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Summary:
• The temperature in a body satisfies the equation ∂u

∂t = D∇2u for some constant D, where (in three

dimensions) ∇2u = ∂2u
∂x2 + ∂2u

∂y2 + ∂2u
∂z2 .

• In one dimension, this becomes ∂u
∂t = D ∂2u

∂x2 .
• If we require initial data u(x, 0) = sin kx for some constant k, then a corresponding solution to this

equation is u(x, t) = sin kxe−k2Dt.
• Thus, if we require initial data u(x, 0) =

∑
sin knx, where the sum is over a finite collection of kn,

then a corresponding solution is u(x, t) =
∑

sin knxe
−k2

nDt.
• This can be extended to infinite sums (and even integrals), which will allow us to represent (almost)

any initial data on a bounded interval.

NOTATION. We use the notations ∂u
∂x , ux, and ∂xu to denote the partial derivative of u with respect to x.

They are all equivalent.

EXAMPLE from ordinary differential equations. Let x(t) =

(
x1(t)
x2(t)

)
, and consider the equation (where a

dot indicates differentiation with respect to t)

(1) ẋ =

(
2 1
1 2

)
x,

ẋ1 = 2x1 + x2

ẋ2 = x1 + 2x2

with initial data x(0) =

(
x1,0
x2,0

)
. As it stands, this is a coupled system, which is difficult to solve directly.

It can be decoupled by diagonalising the coefficient matrix

(
2 1
1 2

)
, as follows. Let us denote this matrix

by A. It has characteristic equation

0 = det

((
2 1
1 2

)
− λ

(
1 0
0 1

))
= det

(
2− λ 1

1 2− λ

)
= (2− λ)

2 − 1 = λ2 − 4λ+ 3,

which has roots λ = 3, λ = 1. We see that(
1
1

)
and

(
1
−1

)
are corresponding eigenvectors. It is useful to normalise these; thus we set

e1 =
1√
2

(
1
1

)
and e2 =

1√
2

(
1
−1

)
.

These vectors are clearly linearly independent and hence span R2; thus for each t there must exist numbers
y1(t), y2(t) such that

x(t) = y1(t)e1 + y2(t)e2.

If we substitute this back in to equation (1) above, we obtain

ẏ1(t)e1 + ẏ2(t)e2 = A (y1(t)e1 + y2(t)e2)

= y1(t)Ae1 + y2(t)Ae2 = y1(t) (3e1) + y2(t)e2 = 3y1(t)e1 + y2(t)e2

since e1 and e2 are eigenvectors of A with eigenvalues 3 and 1, respectively. Thus we obtain the two equations

ẏ1(t) = 3y1(t)

ẏ2(t) = y2(t)
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which are easily solved to give y1(t) = y1(0)e3t, y2(t) = y2(0)et.What this means is that if our initial data is
equal to e1, so that y1(0) = 1, y2(0) = 0, then our solution will be

y1(t)e1 = e3te1,

while if our initial data is instead equal to e2, so that y1(0) = 0, y2(0) = 1, then our solution will be

y2(t)e1 = ete2.

In general, our solution will be a linear combination of these, depending on y1(0) and y2(0). To find y1(0)
and y2(0) in terms of x(0), we may proceed as follows. We have

x(0) · e1 = (y1(0)e1 + y2(0)e2) · e1
= y1(0)e1 · e1 + y2(0)e2 · e1 = y1(0),

since e1 · e1 = 1 and (crucially) e2 · e1 = 0. (We see that had we not normalised, this procedure would still
work; we would just have to divide x(0) · e1 by e1 · e1 to find y1(0).) In exactly the same way, we see that

x(0) · e2 = (y1(0)e1 + y2(0)e2) · e2
= y1(0)e1 · e2 + y2(0)e2 · e2 = y2(0).

Thus we may write the final solution for x as

x(t) = (x(0) · e1) e1e
3t + (x(0) · e2) e2e

t.

It is instructive to compare this to the general result (true for any vector x in R2), whose demonstration
we leave as an exercise:

(2) x = (x · e1) e1 + (x · e2) e2.

The general theory of systems of ordinary differential equations will not be needed in the rest of the
course. The point of the above is to give a concrete example of the method of breaking multidimensional
initial data into components which evolve in a simple fashion, and then writing the solution to the original
problem as the sum of these evolved parts. Thus we decomposed x(0) according to (2), evolved each piece
separately (this only required multiplying by e3t and et, respectively), and then summed the results.

DERIVATION of the heat equation. Pages 99–100 of the textbook give a nice derivation of the heat equation
which we followed quite closely in class. The derivation in the textbook is actually a bit more general since it
allowed for heat sources located within the body. (If our sphere really were a cow, for example, these could
represent heat due to metabolisation of food or muscle contractions.) Here we shall only use the so-called
homogeneous heat equation, meaning the heat equation without sources, which we write as (we want to use
k for something else in a moment)

∂u

∂t
= D∇2u.

EXAMPLES of solutions to the one-dimensional heat equation without sources1. In this case we seek a
function u(x, t) which satisfies the equation

(3)
∂u

∂t
= D

∂2u

∂x2
.

1The point of the first example is to motivate the introduction of separated solutions, while that of the
second is to motivate the idea that a general solution can be written as a sum of separated ones.
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We need to know something more than just this equation if we wish to determine u throughout all of space
and time. By analogy with the system of ordinary differential equations above, we try specifying initial
datum2 u(x, 0) = sin kx, for some constant3. Now at t = 0, the equation (3) will then become

(4) ∂tu(x, 0) = D∂2x (sin kx) = −k2Dsin kx = −k2Du(x, 0).

This by itself does not really tell us much. However, it leads us to guess that we might be able to find a
solution to the original heat equation by requiring (4) to hold for all t, not just t = 0. This gives the equation

∂tu(x, t) = −k2Du(x, t).

Now fix some x = x0, and let u denote u(x0, t), so that the equation becomes the ordinary differential
equation

du

dt
= −k2Du.

By the theory of first-order linear equations, the solution to this will be u = Ce−k2Dt, where C is some
constant which can be determined by evaluating both sides at t = 0:

C = Ce−k2D·0 = u(0) = u(x0, 0) = sin kx0.

Thus we obtain, for all x0, u(x0, t) = sin kx0e
−k2Dt, which gives the function

u(x, t) = sin kxe−k2Dt.

We must now check whether this is actually a solution to the heat equation. We have

∂u

∂t
= sin kx

(
−k2De−k2Dt

)
D
∂2u

∂x2
= D

(
−k2sin kx

)
e−k2Dt,

which are easily seen to be equal. Thus the function u(x, t) = sin kxe−k2Dt is a solution to the heat equation
satisfying u(x, 0) = sin kx, as desired. (Compare this to the solution to the system of ordinary differential
equations with initial datum x(0) = e1.)

Let us now consider the initial datum u = sin k1x+ sin k2x, k1 6= k2. Unfortunately the above approach
does not work in this case, since

∂2xu = −k1sin k1x− k2sin k2x

is not simply a multiple of u. In order to treat this case, we note that the heat equation is linear, by which
we mean that any linear combination of solutions is also a solution. To see this for the case of two solutions,
suppose that u1 and u2 are solutions of the heat equation (with the same constant D), and that a1 and a2
are constants. Then we see that

∂

∂t
(a1u1 + a2u2) = a1

∂u1
∂t

+ a2
∂u2
∂t

= a1
(
D∇2u1

)
+ a2

(
D∇2u2

)
= D∇2 (a1u1 + a2u2) ,

2The word ‘data’ is actually a Latin plural (so please never make the too-clever-by-half mistake of writing
datæ as though data were a Latin singular; the author encountered this once!). The singular is datum. One
could argue whether giving u(x, 0) is giving a singular or a plural quantity. We use the singular here because
we shall want to talk about multiple distinct data below.
3Throughout this course, when we say ‘constant’ we mean a number which does not depend on any of the
variables in the question; in other words, a quantity constant in both space and time.
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since a1 and a2, being constants, can be brought through the differentiation signs. Since our initial datum
is a sum of initial data both of which we know how to handle, this suggests that we do something similar to
what worked in the case of the system of ordinary differential equations above and work out the solution for
each of the initial data separately. More specifically, let u1 be the solution to the heat equation determined
above with u1(x, 0) = sin k1x, and u2 be that with u2(x, 0) = sin k2x, so that

u1(x, t) = sin k1xe
−k2

1Dt

u2(x, t) = sin k2xe
−k2

2Dt.

Since these are both solutions, their sum u1(x, t) + u2(x, t) will also be; moreover, at t = 0 it will agree with
the initial datum given above. Thus the solution to the heat equation with initial datum sin k1x+ sin k2x is

u(x, t) = sin k1xe
−k2

1Dt + sin k2xe
−k2

2Dt.

Note the similarity to the solution to the system of ordinary differential equations above.

COMMENTARY. It should be clear from the foregoing how to handle the case of an initial datum which is
a sum of any finite number of sine functions. A review of our method shows that it also works for cosine
functions; hence we now know how to find a solution to the heat equation with initial datum any finite
sum of sine and cosine functions. By itself this is still not much use. However, it turns out that almost
any function on a finite interval (and in particular, any continuous function on a closed interval) can be
expressed as a series – an infinite sum – of sine and cosine functions. Thus, if we can find a way of expressing
our initial datum as such a sum, we can apply the above method to determine the solution for all future
times. The reason why sine and cosine functions (and, as we shall see later, Legendre polynomials and
Bessel functions) are particularly useful is that they turn out to be orthogonal with respect to certain inner
products (generalisations of the dot product we are familiar with in R2 and R3 to spaces of functions).
Recalling our method for computing y1(0), y2(0) in the first example above, we see that this should allow
us to compute the coefficients in the expansion of our initial datum as a series in sine and cosine functions
using inner products. Thus we must first discuss what we mean by an inner product, and what kind of inner
product we can put on a space of functions.

INNER PRODUCTS. We are all familiar with the dot product in R3: if v = v1i+v2j+v3k, w = w1i+w2j+w3k,
then

v ·w = v1w1 + v2w2 + v3w3.

The dot product is useful for finding projections (this is basically how we used it in the first example above).
In particular, we have

v = (v · i)i + (v · j)j + (v · k)k.

It would be helpful to be able to extend this formula to spaces of functions. Now a vector has only a finite
number of components while a function has essentially infinitely many components (speaking very loosely);
thus it seems reasonable that the sum over components which worked to give us the dot product of two
vectors should become an integral when we work with functions. More specifically, consider the function
space

X = {f : [a, b]→ R|f is integrable and bounded};

on X we may define an inner product

(f, g) =

∫ b

a

f(x)g(x)dx.

It turns out that this inner product has many of the same properties as the dot product, and in particu-
lar can be used to separate out the different sine and cosine components of a function under appropriate
circumstances. We shall take this up on Tuesday.
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