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Summary:
•When solving problems with boundary data specified on circles, cylinders, or spheres, it is useful to

work in coordinate systems adapted to the boundary surfaces at hand.
• The gradient in cylindrical coordinates is given by

∇f =
∂f

∂ρ
ρ +

1

r

∂f

∂φ
φ +

∂f

∂z
k,

and in spherical coordinates by

∇f =
∂f

∂r
r +

1

r

∂f

∂θ
θ +

1

rsin θ

∂f

∂φ
φ.

• The divergence in cylindrical coordinates of a vector field F = Fρρ + Fφφ + Fzk is given by

∂Fρ
∂ρ

+
1

ρ
Fρ +

1

ρ

∂Fφ
∂φ

+
∂Fz
∂z

,

and the divergence in spherical coordinates of a vector field F = Frr + Fθθ + Fφφ is given by

∂Fr
∂r

+
2

r
Fr +

1

r

∂Fθ
∂θ

+
1

r
cot θFθ +

1

rsin θ

∂Fφ
∂φ

.

• In cylindrical coordinates, Laplace’s equation becomes

∂2u

∂ρ2
+

1

ρ

∂u

∂ρ
+

1

ρ2

∂2u

∂φ2
+
∂2u

∂z2
= 0,

and in spherical coordinates,

∂2u

∂r2
+

2

r

∂u

∂r
+

1

r2

∂2u

∂θ2
+

cot θ

r2

∂u

∂θ
+

1

r2sin 2θ

∂2u

∂φ2
= 0.

•When we separate variables in Laplace’s equation in spherical coordinates, we get solutions u = RΘΦ,
where R, Θ, and Φ are of the following form:

R = ar` + br−(`+1), Θ = Pm` (cos θ), Φ = c cosmθ + dsinmθ,

where ` and m are nonnegative integers and Pm` is a Legendre function. The simplest case is when
m = 0, in the which case we write Θ = P`(cos θ), where P` is the Legendre polynomial of degree `.

MOTIVATION. We have by now seen a few examples of the use of the separation-of-variables technique to
solve Laplace’s equation on a square. Exactly similar methods would work to solve it on a rectangle, and in
three (or even higher) dimensions we could solve it on a cube with exactly analogous techniques. Suppose
however that our boundary data were given on a circle, or a sphere – this would be a very different matter.
Thinking back to our general series solution to Laplace’s equation on the unit square,

u(x, y) =

∞∑
n=1

sinnπx (ansinhnπy + bncoshnπy) ,

if we were given boundary data on a circle, we would need to satisfy a requirement of the form

u(x,
√

1− x2) = f(x) =

∞∑
n=1

sinnπx
(
ansinhnπ

√
1− x2 + bncoshnπ

√
1− x2

)
,
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and now not only does it look hopeless to try to integrate this series against sinmπx, it seems pretty clear
that that is not even the right thing to try since now y depends on x rather than being constant, and it is
not at all clear that integrating against sinmπx will allow us to deduce the expansion coefficients an and bn.
Thus it seems that in cases like this something else is required. It turns out that the correct way forwards
is to do a change of variables and work in polar, cylindrical, or spherical coordinates. This is analogous to
how we change integrals to integrate over circular or spherical regions in multivariable calculus.

NOTE. The derivations of the expressions for the gradient and divergence below are rather technical. Since
in this class we only really need the end results of these derivations, i.e., the expressions for the Laplacian
in spherical and cylindrical coordinates, the derivations themselves are of secondary importance and may
be skipped without essential loss of continuity. They are given here for the sake of completeness, and also
because the author feels that the existence (at least) of the techniques demonstrated is worth knowing.

The main subject-matter of the course continues on p. 6 below.

GRADIENT IN GENERAL COORDINATE SYSTEMS. Let f : Rn → R be a differentiable function (one
can think of n = 2 or n = 3 if one likes). The gradient of f is defined to be the vector ∇f in Rn such that,
for any unit vector n, the rate of change of f in the direction n is equal to n · ∇f ; in other words, such that

(1) lim
h→0

f(x + hn)− f(x)

h
= n · ∇f(x).

In rectangular coordinates in R3, the gradient has the well-known expression

∇f(x) =
∂f

∂x
i +

∂f

∂y
j +

∂f

∂z
k.

Now fix some point x ∈ Rn and suppose that γ : (−ε, ε)→ Rn (for some ε > 0) is such that γ(0) = x,
γ′(0) = n (where γ′ denotes the derivative of γ with respect to its parameter). Then by the chain rule we
see that

d

dt
f(γ(t))

∣∣∣∣
t=0

=

n∑
i=1

∂f

∂xi

∣∣∣∣
x

dγi

dt

∣∣∣∣
t=0

= γ′(0) · ∇f(x) = n · ∇f(x);

in other words, to determine n · ∇f(x), we do not need to use the straight-line path in the definition in (1)
above; differentiating along any other curve which passes through the point in the correct direction with
unit speed (i.e., satisfying γ′(0) = n; unit speed means that |γ′(0)| = |n| = 1) will also do.

In particular, let us consider how to express the gradient in curvilinear coordinates. Suppose that
y1, . . . , yn is a set of coordinates on some (open) subset of Rn – this means that we have two sets of
functions (letting x1, . . . , xn denote the standard coordinates on Rn)

y1 = y1(x1, . . . , xn),

y2 = y2(x1, . . . , xn),

...

yn = yn(x1, . . . , xn),

x1 = x1(y1, . . . , yn),

x2 = x2(y1, . . . , yn),

...

xn = xn(y1, . . . , yn);

if we think of spherical coordinates on R3, for example (and readers who feel uncomfortable with the level of
generality are highly advised to think only of spherical or cylindrical coordinates in the following), we have

r =
√
x2 + y2 + z2,

θ = arctan

√
x2 + y2

z
,

φ = ± arctan
y

x
,

x = rsin θ cosφ,

y = rsin θsinφ,

z = r cos θ,

where the ± in the equation for φ is the normal ambiguity in determining φ from the ratio y
x .
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Let us now fix some point x0 ∈ Rn which has coordinates (y1
0 , y

2
0 , . . . , y

n
0 ). Now for each j = 1, 2, . . . , n

we have the curve

γj(t) =
(
x1(y1

0 , . . . , y
j
0 + t, . . . , yn0 ), x2(y1

0 , . . . , y
j
0 + t, . . . , yn0 ), . . . , xn(y1

0 , . . . , y
j
0 + t, . . . , yn0 )

)
,

which is just the curve obtained by holding all but the jth coordinate constant and letting the jth coordinate

change at unit speed. The unit tangent vector to this curve at t = 0,
γ′j(0)

|γ′
j
(0)| , is called the unit coordinate

vector in the jth direction at the point x; we denote it by yj . It is not hard to see that the vector yj is the

unit normal to the surface yj = yj0 passing through the point x. Calculating the gradient in the y coordinate
system means representing ∇f in the basis {yj} at each point. For simplicity in these calculations, we shall
when convenient reparametrise the above curves by arclength and let γj(s) denote the j curve parametrised

by arclength s(t) =
∫ t

0
|γ′j(t′)|dt′; then we have simply yj =

dγj

ds .
For example, in spherical coordinates we have the three curves and unit vectors

γ1(t) = ((r0 + t)sin θ0 cosφ0, (r0 + t)sin θ0sinφ0, (r0 + t) cos θ0)

γ2(t) = (r0sin (θ0 + t) cosφ0, r0sin (θ0 + t)sinφ0, r0 cos(θ0 + t))

γ3(t) = (r0sin θ0 cos(φ0 + t), r0sin θ0sin (φ0 + t), r0 cos θ0)

r = sin θ0 cosφ0i + sin θ0sinφ0j + cos θ0k

θ = cos θ0 cosφ0i + cos θ0sinφ0j− sin θ0k

φ = −sinφ0i + cosφ0j

and the reparametrisation by arclength can be obtained by noting that γ1(t) = r0r+ tr, and hence is already
parametrised by arclength; that γ2(t) represents a circle of radius r0, so an arclength parameter is s = r0t;
and that γ3(t) represents a circle of radius r0sin θ0, so that an arclength parameter is s = r0sin θ0t, so that
finally we have the parametrisations by arclength –

γ1(s) = ((r0 + s)sin θ0 cosφ0, (r0 + s)sin θ0sinφ0, (r0 + s) cos θ0)

γ2(s) =

(
r0sin

(
θ0 +

s

r0

)
cosφ0, r0sin

(
θ0 +

s

r0

)
sinφ0, r0 cos

(
θ0 +

s

r0

))
γ3(s) =

(
r0sin θ0 cos

(
φ0 +

s

r0sin θ0

)
, r0sin θ0sin

(
φ0 +

s

r0sin θ0

)
, r0 cos θ0

)
.

The vectors {r,θ,φ} are seen to give an orthonormal basis for R3 for any values of θ0 and φ0.
Returning to our general picture, let us now assume that (as for the case of spherical and – it can be

shewn – cylindrical coordinates) the vectors yj are all mutually orthogonal (and hence orthonormal since
they have unit length by construction). Then we have simply

∇f(x0) = (y1 · ∇f(x0))y1 + · · ·+ (yn · ∇f(x0))yn.

Now by our work above, we have (since by the definition of arclength, we have ds
dt = |γ′j |, so dt

ds = 1
|γ′

j
| )

yj · ∇f(x0) =
d

ds
(f(γj(s)))

∣∣∣∣
s=0

=
d

dt
(f(γj(t)))

∣∣∣∣
t=0

dt

ds

∣∣∣∣
s=0

=
1

|γ′j(0)|
d

dt
(f(γj(t)))

∣∣∣∣
t=0

=
1

|γ′j(0)|

n∑
i=1

∂f

∂xi
dγij
dt

∣∣∣∣∣
t=0

=
1

|γ′j(0)|

n∑
i=1

∂f

∂xi
∂xi

∂yj

∣∣∣∣∣
x=x0

=
1

|γ′j(0)|
∂f

∂yj

∣∣∣∣
(yi0)

.

3



APM346, 2019 May 23–30 Nathan Carruth

Applying this formula to the special case of spherical coordinates, we see first of all that (the derivatives
are with respect to t, not s)

|γ′1(0)| = 1, |γ′2(0)| = r0, |γ′3(0)| = r0sin θ0.

Thus we obtain

y1 · ∇f(x0) = r · ∇f(x0) =
∂f

∂r
,

y2 · ∇f(x0) = θ · ∇f(x0) =
1

r

∂f

∂θ
,

y3 · ∇f(x0) = φ · ∇f(x0) =
1

rsin θ

∂f

∂φ
,

where all quantities are to be evaluated at the point (r0, θ0, φ0). Thus we have finally

∇f =
∂f

∂r
r +

1

r

∂f

∂θ
θ +

1

rsin θ

∂f

∂φ
φ.

Similarly, in cylindrical coordinates we have the three curves and unit vectors

γ1(t) = ((ρ0 + t) cosφ0, (ρ0 + t)sinφ0, z)

γ2(t) = (ρ0 cos (φ0 + t) , ρ0sin (φ0 + t) , z)

γ3(t) = (ρ0 cosφ0, ρ0sinφ0, z + t)

ρ = cosφ0i + sinφ0j

φ = −sinφ0i + cosφ0j

z = k

and
|γ′1(0)| = 1, |γ′2(0)| = ρ0, |γ′3(0)| = 1,

so that

∇f =
∂f

∂ρ
ρ +

1

ρ

∂f

∂φ
φ +

∂f

∂z
k.

DIVERGENCE. For this section we shall work exclusively in R3. Recall that the divergence of a vector field
F = Fxi + Fyj + Fzk in R3 is defined by

divF =
∂Fx
∂x

+
∂Fy
∂y

+
∂Fz
∂z

,

and that we have the divergence theorem∫∫∫
V

divFdV =

∫∫
∂V

F · ndS,

where n represents the outwards unit normal to the boundary ∂V of V .
We also note for future reference that, given a general coordinate system {yj} as above, the area element

in a surface of constant coordinate yj is given by

Aj := |γ′i × γ′k|,

where i and k are the two elements of {1, 2, 3} not equal to j. Thus, for example, in the case of spherical
coordinates (recalling the formula |A×B| = |A||B|sin θAB, where θAB is the angle between A and B, and
that the vectors γ′j are all mutually orthogonal so sin θγ′

i
γ′

k
= 1 for all i and k, so that |γ′i × γ′j | = |γ′i||γ′j |;

this formula makes sense when we consider that we are taking the area of a small rectangle whose sides have
length |γ′i| and |γ′j |), the area elements in surfaces of constant r, θ, and φ are given respectively by

|γ′2 × γ′3| = r2| cos θ cosφi + cos θsinφj− sin θk|| − sin θsinφi + sin θ cosφj|
= r2sin θ,

|γ′1 × γ′3| = |sin θ cosφi + sin θsinφj + cos θk|| − rsin θsinφi + rsin θ cosφj|
= rsin θ,

|γ′1 × γ′2| = |sin θ cosφi + sin θsinφj + cos θk||r cos θ cosφi + r cos θsinφj− rsin θk|
= r.
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Let us now return to the case of a general coordinate system, but still assume it to be orthogonal
(meaning that the vectors yj are mutually orthogonal at all points of R3), pick some point x0 ∈ R3 with
coordinates (yi0), and apply the divergence theorem to the small curvilinear cube given by

V = [y1
0 , y

1
0 + ∆y1]× [y2

0 , y
2
0 + ∆y2]× [y3

0 , y
3
0 + ∆y3].

Then, by the change-of-variables formula and the mean value theorem for integrals, there will be some point
(yi∗) in this cube such that ∫∫∫

V

divFdV = divF(yi∗)J∆y1∆y2∆y3,

where J is the Jacobian of the coordinate transformation x 7→ y; we note that J = |γ′1 · (γ′2 × γ′3) | =
|γ′1||γ′2||γ′3|, since the vectors are all orthogonal.

Let us now consider the right-hand side of the divergence theorem. The cube given above has evidently
six faces; these can be grouped into three pairs, the treatment of each of which is analogous. Let us work
with the pair

{y1
0} × [y2

0 , y
2
0 + ∆y2]× [y3

0 , y
3
0 + ∆y3] ∪ {y1

0 + ∆y1} × [y2
0 , y

2
0 + ∆y2]× [y3

0 , y
3
0 + ∆y3].

The unit normal vector on the second part of this pair will simply be the vector y1, while that on the first
will be (since we need the outer normal in the divergence theorem) −y1; thus the integral on the right-hand
side of the divergence theorem corresponding to these two surfaces is equal to (we let F j = yj · F)∫ y20+∆y2

y20

∫ y30+∆y3

y30

F 1(y1
0 + ∆y1, y2, y3)A1(y1

0 + ∆y1, y2, y3)dy3dy2

−
∫ y20+∆y2

y20

∫ y30+∆y3

y30

F 1(y1
0 , y

2, y3)A1(y1
0 , y

2, y3)dy3dy2

=

∫ y20+∆y2

y20

∫ y30+∆y3

y30

(
F 1A1

)
(y1

0 + ∆y1, y2, y3)−
(
F 1A1

)
(y1

0 , y
2, y3)dy2dy3

=

∫ y20+∆y2

y20

∫ y30+∆y3

y30

∂
(
F 1A1

)
∂y1

∣∣∣∣∣
(y10 ,y

2,y3)

∆y1 + o(∆y1)dy2dy3

=

 ∂
(
F 1A1

)
∂y1

∣∣∣∣∣
(y10 ,y

2
∗,y

3
∗)

∆y1 + o(∆y1)

∆y2∆y3,

where o(h) represents a quantity which satisfies

lim
h→0

o(h)

h
= 0,

and we have again used the mean value theorem for integrals. (Here, and below, in order to keep the notation
from becoming too cumbersome we shall use (yi∗) to denote any point that lies in the above cube; it may
represent multiple different points on the same line. This will not ultimately cause any troubles since we
will take a limit which forces (yi∗)→ (yi0) at the end.) The other two pairs are treated similarly, giving rise
finally to the equation

divF(yi∗)J∆y1∆y2∆y3 =

 ∂
(
F 1A1

)
∂y1

∣∣∣∣∣
(y10 ,y

2
∗,y

3
∗)

∆y1 + o(∆y1)

∆y2∆y3

+

 ∂
(
F 2A2

)
∂y2

∣∣∣∣∣
(y1∗,y

2
0 ,y

3
∗)

∆y2 + o(∆y2)

∆y1∆y3

+

 ∂
(
F 3A3

)
∂y3

∣∣∣∣∣
(y1∗,y

2
∗,y

3
0)

∆y3 + o(∆y3)

∆y1∆y2.
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If we now divide through by J∆y1∆y2∆y3 and take the limit as ∆y1,∆y2,∆y3 → 0,1 we obtain finally the
expression (since all points (yi∗) must go to (yi0) in this limit)

divF =
1

J

(
∂
(
F 1A1

)
∂y1

+
∂
(
F 2A2

)
∂y2

+
∂
(
F 3A3

)
∂y3

)
.

In particular, in spherical coordinates we have

J = r2sin θ, A1 = r2sin θ, A2 = rsin θ, A3 = r,

whence we obtain (writing F = Frr + Fθθ + Fφφ)

divF =
1

r2sin θ

(
∂
(
r2sin θFr

)
∂r

+
∂ (rsin θFθ)

∂θ
+
∂ (rFφ)

∂φ

)

=
∂Fr
∂r

+
2

r
Fr +

1

r

∂Fθ
∂θ

+
1

r
cot θFθ +

1

rsin θ

∂Fφ
∂φ

.

Similarly, for cylindrical coordinates we have the area elements

A1 = | − ρsinφi + ρ cosφj||k| = ρ,

A2 = | cosφi + sinφj||k| = 1,

A3 = | cosφi + sinφj|| − ρsinφi + ρ cosφj| = ρ,

while J = r; thus we have the formula (writing F = Fρρ + Fφφ + Fzk)

divF =
1

ρ

(
∂ (ρFρ)

∂ρ
+
∂Fφ
∂φ

+
∂ (ρFz)

∂z

)
=
∂Fρ
∂ρ

+
1

ρ
Fρ +

1

ρ

∂Fφ
∂φ

+
∂Fz
∂z

.

Finally, putting all of this together with the expressions for the gradients derived above gives the following
expressions for the Laplacian in spherical and cylindrical coordinates:

∇2u =
∂2u

∂r2
+

2

r

∂u

∂r
+

1

r2

∂2u

∂θ2
+

cot θ

r2

∂u

∂θ
+

1

r2sin 2θ

∂2u

∂φ2
,

∇2u =
∂2u

∂ρ2
+

1

ρ

∂u

∂ρ
+

1

ρ2

∂2u

∂φ2
+
∂2u

∂z2
.

SEPARATION OF VARIABLES IN SPHERICAL COORDINATES. Consider now Laplace’s equation in
spherical coordinates,

(2)
∂2u

∂r2
+

2

r

∂u

∂r
+

1

r2

∂2u

∂θ2
+

cot θ

r2

∂u

∂θ
+

1

r2sin 2θ

∂2u

∂φ2
= 0.

As we did when treating Laplace’s equation in rectangular coordinates, we begin by seeking simple solutions
of the form

u = R(r)Θ(θ)Φ(φ),

1Note that there is one other subtle point which must be dealt with here, namely whether the quantities
o(∆y1)

∆y1 etc. go to zero uniformly in the other ∆yi. They will if we assume that the vector field F possesses

continuous second-order derivatives.
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in the hopes that the general solution can be expressed in a series of such solutions. Substituting this into
equation (2) and dividing by u, we obtain (here prime denotes differentiation with respect to the whatever
single variable the function depends on; e.g., R′ = dR

dr )

R′′

R
+

2

r

R′

R
+

1

r2

(
Θ′′

Θ
+ cot θ

Θ′

Θ
+

1

sin 2θ

Φ′′

Φ

)
= 0.

Now we see that of all the terms on the left-hand side, only Φ′′

Φ depends on φ; hence it must be constant.

(Somewhat more explicitly, note that we may solve the above equation for Φ′′

Φ , obtaining

Φ′′

Φ
= −sin 2θ

(
r2R

′′

R
+ 2r

R′

R
+

Θ′′

Θ
+ cot θ

Θ′

Θ

)
;

now the right-hand side of the above expression does not depend on φ, and hence neither can the left-
hand side, i.e., Φ′′

Φ is constant, as claimed.) We would like to know something about this constant before
proceeding further. Suppose that we are interested in solving Laplace’s equation on a ball (the interior of a
sphere): then the solution must be valid, continuous, and single-valued for all values of the angle φ. Since
increasing φ by 2π leaves us at the same point, out solution must be periodic in φ with angle 2π. Since Φ
is the only part of the solution depending on φ, this means that Φ must itself be periodic with period 2π.
Now we know that if Φ′′

Φ is positive, then Φ will be a linear combination of sinh and cosh, and hence will

not be periodic; thus Φ′′

Φ must be zero or negative. If it is zero, then it must be of the form a + bφ; again,
φ is not periodic, and hence we must have b = 0, i.e., in this case Φ must be a constant. (This corresponds
to what is called an azimuthally symmetric solution; we shall have more to say about this when we discuss
Legendre’s equation and Legendre polynomials shortly.) Otherwise, Φ′′

Φ must be negative, and we may write
it as −m2 for some positive real number m. (Choosing m > 0 is simply a convention; we could as well have
chosen m < 0; but we cannot have both. Here we choose m > 0.) Thus Φ′′ = −m2Φ, which has as a general
solution Φm = am cosmφ+ bmsinmφ. Since Φm must have period 2π (general periodicity is not enough), we
must actually have m ∈ Z. Thus the φ dependence of our solution will be of the form am cosmφ+ bmsinmφ
(note that we could also have used the complex basis eimφ).2

Substituting Φ′′

Φ = −m2 back into Laplace’s equation, and multiplying by r2, we obtain

r2R
′′

R
+ 2r

R′

R
+

(
Θ′′

Θ
+ cot θ

Θ′

Θ
− m2

sin 2θ

)
= 0.

Again, the first of these two terms depends only on R, and the second depends only on Θ, which means (as
with Φ) that each of them must be constant. Let us let α3 denote the term in parentheses, so that we obtain
for R the equation

r2R
′′

R
+ 2r

R′

R
= −α,

or

r2R′′ + 2rR′ + αR = 0.

2As hinted above, and mentioned in somewhat greater detail in class, this form for Φ is contingent on the
region over which we are solving containing a full range of angles φ. Should we be solving only on a wedge, for
example, then not only would we no longer necessarily have m ∈ Z, we might actually need to consider also
the exponential solutions for Φ – at least in principle. In this case, we would need boundary conditions on the
constant-φ boundaries, much as we have boundary conditions on the constant-y and constant-x boundaries
in the problems we have done in rectangular coordinates. For the moment, though, to keep the discussion
simple, we shall stick with this form for Φ.
3It would be more natural to denote this constant by −α, but since the author was careless and denoted it
by α in the lecture, it seems prudent to keep that convention here. At any rate, as noted in lecture and as
will be pointed out shortly, α itself is not really the fundamental quantity; ` is much more fundamental.
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The form of this equation suggests that it should possess power-law solutions; thus let us try to find solutions
of the form R = r`, for some ` (which at present we know nothing about). Substituting this expression in
for R, we obtain

r2
(
`(`− 1)r`−2

)
+ 2r

(
`r`−1

)
+ αr` = `(`− 1)r` + 2`r` + αr`

= [`(`+ 1) + α] r` = 0,

from which we see that ` must satisfy the equation `(`+1) = −α. This is a quadratic equation with solutions

` = −1

2
± 1

2
(1− 4α)

1
2 .

(Note that these may be complex.) From this we obtain also the result that if ` is one solution to `(`+1) = −α,
then −(`+ 1) is the other solution. Thus in general we have the solution

R` = a`r
` + b`r

−(`+1).

Repeated roots occur when α = 1
4 ; and if α > 1

4 the roots will be complex: while the expressions r` and

r−(`+1) can still be defined in this case, they are not as simple. For reasons which shall become apparent when
we study Legendre’s equation in a moment, we are interested mostly in cases in which ` is a nonnegative
integer. Thus (as with our choice for m above) we shall for the moment restrict to this case. Thus we
consider only α which are of the form −`(` + 1) for some ` ∈ Z, ` ≥ 0. (It is because of this that we said
above that ` is more fundamental than α, so that our use of α instead of −α was not that important.)

Having solved the equations for Φ and R, let us now treat the equation for Θ. This is the most
interesting of them all and will introduce us to the field of orthogonal polynomials through the so-called
Legendre polynomials.

Setting α = −`(`+ 1), we see that we obtain for Θ the equation

(3) Θ′′ + cot θΘ′ +

(
`(`+ 1)− m2

sin 2θ

)
Θ = 0.

Unfortunately, as it stands there is no clear way to approach this equation, since while it is a second-order
linear ordinary differential equation it has variable coefficients. It turns out to be useful to make the change
of variables x = cos θ (here x does not refer to the Cartesian coordinate corresponding to the spherical
coordinate system we are using – that would be rsin θ cosφ); note that this implies that x ∈ [−1, 1]. For this
change of variables, the chain rule gives (for some function f)

df

dθ
=
df

dx

dx

dθ
= −sin θ

df

dx
,

d2f

dθ2
=

d

dθ

(
−sin θ

df

dx

)
= − cos θ

df

dx
− sin θ

(
−sin θ

d2f

dx2

)
= −x df

dx
+ (1− x2)

d2f

dx2
,

whence we see that equation (3) becomes, letting P (x) be the function of x corresponding to Θ(θ) (and since
cot θsin θ = cos θ = x in the second term in that equation)

(1− x2)
d2P

dx2
− xdP

dx
− xdP

dx
+

(
`(`+ 1)− m2

1− x2

)
P = (1− x2)P ′′ − 2xP ′ +

(
`(`+ 1)− m2

1− x2

)
P = 0.

This equation is called Legendre’s equation, and the solutions for nonnegative integers ` and m are called
the associated Legendre functions. Since x = cos θ ∈ [−1, 1], it is an equation on [−1, 1].

Let us consider the special case m = 0; in this case there is no φ dependence and our solution is
azimuthally symmetric. The equation in this case is simply

(4) (1− x2)P ′′ − 2xP ′ + `(`+ 1)P = 0.

8
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We shall look for a solution P which has a power series expansion around x = 0; in other words, we look for
a solution

P =

∞∑
n=0

anx
n.

Substituting this expression in to the above equation, we obtain

0 =

∞∑
n=0

(1− x2)ann(n− 1)xn−2 − 2xnanx
n−1 + `(`+ 1)anx

n

=

∞∑
n=0

an+2(n+ 2)(n+ 1)xn − ann(n− 1)xn − 2nanx
n + `(`+ 1)anx

n

=

∞∑
n=0

(an+2(n+ 2)(n+ 1) + an (`(`+ 1)− n(n+ 1)))xn,

from which we obtain the recurrence relation

an+2 = an
n(n+ 1)− `(`+ 1)

(n+ 2)(n+ 1)
.

We see that this will determine all even coefficients a2k given a0, and all odd coefficients a2k+1 given a1; since
we started with a second-order differential equation, it is natural that we have two undetermined coefficients.
(Another way of looking at it is to think of a0 and a1 as being the coefficients in the linear combination
giving the general solution to the equation.) Moreover, if a0 = 0, then all even coefficients will vanish, and
if a1 = 0 then all odd coefficients will vanish.

We note something else about this recurrence relation: If n(n + 1) = `(` + 1) for some n, then an+2

and hence an+2k for all k > 0 will vanish. This means that if n(n + 1) = `(` + 1) for some odd integer n,
then there will be only finitely many odd-power terms in the power series, while if n(n + 1) = `(` + 1) for
some even integer n there will be only finitely many even-power terms in the power series. In either case,
by requiring the terms of opposite valence to vanish (i.e., setting a0 = 0 in the first case and a1 = 0 in the
second case), we obtain power series solutions which are finite – which is to say, polynomial solutions. These
are called the Legendre polynomials.

Let us be more specific. Suppose that ` = 2k for some k ∈ Z, k ≥ 0, and let a1 = 0. Then, as noted
above, all odd coefficients in the series will vanish. Moreover,

a2k+2 = a2k
2k(2k + 1)− `(`+ 1)

(2k + 2)(2k + 1)
= a2k

2k(2k + 1)− 2k(2k + 1)

(2k + 2)(2k + 1)
= 0,

and thus a2k+2j = 0 for all j ∈ Z, j > 0. Since all odd-order coefficients vanish, the power series will truncate
and we will be left with a polynomial of degree 2k = `.

Similarly, suppose that ` = 2k + 1 for some k ∈ Z, k ≥ 0, and let now a0 = 0. Then all even terms
vanish; moreover, as before,

a2k+3 = a2k+1
(2k + 1)(2k + 2)− `(`+ 1)

(2k + 3)(2k + 2)
= a2k+1

(2k + 1)(2k + 2)− (2k + 1)(2k + 2)

(2k + 3)(2k + 2)
= 0,

so a2k+1+2j = 0 for all j ∈ Z, j > 0, and our power series truncates to give a polynomial of order 2k+ 1 = `.
Thus we see that whenever ` is a nonnegative integer, equation (4) will have a solution which is a

polynomial of degree `. It is determined up to an overall multiplicative factor. We denote by P`(x) the
polynomial satisfying (4) and satisfying also P`(1) = 1; this will fix the value of a0 (` even) or a1 (` odd),
which we left open above. P`(x) is called the `th Legendre polynomial, or the Legendre polynomial of degree
`.4

4Since our original equation was second-order, even in the case where ` is a nonnegative integer it will possess
another solution linearly independent of P`(x); this would correspond to letting the other one of a0 or a1

equal something nonzero. Since it turns out that the set of Legendre polynomials is complete on the interval
[−1, 1], they are sufficient for our purposes at the moment.

9
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EXAMPLES. Let us compute the first few Legendre polynomials. If ` = 0, we seek a polynomial of degree
0, i.e., a constant polynomial, with P0(1) = 1; thus P0(x) = 1 for all x. If ` = 1, then we set a0 = 0 and
leave a1 undetermined for the moment; but then a3 = 0, so P1(x) = a1x and the normalisation condition
P1(1) = 1 implies that a1 = 1.

The case ` = 2 is a bit more interesting. In this case we set a1 = 1 and leave a0 undetermined; then we
have

a2 = a0
0(0 + 1)− 2(2 + 1)

(0 + 2)(0 + 1)
= −3a0,

while a4 and all higher-order coefficients vanish. Thus P2(x) = −3a0x
2 + a0, so P2(1) = −2a0 = 1 forces

a0 = − 1
2 and P2(x) = 3

2x
2 − 1

2 .

EXAMPLES OF SOLUTIONS TO LAPLACE’S EQUATION. Let us see how all of these results may be
pulled together to give some simple solutions to Laplace’s equation on the unit sphere.
(a) Solve the boundary-value problem on the unit boll {(r, θ, φ)|r < 1}:

∇2u = 0, u|r=1 = 1.

Since the boundary data and the region are both spherically symmetric, we anticipate that the solution
will be as well, meaning that we expect a solution depending only on r; this is equivalent to looking for a
separated solution with Θ and Φ both constant, which means (in the context of what we have just done)
that m = ` = 0. In this case, the equation for R becomes simply

r2R′′ + 2rR′ = 0,

and by our previous work this has general solution R = a+ b
r , and this will also be the form of our solution

u. Since we wish u to satisfy ∇2u = 0 everywhere on the interior of the unit sphere, u must in particular
be continuous and finite there, and thus we must have b = 0, so u = a is just a constant. The boundary
condition then gives a = 1, so the solution to this boundary-value problem is simply u = 1. (We could also
have obtained this by inspection.)
(b) Solve the boundary-value problem on the set {(r, θ, φ)|1 < r < 2}:

∇2u = 0, u|r=1 = 1, u|r=2 = 0.

In this case we still have a spherically symmetric region and spherically symmetric boundary data, so we
expect to obtain a spherically symmetric solution. By our work in part (a), we see immediately that we
must have u = a+ b

r for some constants a, b. In this case we can no longer immediately set b = 0 since the
point r = 0 (which is where the second term goes to infinity) is not in the region where we require ∇2u = 0.
This allows us to fit both boundary conditions, as follows. We have

u|r=1 = a+ b = 1

u|r+2 = a+
b

2
= 0,

from which we see easily that b = 2, a = −1, so u = −1 + 2
r is the solution to the boundary-value problem.

(c) Solve the boundary-value problem on the unit ball:

∇2u = 0, u|r=1 = cos θ.

In this case we no longer have spherical symmetry, though we do have azimuthal symmetry, meaning that
our solution will not depend on φ. In general, our approach to solving this type of problem is very similar to
our approach for solving boundary-value problems on a square: we suppose that our solution can be written
as a series of separated solutions, in this case

u(r, θ, φ) =

∞∑
`=0

(
a`r

` + b`r
−(`+1)

)
P`(cos θ);
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in the present case, as in (a), since we wish u to satisfy Laplace’s equation on the unit ball, we must set all
of the b` to zero (this is similar to how we used the boundary conditions to require that the coefficients of
all of the cosine terms vanished when we solved Laplace’s equation on the unit square, although the reason
is different). We then apply the remaining boundary condition:

u(1, θ, φ) =

∞∑
`=0

a`P`(cos θ) = cos θ,

and try to determine a`. We shall see soon that {P`(x)|` ∈ Z, ` ≥ 0} forms an orthogonal set on [−1, 1]; it is
also complete (though we shall not prove this at present), and thus for any reasonable boundary data u(1, θ)
it will always be possible to find coefficients a` satisfying the above equation – and moreover these coefficients
will be unique. At present it is sufficient to note that cos θ = P1(cos θ), so that we may take simply a1 = 1,
a` = 0, ` 6= 1 (note that this a1 is completely different from the a1 we had above when we investigated the
power series representation of P`!). The final solution is then simply u = rP1(cos θ) = r cos θ = z.

Another way of looking at the above description of our method is as follows. Suppose that we are
solving on the unit ball and given boundary data P`(cos θ) on the unit sphere. Then we know that the
corresponding radial solution is ar` + br−(`+1), but we reject the second term (i.e., set b = 0) since this
term is not continuous on the unit ball; thus our solution must be of the form ar`P`(cos θ), and since our
boundary data is P`(cos θ) on the unit ball, we must have a = 1, and our solution is r`P`(cos θ). (Were we
given the same boundary data, but on the ball {(r, θ, φ)|r ≤ r0}, then we would need ar`0 = 1, so we would

set a = r−`0 and our solution would be
(
r
r0

)`
P`(cos θ).) If our boundary data is a linear combination (or a

series) of P` for different `, then this method may be applied to each term in the linear combination, and
then sum the results to get the full solution. In the case where our boundary data is a series in the P`, we
must use methods of orthogonal functions to determine the coefficients, as we did when solving Laplace’s
equation in rectangular coordinates. We shall discuss this in more detail later.

The moral of the story is: boundary data P`(cos θ) gives rise to a solution of the form(
ar` + br−(`+1)

)
P`(cos θ),

with a and b to be determined from the other requirements in the problem, and general boundary data may
be treated by linearity. This is analogous to how the initial data sin kx leads to a solution sin kxe−k

2Dt to
the heat equation, as we discussed in the first week of class, or to how boundary data sinnπx leads to a
solution sinnπx (asinhnπy + bcoshnπy) to Laplace’s equation on the unit square.

For more complicated problems, such as those on Homework 4, variants and combinations of the above
methods may be used.
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