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Summary:
• One of the main goals of this course is to understand how to write functions as series in a collection

of mutually orthogonal functions which are such that the original partial differential equation (or
whatever other problem we are dealing with) becomes simple.
• This bears some analogies to the process of diagonalising matrices and writing arbitrary vectors as

linear combinations of the eigenvectors of a matrix.
• This process – whether for matrices or for the differential operators which shall be our main concern

here – works best when we have an inner product, which gives us a way of generalising the notion of
projection and hence allows us to compute the coefficients in the series expansions mentioned above.

EXAMPLE. Consider the matrix from last time, A =

(
2 1
1 2

)
.1 We recall that this has eigenvalues 3 and 1

and corresponding eigenvectors e1 = 1√
2

(
1
1

)
and e2 = 1√

2

(
1
−1

)
, which are orthonormal. Now suppose

that we wish to solve the equation Ax = y, for some given vector y =

(
y1
y2

)
. Now since e1 and e2 span R2,

there are numbers a1 and a2 such that y = a1e1 + a2e2; in fact, we may write

y · e1 = (a1e1 + a2e2) · e1 = a1e1 · e1 + a2e2 · e1 = a2,

and similarly y · e2 = a2; thus

(1) y = (y · e1)e1 + (y · e2)e2.

Similarly, we may write x = b1e1 + b2e2; then the equation Ax = y becomes

A(b1e1 + b2e2) = b1Ae1 + b2Ae2 = 3b1e1 + b2e2 = a1e1 + a2e2.

Since {e1, e2} forms a basis for R2, we see that we must have 3b1 = a1, b2 = a2, i.e.,

x =
1

3
(y · e1)e1 + (y · e2)e2.

The main point here, though, is not this last formula, but rather that if we take what was originally a difficult
problem (solving a system of equations) and rewrite it using the eigenvectors e1 and e2, it becomes a very
simple problem. For the problems in partial differential equations which we wish to tackle, rewriting them
in terms of (what we shall term) eigenfunctions is often about the only real way to approach the problem
(at least if what we want is a formula for the solution, which is usually the case for us in this class).

COMMENTARY. To extend the above example to the problems in partial differential equations which we
wish to treat, we see that we need to extend the notion of dot product to functions, in such a way that
our expansion formulas will look like equation (1) above. The following is a particular example of such an
extension. (We shall have occasion to use others, but they will be closely related to this one.)

DEFINITION. Suppose that f, g : [a, b]→ C are integrable2. We define their inner product to be the complex
number3

(f, g) =

∫ b

a

f(x)g(x) dx.

1In class I used a slightly different matrix,

(
1 2
2 1

)
. Either matrix can be used to make the points here.

2‘Integrable’ for us means that their Riemann integral exists, which in particular means that they are
bounded. It is enough to think of continuous or piecewise continuous functions for the moment.
3The integral here was motivated in the notes from last Thursday’s lecture. The complex conjugate here
can be motivated by observing that if z = α + iβ is a complex number, then zz = α2 + β2, which is the
square of the distance from (0, 0) to (α, β) in the plane; in other words,

√
zz represents the length of z when

considered as a vector in the plane.
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We also define the L2 norm4 of f to be

‖f‖ =

(∫ b

a

|f(x)|2 dx

) 1
2

,

where |f(x)| =
√
f(x)f(x) is the modulus of the complex number f(x).

PROPERTIES. The inner product defined above satisfies the following properties (see the review sheet on
linear algebra):

1. (αf + βg, h) = α(f, h) + β(g, h) for all α, β ∈ C and all integrable f, g, h.
2. (f, g) = (g, f) for all integrable f, g.
3. (f, f) ≥ 0 for all integrable f , and (f, f) = 0 if and only if f is zero except on a set of content zero5.
These can be proved directly from the definition of the inner product; for example, the first property

may be proved as follows:

(αf + βg, h) =

∫ b

a

(αf(x) + βg(x))h(x) dx

=

∫ b

a

αf(x)h(x) + βg(x)h(x) dx

= α

∫ b

a

f(x)h(x) dx+ β

∫ b

a

g(x)h(x) dx = α(f, h) + β(g, h).

As noted in the review sheet on linear algebra, the first and second properties show that (f, αg + βh) =
α(f, h) + β(g, h) (this can also be shewn more simply directly). We see that the inner product is linear in
the first argument and conjugate linear in the second.

BESSEL’S INEQUALITY. The inner product also satisfies the following: suppose that {e1, e2, . . .} is a collection
of pairwise orthonormal integrable functions; in other words, that

(ei, ej) =

{
0, i 6= j
1, i = j

.

Let f be any integrable function. Then we have

(2)
∑
i

|(f, ei)|2 ≤ ‖f‖2.

Intuitively, this may be understood as follows. If our above inner product works as desired, the quantities
(f, ei) will be the coefficients in the expansion of f in terms of the ei, or what amounts to the same thing,
the (scalar) projections of f along the ei; the above relation says that the sum of the squares of these
projections can be no greater than the square of the length of the function f itself. This can be understood
by considering the example in R2 of e1 = i, e2 = j, x = i + 2j− k; in this case the left-hand expression will
be 12 + 22 = 5 while the right-hand will be 12 + 22 + (−1)2 = 6.

This example suggests something else: note that the inequality is strict because we did not include
enough vectors in our set – had we also defined e3 = k, then the left-hand side would have become 12 + 22 +
(−1)2 = 6, the same as the right-hand side. Thus perhaps equality in (2) holds exactly when our collection
{e1, e2, . . .} has ‘enough functions’ in some sense – enough to write f as a series in the ei. This turns out to
be quite close to the truth, as we shall discuss on Thursday.

4It is possible to define Lp norms for all p ≥ 1. These are important in advanced analysis but we shall not
need them here.
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LOOKING FORWARD. Our goal, as stated multiple times, is to understand how to expand arbitrary functions
in series of suitable orthonormal sets of functions. We have seen that the trigonometric functions on appro-
priate intervals give orthogonal sets, and it turns out that basically all functions we shall be interested in
dealing with can be expanded in series of trigonometric functions; these are called Fourier series and are
the topic of chapter 1 in the textbook. However, later on in the course we shall be interested in series in
more general orthogonal sets, such as those arising from Bessel functions, Legendre polynomials, and spher-
ical harmonics. It turns out that all of these arise as solutions to ordinary differential equations obtained
by separating variables for one of our standard partial differential equations (Laplace’s equation, the heat
equation, and the wave equation) in different coordinate systems. In particular, the trigonometric functions
arise from separating variables for Laplace’s equation in rectangular coordinates, the Bessel functions arise
when doing so in cylindrical coordinates, and the Legendre polynomials and spherical harmonics arise when
doing so in spherical polar coordinates. Thus we shall first take some time to write down Laplace’s equation
in these three coordinate systems and discuss the kinds of ordinary differential equations which arise when
looking for their separated solutions. This will lead us to the topic of Sturm-Liouville problems, and general
expansions in terms of eigenfunctions of so-called self-adjoint differential operators. This will then allow us
to discuss expansions in the above-mentioned functions.
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