2P . We will now show
that L is self-adjoint with respect to an appropriate inner product on [0, a]. For integrable functions f and
g on [0, a], let

(f, g) =

∫ a

0

ρf(ρ)g(ρ) dρ.

Now suppose that f and g satisfy the boundary condition f(a) = 0, g(a) = 0. Then7

(Lf, g) =

∫ a

0

ρ

(
1

ρ

d

dρ

(
ρ
df

dρ

)
− m2

ρ2
f

)
g dρ

=

∫ a

0

d

dρ

(
ρ
df

dρ

)
− m2

ρ
f(ρ)g(ρ) dρ

= −
∫ a

0

ρ
df

dρ

dg

dρ
+
m2

ρ
f(ρ)g(ρ) dρ

,

where we have performed an integration by parts and used the fact that g(a) = 0. Since this expression
(up to conjugation, which doesn’t matter when f and g are real as they are for us at this point) is clearly
symmetric in f and g, we conclude that

(Lf, g) = (f, Lg)

(alternatively, this can be shewn by performing another integration by parts, as was done when dealing with
associated Legendre functions). Now suppose that f(ρ) = Jm( 1

aλm,iρ), g(ρ) = Jm( 1
aλm,i′ρ), i 6= i′; then the

above equation gives (since f and g here clearly satisfy the boundary condition f(a) = g(a) = 0)

(Lf, g) = − 1

a2
λ2
m,i(f, g) = (f, Lg)

= − 1

a2
λ2
m,i′(f, g),

6Note that Neumann series and Fourier-Bessel series do not exhaust the possibilities for series expansions in
terms of Bessel functions; there are also, for example, Kapteyn series and Schlömilch series (see [1], Chapters
XVII and XIX), but we shall not discuss them here.
7We are eliding one subtle point, namely whether the function 1

ρf(ρ)g(ρ) is integrable on [0, a]. Since we are

interested in cases where f(ρ) = Jm(λρ), g(ρ) = Jm(λ′ρ) for some λ, λ′, and since Jm has a zero of order m
at ρ = 0 (i.e., Jm(ρ) = ρmq(ρ), where q(ρ) is finite at ρ = 0), for us these functions will be integrable when
f is as long as m 6= 0. But when m = 0 this term is not present in L. Thus the calculations below are valid
for the cases in which we are interested. [It would be good to see a fuller treatment of this point, but that
would be (a) most importantly, outside the expertise of the current author, and (b) probably beyond the
scope of the course.]
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whence (since λm,i 6= λm,i′ as i 6= i′) we must have (f, g) = 0, showing orthogonality with respect to the
given inner product. To calculate the expansion coefficients we need only the normalisation. This is found
to be (see [1], 18.24) ∫ a

0

ρJ2
m

(
1

a
λm,iρ

)
dρ =

1

2
a2J2

m+1 (λm,i) .

Thus we may finally write, in expansion (5) above,

ai =

(
f(ρ), Jm

(
1
aλm,iρ

))(
Jm
(

1
aλm,iρ

)
, Jm

(
1
aλm,iρ

)) =
2

a2J2
m+1 (λm,i)

∫ a

0

ρf(ρ)Jm

(
1

a
λm,iρ

)
dρ.

We now indicate in general how all of this may be used to solve boundary-value problems. Suppose
that we are to solve Laplace’s equation on the cylinder {(ρ, φ, z)|ρ < a, 0 ≤ z ≤ b}, with the boundary
conditions

u|ρ=a = 0, u|z=0 = 0, u|z=b = f(ρ, φ).

The first condition allows us to conclude that the series will be of the form

u =

∞∑
m=0

∞∑
i=1

Jm

(
1

a
λm,iρ

)
(am,i cosmφ+ bm,isinmφ)

(
cm,icosh

1

a
λm,iz + dm,isinh

1

a
λm,iz

)
,

while the second condition then allows us to conclude (since cosh 0 = 1) that cm,i = 0 for all m, i; absorbing
dm,i into am,i and bm,i, we are left with the expansion

u =

∞∑
m=0

∞∑
i=1

Jm

(
1

a
λm,iρ

)
sinh

1

a
λm,iz (am,i cosmφ+ bm,isinmφ) .

We may now handle this expansion and the final boundary condition in an analogous way to how we handled
the expansion and condition

u =

∞∑
`=0

∑̀
m=0

P`,m(cos θ)r` (a`,m cosmφ+ b`,msinmφ) , u|r=a = f(θ, φ).

More specifically, we need to expand f(ρ, φ) in the basis {Jm
(

1
aλm,iρ

)
cosmφ, Jm

(
1
aλm,iρ

)
sinmφ}; we may

do this by first fixing some ρ, and then expanding along φ to obtain ρ-dependent coefficients

am(ρ) =
1

π

∫ 2π

0

f(ρ, φ) cosmφdφ, bm(ρ) =
1

π

∫ 2π

0

f(ρ, φ)sinmφdφ

for m > 0, while for m = 0 we have b0 = 0 by convention and

a0(ρ) =
1

2π

∫ 2π

0

f(ρ, φ) dφ.

(This separate formula for a0 was what the factor 1
2 on the constant term in the Fourier expansions we saw

earlier on in class was meant to solve, but we have not adopted that convention here.) This allows us to
write

f =

∞∑
m=0

am(ρ) cosmφ+ bm(ρ)sinmφ.

In order to write this as a series along the lines of that for u above, we must now expand am(ρ) and bm(ρ)
in series of {Jm

(
1
aλm,iρ

)
}, where now m is fixed and only i varies; this is exactly analogous to how we had

7
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to expand the coefficient functions am(θ) and bm(θ) in the basis {P`,m(cos θ)}∞`=m, with fixed m. This will
give expansions

am(ρ) =

∞∑
i=1

amiJm

(
1

a
λm,iρ

)
,

and similarly for bm(ρ). Equating coefficients then allows us to determine u, as usual.
DIFFERENTIATION FORMULAS AND RECURRENCE RELATIONS. In order to calculate the integrals
needed to find the coefficients in expansions such as those above, we need results on Bessel functions similar
to those we derived for the Legendre polynomials previously. We now take up this question.

PROPOSITION. The Bessel functions satisfy the following four identities:

1. Jm−1(x)− Jm+1(x) = 2J ′m(x), m > 0; J ′0(x) = −J1(x),
while for m > 0 we have

2. Jm−1(x) + Jm+1(x) = 2m
x Jm(x);

3. Jm−1(x) = J ′m(x) + m
x Jm(x);

4. Jm+1(x) = −J ′m(x) + m
x Jm(x);

5. d
dx (xmJm(x)) = xmJm−1(x);

6. d
dx (x−mJm(x)) = −x−mJm+1(x).

Proof. Recall the series expansion

Jm(x) =

∞∑
k=0

(−1)k

k!(m+ k)!

(x
2

)2k+m

.

Differentiating this expression term-by-term, we obtain

J ′m(x) =
1

2

∞∑
k=0

(−1)k

k!(m+ k)!
(k +m+ k)

(x
2

)2k+m−1

,

where we have written 2k + m = k + m + k. We expand out these two series separately since they will be
useful in proving the second identity also. We see that

∞∑
k=0

(−1)k

k!(m+ k)!
k
(x

2

)2k+m−1

= −
∞∑
k=1

(−1)k−1

(k − 1)!(m+ 1 + (k − 1))!

(x
2

)2(k−1)+m+1

= −Jm+1(x),

where in the second sum we may start at k = 1 since the k = 0 term in the first sum clearly vanishes.
Similarly, we see that, for m > 0,

∞∑
k=0

(−1)k

k!(m+ k)!
(m+ k)

(x
2

)2k+m−1

=

∞∑
k=0

(−1)k

k!(m− 1 + k)!

(x
2

)2k+(m−1)

= Jm−1(x),

while if m = 0 then we have as before

∞∑
k=0

(−1)k

k!(m+ k)!
(m+ k)

(x
2

)2k+m−1

= −J1(x).

Thus we have, in particular, for m > 0,

J ′m(x) =
1

2
(Jm−1(x)− Jm+1(x)) ,

while for m = 0
J ′0(x) = −J1(x).
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This proves the first identity. For the second identity, note that, by the foregoing,

Jm−1(x) + Jm+1(x) =

∞∑
k=0

(−1)k

k!(m+ k)!
(m+ k − k)

(x
2

)2k+m−1

=
2m

x

∞∑
k=0

(−1)k

k!(m+ k)!

(x
2

)2k+m

=
2m

x
Jm(x).

The next two follow by adding and subtracting the first two; specifically,

Jm−1(x) =
1

2

(
2J ′m(x) +

2m

x
Jm(x)

)
= J ′m(x) +

m

x
Jm(x),

while

Jm+1(x) =
1

2

(
2m

x
Jm(x)− 2J ′m(x)

)
= −J ′m(x) +

m

x
Jm(x).

Finally, identites 3 and 4 give

d

dx
(xmJm(x)) = mxm−1Jm(x) + xmJ ′m(x) = xm

(m
x
Jm(x) + J ′m(x)

)
= xmJm−1(x),

d

dx

(
x−mJm(x)

)
= −mx−m−1Jm(x) + x−mJ ′m(x) = x−m

(
−m
x
Jm(x) + J ′m(x)

)
= −x−mJm+1(x).

This completes the proof. QED.

Identity 5 above gives rise, for example, to the following integral formula:∫
xmJm−1(x) dx = xmJm(x) + C,

which may be used to calculate the coefficients in the expansion of xm in a Fourier-Bessel series in Bessel
functions of order m. This type of expansion is needed on Homework 6.

Finally, we say a few words about the case ε = −1, corresponding to oscillatory behaviour in the z
direction; explicitly, Z obeys the equation Z ′′ = −λ2Z, with general solution Z = a cosλz + bsinλz, while
P satisfies the equation

(6)
d2P

dρ2
+

1

ρ

dP

dρ
+

(
−λ2 − m2

ρ2

)
P = 0.

We recall that with ε = 1 the solution to this equation is given by

Jm(λρ) =

∞∑
k=0

(−1)k

k!(m+ k)!

(
λρ

2

)2k+m

.

Now it seems reasonable that replacing λ by iλ (where i =
√
−1) should give a solution to equation (6);

substituting in to the expression above, and dividing by im, we obtain the function

Im(λρ) =

∞∑
k=0

1

k!(m+ k)!

(
λρ

2

)2k+m

.

This function, known as a modified Bessel function of order m, is in fact a solution to equation (6) which
is moreover well-behaved (i.e., finite) at x = 0. The other linearly independent solution to equation (6) is
denoted Km(x) and will not be discussed here. Assuming that only the Im(λρ) factors occur in our separated
solutions, a general separated solution to Laplace’s equation in this case is of the form

Im(λρ) (a cosmφ+ bsinmφ) (c cosλz + dsinλz) .

9
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Inspecting and comparing the series expansions of Jm(x) and Im(x), we note the similarity between them
and the series for sinx and sinhx:

Jm(x) =

∞∑
k=0

(−1)k

k!(m+ k)!

(x
2

)2k+m

, Im(x) =

∞∑
k=0

1

k!(m+ k)!

(x
2

)2k+m

,

sinx =

∞∑
k=0

(−1)k

(2k + 1)!
x2k+1, sinhx =

∞∑
k=0

1

(2k + 1)!
x2k+1.

Thus we see that Jm(x) is the parallel for cylindrical coordinates of the oscillatory solution sinx in rectangular
coordinates, while Im(x) is the parallel for the non-oscillatory (in fact, exponential) solution sinhx. The
parallels between these pairs go even deeper, as can be seen from the derivative and recurrence identities
satisfied by Im(x) (see [1], 3.7); but we shall not go any deeper into these here.

The third practice problem for week 6 makes use of the functions Im(x).
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