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Summary:
•We deduce additional properties of the Legendre polynomials introduced last week which enable us to

use them to solve boundary-value problems, and give a few examples.
•We then introduce the associated Legendre functions, give some of their properties, and indicate how

they are combined with the functions cosmφ and sinmφ which we saw last week to give a complete
orthonormal set on a sphere.
•We then indicate how all of this is used to solve general (nonsymmetric) boundary-value problems for

Laplace’s equation on a sphere.

LEGENDRE POLYNOMIALS. Recall that the Legendre polynomials were defined last time as solutions to
the differential equation (

1− x2
) d2P
dx2
− 2x

dP

dx
+ `(`+ 1)P = 0

as follows: seeking a power series solution P =
∞∑
n=0

anx
n of the above equation results in the recurrence

relation for the coefficients

an+2 = an
n(n+ 1)− `(`+ 1)

(n+ 2)(n+ 1)
.

If ` ∈ Z, ` ≥ 0, this says that all an for n of the same parity1 as ` must eventually vanish. We then define the
degree-` Legendre polynomial as follows: If ` is even, let P` be the above power series solution with a1 = 0
and a0 chosen2 so that P`(1) = 1; if ` is odd, let P` be the above power series solution with a0 = 0 and a1
chosen so that P`(1) = 1. Then we note the following properties:
• If ` is even, then P` is a sum of even powers of x and is hence an even function; if ` is odd, then P` is

a sum of odd powers of x and is hence an odd function.
• From this, P`(−1) = (−1)`, and P`(0) = 0 if ` is odd. (Pe`(0) for even ` will be found below.)
Next we shall derive some results about the Legendre polynomials which are very useful in manipulating

them. The proofs (except where noted) may be omitted without loss of continuity. Some of them are more
advanced than the general level of this course.

The first result, while it may look strange at first,3 is very useful (see the appendix for a similar result
for the trigonometric functions and its use):

PROPOSITION. For x ∈ [−1, 1] and |h| < 1
4 ,

(
1− 2xh+ h2

)− 1
2 =

∞∑
`=0

h`P`(x).

Proof. We note first that

1− 2|x||h|+ h2 ≤ 1− 2xh+ h2 ≤ 1 + 2|x||h|+ h2,

and since 0 ≤ |x| ≤ 1, this shows that

(1− |h|)2 ≤ 1− 2xh+ h2 ≤ (1 + |h|)2,

so in particular 1− 2xh + h2 ≥ 9
16 > 0 and the function above is well-defined, and also 2xh− h2 ≤ 7

16 <
1
2

and 2xh−h2 ≥ 1− (1 + |h|)2 > − 9
16 > −1; this last implies that for any fixed x in [−1, 1] the above function

can be expanded using the general binomial expansion theorem (exercise: prove this!)

(1 + h)α =

∞∑
n=0

(α)n
n!

hn,

1By ‘parity’ we mean the property of a nonnegative integer according to which it is odd or even; in other
words, two nonnegative integers are of the same parity if they are either both odd or both even.
2Note that a0 is effectively an overall multiplicative constant in this case since we have only even-order terms.
3Some readers may note the relationship this result bears to the multipole expansion in electrostatics. This
is not a coincidence!
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where |h| < 1 and (α)0 = 1, (α)n+1 = (α)n · (α − n) (so that, for example, (n)n = n!). In other words, for
fixed x ∈ [−1, 1] we may write

(
1− 2xh+ h2

)− 1
2 =

∞∑
n=0

1

n!

(
−1

2

)
n

(−1)n
(
2xh− h2

)n
;

by the standard theory of power series, the series on the left is uniformly and absolutely convergent also for
x ∈ [−1, 1], |h| < 1

4 , which means that we may reorder the terms as we wish. Doing so, we see easily that
we get an expansion of the form

(
1− 2xh+ h2

)− 1
2 =

∞∑
n=0

Hn(x)hn,

where Hn(x) is a polynomial in x. The fact that the above series converges uniformly in h for fixed x means
that we may differentiate termwise with respect to h; since the original series may also be written in the
form

∑∞
n=0X(h)xn for some polynomial X of h, and this series will also converge uniformly in x for fixed

h,4 we may also differentiate with respect to x termwise. We shall show that Hn(x) = Pn(x), which will
establish the result in the proposition, by showing that it satisfies Legendre’s equation and has the correct
normalisation. (By the foregoing, Legendre’s equation has, up to normalisation, at most one polynomial
solution for each `.)

To do this, let s(x, h) =
(
1− 2xh+ h2

)− 1
2 , and note that

∂s

∂x
= h

(
1− 2xh+ h2

)− 3
2 = hs3,

∂2s

∂x2
= 3h2s5.

Similarly, note that

∂

∂h
(hs) = s+ h(x− h)s3,

∂2

∂h2
(hs) = (x− h)s3 + 3h(x− h)2s5 + (x− 2h)s3,

whence we see that

(1− x2)
∂2s

∂x2
− 2x

∂s

∂x
= (1− x2) · 3h2s5 − 2xhs3 = s5

(
3h2(1− x2)− 2xh(1− 2xh+ h2)

)
= s5

(
3h2 + h2x2 − 2xh− 2xh3

)
,

while
∂2

∂h2
(hs) = s5

(
3h(x− h)2 + (2x− 3h)(1− 2xh+ h2)

)
= s5

(
3h(h2 − 2xh+ x2) + 2x(1− 2xh+ h2)− 3h(1− 2xh+ h2)

)
= s5

(
3hx2 + 2x− 4x2h+ 2h2x− 3h

)
= s5

(
−hx2 + 2x+ 2h2x− 3h

)
,

whence we see that

−h ∂2

∂h2
(hs) = (1− x2)

∂2s

∂x2
− 2x

∂s

∂x
.

But by the power series expansion, we have

−h ∂2

∂h2
(hs) = −h

∞∑
n=0

Hn(x)n(n+ 1)hn−1 = −
∞∑
n=0

n(n+ 1)Hn(x)hn,

4Note that we can allow x to lie in an open interval slightly larger than [−1, 1] without changing the foregoing
arguments, since |h| < 1

4 kept us well inside the radius of convergence of the binomial expansion theorem;
this justifies the uniform convergence just claimed.
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whence we see that Hn is a polynomial satisfying Legendre’s equation, as claimed. To check its normalisation,
set x = 1 in s; then we have

∞∑
n=0

Hn(1)hn =
(
1− 2h+ h2

)− 1
2 =

1

1− h
,

which implies that Hn(1) = 1 for all n. Thus we must have Hn(x) = Pn(x) for x ∈ [−1, 1], as claimed.QED.

The function s in this result is called the generating function for the Legendre polynomials. From this
result the five identities given in class can be easily derived, as follows.

PROPOSITION. The Legendre polynomials satisfy the following identities (where n ∈ Z, n ≥ 0, and we set
P−1 = 0):

1. (n+ 1)Pn+1 − (2n+ 1)xPn + nPn−1 = 0.
2. P ′n+1 − 2xP ′n + P ′n−1 = Pn.
3. xP ′n − P ′n−1 = nPn.
4. P ′n+1 − P ′n−1 = (2n+ 1)Pn.
5. (1− x2)P ′n = nPn−1 − nxPn.

Proof. We note that (letting, as above, s =
(
1− 2xh+ h2

)− 1
2 )

∂s

∂h
= (x− h)s3 = (x− h)(1− 2xh+ h2)−1s

=

∞∑
n=0

nPn(x)hn−1,

whence we see that

(x− h)

∞∑
n=0

Pn(x)hn =

∞∑
n=0

(xPn(x)− Pn−1)hn = (x− h)s

= (1− 2xh+ h2)

∞∑
n=0

nPn(x)hn−1

=

∞∑
n=0

((n+ 1)Pn+1(x)− 2xnPn(x) + (n− 1)Pn−1(x))hn

(recall our convention that P−1 = 0; this was used twice in the above calculation) from which we obtain

xPn − Pn−1 = (n+ 1)Pn+1 − 2xnPn + (n− 1)Pn−1

(n+ 1)Pn+1 − (2n+ 1)xPn + nPn−1 = 0,

proving the first identity. Similarly, differentiating s with respect to x gives

∂s

∂x
= hs3 = h(1− 2xh+ h2)−1s

=

∞∑
n=0

P ′nh
n,

whence we have (noting that this last series has no n = 0 term since P ′0 = 0, so that we may advance its
index by 1)

hs =

∞∑
n=0

Pnh
n+1 = (1− 2xh+ h2)

∞∑
n=0

P ′n+1h
n+1

=

∞∑
n=0

(
P ′n+1 − 2xP ′n + P ′n−1

)
hn+1,
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from which the second identity easily follows. Now multiply the second identity by n + 1 and subtract it
from the derivative of the first identity to obtain

−(n+1)Pn = (n+1)P ′n+1−(2n+1)xP ′n−(2n+1)Pn+nP ′n−1−
(
(n+ 1)P ′n+1 − (2n+ 2)xP ′n + (n+ 1)P ′n−1

)
xP ′n − (2n+ 1)Pn − P ′n−1 = −(n+ 1)Pn

xP ′n − P ′n−1 = nPn,

which is the third identity. Adding twice the third identity to the second identity gives the fourth identity.
Finally, to obtain the fifth identity, note that adding the second and fourth identities gives 2P ′n+1 − 2xP ′n =
2(n+ 1)Pn, which, upon dividing by 2 and replacing n+ 1 by n, gives

P ′n = xP ′n−1 + nPn−1,

and thus, from the third identity,

(1− x2)P ′n = P ′n − x
(
P ′n−1 + nPn

)
= −nxPn + nPn−1,

which is exactly the fifth identity. QED.

We also have the Rodrigues formula:

Pn(x) =
1

2nn!

dn

dxn
(x2 − 1)n.

We shall not prove this at the moment (it can be proved by expanding out (x2 − 1)n using the standard
binomial expansion theorem, differentiating term-by-term, showing that the resulting coefficients of the
powers of x satisfy the same recursion relation as the coefficients for the Legendre polynomials, and then
checking the normalisation at 1).

From the Rodrigues formula we may deduce the orthogonality property of the Legendre polynomials:

PROPOSITION. We have ∫ 1

−1
P`(x)P`′(x) dx =

{
0, ` 6= `′
2

2`+1 , ` = `′
.

Proof. Suppose that ` ≥ `′; then we have, applying the Rodrigues formula and integrating by parts (it
can be shewn that the boundary terms all vanish)∫ 1

−1
P`(x)P`′(x) dx =

1

2``!

1

2`′`′!

∫ 1

−1

d`

dx`
(x2 − 1)`

d`
′

dx`′
(x2 − 1)`

′
dx

= − 1

2``!

1

2`′`′!

∫ 1

−1

d`−1

dx`−1
(x2 − 1)`

d`
′+1

dx`′+1
(x2 − 1)`

′
dx

= (−1)`
1

2``!

1

2`′`′!

∫ 1

−1
(x2 − 1)`

d`
′+`

dx`′+`
(x2 − 1)`

′
dx.

Now if `′ 6= `, then since ` ≥ `′ we must have ` > `′; thus `′+ell > 2`′, but since (x2−1)`
′

is a polynomial of

degree 2`′ this implies that d`
′+`

dx`′+` (x2 − 1)`
′

= 0 identically and the above integral must be zero, as claimed.
If `′ = `, then the foregoing derivative is simply the constant (2`)!; finishing the proof requires integrating∫ 1

−1(x2 − 1)` dx, which requires the use of a trigonometric reduction formula and which we pass over for the
time being. QED.

The foregoing shows that the set {P`|` ∈ Z, ` ≥ 0} is an orthogonal set on [−1, 1]; it can be shewn
that it is complete. Thus any (suitably nice; e.g., piecewise continuous) function f on the interval [−1, 1]
can be expanded uniquely in a series

f(x) =

∞∑
`=0

a`P`(x),
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where by our work with general orthogonal complete sets at the start of the course we have the usual formula

a` =
(f, P`)

(P`, P`)
=

2`+ 1

2
(f, P`).

We would now like to know how this helps us solve boundary-value problems. Suppose that we are
asked to solve Laplace’s equation in a spherical shell a < r < b, with azimuthally symmetric boundary data
given on the inner and outer spheres r = a and r = b. On the interior region, the solution will be given by
the general expression

u(r, θ) =

∞∑
`=0

P`(cos θ)
(
a`r

` + b`r
−`−1) .

It is instructive to compare this to the general expression

u(x, y) =

∞∑
n=1

sinnπx (ansinhnπy + bncoshnπy)

which we obtained for the solution to Laplace’s equation in the unit square with homogeneous Dirichlet data
on the two vertical boundaries (i.e., u(0, y) = u(1, y) = 0). As we did on the unit square, we now apply
the boundary conditions on the inner and outer spheres to fix the coefficients a` and b`. More concretely,
suppose that we are given u(a, θ) = f(θ), u(b, θ) = g(θ); then we may write

f(θ) =

∞∑
`=0

P`(cos θ)
(
a`a

` + b`a
−`−1) ,

g(θ) =

∞∑
`=0

P`(cos θ)
(
a`b

` + b`b
−`−1) .

We would like to use the fact that P` is complete on [−1, 1] in order to evaluate the coefficients of the above
series. This requires a little bit of work though since the series above are in terms of P`(cos θ) while the
functions f and g are given in terms of θ itself. Note that since θ ∈ [0, π], we have cos θ ∈ [−1, 1], so that
(letting x = cos θ as before) we have cos−1 x = θ ∈ [0, π] for x ∈ [−1, 1]; this implies that we may expand
f(θ) = f(cos−1 x) and g(θ) = g(cos−1 x) in series of P`(x) = P`(cos θ) using the above formula. To do this,
we calculate

(f ◦ cos−1, P`) =

∫ 1

−1
f(cos−1(x))P`(x) dx

=

∫ π

0

f(θ)P`(cos θ)sin θ dθ,

where we have changed variables in the integral in the last step. This shows that in an expansion of the form

f(θ) =

∞∑
`=0

c`P`(cos θ),

we have

c` =
2`+ 1

2

∫ π

0

f(θ)P`(cos θ)sin θ dθ.

Another way of saying this is that the functions P`(cos θ) are orthogonal on the interval [0, π] with respect
to the inner product

(f, g) =

∫ π

0

f(θ)g(θ)sin θ dθ.

5
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Thus we obtain finally the system of equations

a`a
` + b`a

−`−1 =
2`+ 1

2

∫ π

0

f(θ)P`(cos θ)sin θ dθ,

a`b
` + b`b

−`−1 =
2`+ 1

2

∫ π

0

g(θ)P`(cos θ)sin θ dθ,

which when solved will give us a` and b` for all `, from which the solution to the desired problem follows.
Other problems (for example, when the boundary data involves the derivatives ur) can be solved in a

similar way.
It is worthwhile pausing for a moment to note a general pattern here which will come up again in

the future: a given polynomial P`(cos θ) on the boundary will give a solution varying like P`(cos θ)r` or
P`(cos θ)r−`−1 in the interior, and the ‘amount’ of a certain Legendre polynomial P` in given boundary data
determines exactly the ‘amount’ of that polynomial in the final solution. In other words, if we think of the
coefficients in the expansions of f and g above in terms of P`(cos θ) as being knobs we can turn, then it is
as if each knob corresponds to a particular type of behaviour of the full solution, and fixing boundary data
is equivalent to fixing the position of each knob. The specific way in which the knobs control the solution is
determined by solving the equations above.

FULL SOLUTIONS TO LAPLACE’S EQUATION. Let us now consider the problem of finding solutions
to Laplace’s equation in the absence of azimuthal symmetry. Recalling our results from applying separation
of variables to Laplace’s equation in spherical symmetry, we see that in this case Legendre’s equation is
replaced by the equation (still writing x = cos θ)

(
1− x2

) d2P
dx2
− 2x

dP

dx
+

(
`(`+ 1)− m2

1− x2

)
P = 0,

while if P`m is a solution to this equation, then the corresponding general separated solution to Laplace’s
equation is given by

P`m(cos θ)
(
a`mr

` + b`mr
−`−1) (c`m cosmφ+ d`msinmφ) .

Solutions to this equation may be found by the following trick. We differentiate Legendre’s equation m
times: (

1− x2
)
P ′′′ − 4xP ′′ + (`(`+ 1)− 2)P ′ = 0(

1− x2
)
P (4) − 6xP ′′′ + (`(`+ 1)− 2− 4)P ′′ = 0(

1− x2
)
P (5) − 8xP (4) + (`(`+ 1)− 2− 4− 6)P ′′ = 0

...(
1− x2

)
P (m+2) − 2(m+ 1)xP (m+1) + (`(`+ 1)−m(m+ 1))P (m) = 0,

since 2 + 4 + 6 + 8 + · · ·+ 2m = 2m(m+1)
2 = m(m+ 1). Thus

d

dx

((
1− x2

) d

dx

((
1− x2

)m
2 P (m)

))
=

d

dx

[(
1− x2

)m
2 +1

P (m+1) −mx
(
1− x2

)m
2 P (m)

]
=
(
1− x2

)m
2 +1

P (m+2) −m
(
1− x2

) 1
m P (m) +m2x2

(
1− x2

)m
2 −1 P (m)

− (m+m+ 2)
(
1− x2

)m
2 P (m+1)

=
(
1− x2

)m
2

[(
1− x2

)
P (m+2) − 2(m+ 1)xP (m+1) −

(
m− m2x2

1− x2

)
P (m)

]
=
(
1− x2

)m
2

[
m(m+ 1)− `(`+ 1)−m+

m2x2

1− x2

]
P (m) =

[
m2

1− x2
− `(`+ 1)

] (
1− x2

)m
2 P (m);
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comparison with the equation we are trying to solve shows that it has the solution

P`,m(x) = (1− x2)
m
2 P

(m)
` (x).

We call these the associated Legendre functions. The corresponding general separated solution to Laplace’s
equation is (as given above)

P`m(cos θ)
(
a`mr

` + b`mr
−`−1) (c`m cosmφ+ d`msinmφ) .

It is worthwhile to pause for a moment to consider what these functions look like, and what the corre-
sponding solutions to Laplace’s equation look like. First, since P` is a polynomial of degree `, we see that

P
(m)
` will vanish if m > `; thus we require that m ≤ `.5 Further, P`,0 = P` is just the ordinary Legendre

polynomial. The first few additional associated Legendre functions may be calculated as follows. It is in-

structive to evaluate them at cos θ (though we must bear carefully in mind that the derivatives in P
(m)
` are

with respect to x, not θ!), noting that since θ ∈ [0, π], (1− cos2 θ)
1
2 = (sin 2θ)

1
2 = |sin θ| = sin θ.

P1,1(cos θ) = sin θ

P2,1(cos θ) = 3sin θ cos θ

P2,2(cos θ) = 3sin 2θ.

Thus we see that increasing m by one essentially trades a cos θ for a sin θ. Now the corresponding solutions
to Laplace’s equation on a ball (meaning that we disregard the r−`−1 solutions) are of the form

P1,1(cos θ)r cosφ = sin θr cosφ = rsin θ cosφ = x

P2,1(cos θ)r2 cosφ = 3r2sin θ cos θ cosφ = 3xz

P2,2(cos θ)r2 cos 2φ = 3r2sin 2θ
(
cos2 φ− sin 2φ

)
= 3

(
x2 − y2

)
,

with similar expressions obtaining if the sinφ and sin 2φ solutions are used instead. The polynomials of the
form P`,mr

` cosmφ and P`,mr
`sinmφ,6 which are all solutions to Laplace’s equation, are called harmonic

polynomials. As we shall see shortly, the set of all products of the form P`,m cosmφ, P`,msinmφ forms
a complete orthogonal set over the sphere; since on a sphere r is a constant, this implies that given any
polynomial on Rn and a sphere of radius r = a centred at the origin, there will be a harmonic polynomial
which agrees with the given polynomial on the sphere. This harmonic polynomial will then be the solution
to Laplace’s equation with boundary data equal to the given polynomial. This is an interesting branch of
mathematics but we shall not explore it in detail here.

We would now like to see how we can use the associated Legendre functions to solve boundary-value
problems for Laplace’s equation on a sphere. First, we note that the P`,m, for constant m, form an orthogonal
set; in particular, we have the following result.

PROPOSITION. Let m ∈ Z, m ≥ 0, `1, `2 ∈ Z, `1, `2 ≥ m, `1 6= `2. Then∫ 1

−1
P`1,mP`2,m dx = 0.

[NOTE. By the same logic as we used above for the Legendre polynomials, in terms of θ the above orthog-
onality result becomes ∫ 1

−1
P`1,m(cos θ)P`2,m(cos θ)sin θ dx = 0.]

5This requirement might be familiar to those of you who have studied the theory of angular momentum in
quantum mechanics. What we are building here are parts of the angular momentum eigenfunctions in the
position representation.
6These may be handled simultaneously by using the complex form P`,mr

`eimφ, in the which case the general
form becomes more transparent.
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Proof. We use a general method (which can also be applied to the Legendre polynomials themselves),
by showing that the differential operator

f 7→ Lf :=
d

dx

((
1− x2

) df
dx

)
is what is called self-adjoint , i.e., that if f, g ∈ C2, then (Lf, g) = (f, Lg). This may be shewn as follows:

(Lf, g) =

∫ 1

−1
[Lf ] (x) · g(x) dx =

∫ 1

−1

d

dx

((
1− x2

) df
dx

)
g(x) dx

=
(
1− x2

) df
dx
g(x)

∣∣∣∣1
−1
−
∫ 1

−1

(
1− x2

) df
dx

dg

dx
dx

= − f(x)
(
1− x2

) dg
dx

∣∣∣∣1
−1

+

∫ 1

−1
f(x)

d

dx

(
(1− x2)

dg

dx

)
dx

= (f, Lg),

as claimed. Now let m ∈ Z, m ≥ 0. It is clear that the operator f 7→ Mf := m2

1−x2 f also satisfies this
property, and hence so does the difference L′ = L−M . Now let P`1,m and P`2,m be as in the statement of
the proposition. Then we have L′P`1,m = −`1(`1 + 1)P`1,m and L′P`2,m = −`2(`2 + 1)P`2,m; thus

(L′P`1,m, P`2,m) = −`1(`1 + 1)(P`1,m, P`2,m)

= (P`1,m, L
′P`2,m) = −`2(`2 + 1)(P`1,m, P`2,m),

whence (P`1,m, P`2,m) = 0 since `1 6= `2. QED.

It may also be shewn that (see (4.2.25) in the textbook)

(1) (P`,m, P`,m) =
(`+m)!

(`−m)!

2

2`+ 1
.

We now recall that the set
{1, cosmφ, sinmφ|m ∈ Z,m ≥ 1}

is a complete orthogonal set on [0, 2π] (while we may not have explicitly shewn this earlier, it follows readily
from what we have done). We claim that this, together with the above proposition, implies that

{P`(cos θ)} ∪ {P`,m(cos θ) cosmφ,P`,m(cos θ)sinmφ|m ∈ Z,m ≥ 1}

is a complete orthogonal set on the sphere (i.e., on the set [0, π]× [0, 2π] with respect to the inner product

(f(θ, φ), g(θ, φ)) =

∫ π

0

∫ 2π

0

f(θ, phi)g(θ, φ)sin θ dφ dθ.

The orthogonality is simple to shew. We note first of all that if f(θ, φ) = f1(θ)f2(φ) and g(θ, phi) =
g1(θ)g2(φ), then the above inner product decomposes as follows:

(f, g) =

∫ π

0

f1(θ)g1(θ)sin θ dθ

∫ 2π

0

f2(φ)g2(φ) dφ;

in other words, it is simply the product of the inner products we have been using for functions of θ and φ.7

Thus
(P`,m cosmφ,P`′,m′ cosm′φ) = (P`,m, P`′,m′)(cosmφ, cosm′φ) = 0

7This is related to the fact that the space of functions on the sphere can be viewed as the tensor product
(in an appropriate sense: one needs to somehow close off the algebraic tensor product in an appropriate
topology, such as that given by the product inner product indicated above) of the spaces of functions on
[0, 2π] and [0, π].
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if m 6= m′, while if m = m′ it will be zero unless ` = `′, in the which case it will be given by the normalisation
formula (1) above. An analogous result clearly holds if both of the cosine terms are replaced by sine, while
if one is replaced by sine then all of the inner products will be zero regardless of m. This shews that the set
above is an orthogonal set, as desired.

To see that it is complete (assuming that {P`,m} and the sine/cosine basis are), we may proceed as
follows. Let f(θ, φ) be any suitable (e.g., piecewise continuous) function on the sphere. Then for each fixed
θ we may expand it in a series of sines and cosines, the coefficients of which will however depend on θ; in
other words, we may write8

f(θ, φ) =

∞∑
m=0

cm(θ) cosmφ+ dm(θ)sinmφ;

now since the P`,m, for each m, form a complete set on [0, π], we may further expand each of the coefficients
cm, dm, obtaining

cm(θ) =

∞∑
`=m

c`,mP`,m(cos θ),

dm(θ) =

∞∑
`=m

d`,mP`,m(cos θ).

Thus we have finally

f(θ, φ) =

∞∑
m=0

∞∑
`=m

P`,m(cos θ) (c`,m cosmφ+ d`,msinmφ) ,

or, assuming that the series is sufficiently well-behaved that we may rearrange the order of the terms,

f(θ, φ) =

∞∑
`=0

∑̀
m=0

P`,m(cos θ) (c`,m cosmφ+ d`,msinmφ) ,

where by the orthogonality result above

c`,m =
(f, P`,m(cos θ) cosmφ)

(P`,m(cos θ) cosmφ,P`,m(cos θ) cosmφ)

=
2`+ 1

2π

(`−m)!

(`+m)!
(f, P`,m(cos θ) cosmφ),

with an analogous formula for d`,m.
Our procedure for solving general problems involving Laplace’s equation on spherical shells is now clear:

we start out with the general series representation

∞∑
`=0

∑̀
m=0

P`m(cos θ)
(
a`mr

` + b`mr
−`−1) (c`m cosmφ+ d`msinmφ) ,

and then apply the boundary conditions, using formulas like the above for c`,m to determine equations for
the relevant coefficients (exactly as we did when solving Laplace’s equation on a square), to determine all of
the coefficients in the expansion. We then substitute back in to obtain the desired solution.

As we are well aware by now, this process in general produces very long expressions; also, the integrals
arising for general boundary data can be very difficult to evaluate. Some simple examples can be done by
exploiting the idea of harmonic polynomial mentioned earlier; we give one such example.

8Here and below, to avoid having to pull out the m = 0 term explicitly, we shall make the definition that
d0, etc., are all zero.
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EXAMPLE. Solve Laplace’s equation ∇2u = 0 on the unit ball with boundary data u|r=1 = cos θsin θsinφ+
sin 2θsinφ cosφ.

First of all, we note that since we are solving on the interior of a sphere, our solution must be continuous
at the origin, so the terms r−`−1 cannot appear and we must have b`,m = 0 for all `, m; we may thus absorb
the coefficients a`,m into the c`,m and d`,m. We could proceed by rewriting the above boundary data as a
linear combination of products of associated Legendre functions with functions cosmφ, sinmφ; this would
give

1

3
P2,1sinφ+

1

6
P2,2sin 2φ,

from which we would obtain the solution

1

3
P2,1r

2sinφ+
1

6
P2,2r

2sin 2φ.

Alternatively, we may note that on r = 1 the above expression is equal to the polynomial

zy + xy,

which satisfies Laplace’s equation everywhere through space; thus our solution is simply u = zy+xy, as can
be verified from the first expression given above.
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