APM 346, Homework 9. Due Monday, July 22, at 8.00 AM EDT. To be marked completed/not completed.

1. Using the eigenfunctions and eigenvalues for the Laplacian on the cylinder $C=\{(\rho, \phi, z) \mid \rho<1,0 \leq z \leq 1\}$ derived in class, solve the following problem on C :

$$
\nabla^{2} u=z\left\{\begin{array}{cc}
0, & \rho<\frac{1}{2} \\
\rho^{3} \cos 3 \phi, & \frac{1}{2}<\rho<1
\end{array},\left.\quad u\right|_{\partial C}=0\right.
$$

Let us denote the right-hand side of Poisson's equation above by f. Then expanding

$$
f=\left\{\begin{array}{cc}
0, & \rho<\frac{1}{2} \\
\rho^{3} \cos 3 \phi, & \frac{1}{2}<\rho<1
\end{array}=\sum_{n=1}^{\infty} \sum_{m=0}^{\infty} \sum_{i=1}^{\infty} J_{m}\left(\lambda_{m i} \rho\right) \sin n \pi z\left(a_{n m i} \cos m \phi+b_{n m i} \sin m \phi\right),\right.
$$

we see as usual that $b_{n m i}=0$ for all n, m, and i, while $a_{n m i}=0$ unless $m=3$, and in that case (using the standard normalisation integrals for $J_{3}\left(\lambda_{3 i} \rho\right)$ and $\sin n \pi z$ on $\left.[0,1]\right)$

$$
\begin{aligned}
a_{n 3 i} & =\frac{4}{J_{4}^{2}\left(\lambda_{3 i}\right)} \int_{\frac{1}{2}}^{1} \int_{0}^{1} \rho^{3} z J_{3}\left(\lambda_{3 i} \rho\right) \sin n \pi z d z \rho d \rho=\frac{4}{J_{4}^{2}\left(\lambda_{3 i}\right)} \int_{\frac{1}{2}}^{1} \rho^{4} J_{3}\left(\lambda_{3 i} \rho\right) d \rho \int_{0}^{1} z \sin n \pi z d z \\
& =\frac{4(-1)^{n+1}}{\lambda_{3 i} J_{4}^{2}\left(\lambda_{3 i}\right) n \pi}\left[J_{4}\left(\lambda_{3 i}\right)-\frac{1}{16} J_{4}\left(\frac{1}{2} \lambda_{3 i}\right)\right],
\end{aligned}
$$

whence

$$
u=\sum_{n=1}^{\infty} \sum_{i=1}^{\infty} \frac{4(-1)^{n}}{\lambda_{3 i} J_{4}^{2}\left(\lambda_{3 i}\right) n \pi\left(\lambda_{3 i}^{2}+n^{2} \pi^{2}\right)}\left(J_{4}\left(\lambda_{3 i}\right)-\frac{1}{16} J_{4}\left(\frac{1}{2} \lambda_{3 i}\right)\right) J_{3}\left(\lambda_{3 i} \rho\right) \sin n \pi z \cos 3 \phi
$$

2. Using the eigenfunctions and eigenvalues for the Laplacian on the unit ball $B=\{(r, \theta, \phi) \mid r<1\}$ derived in class, solve the following problem on B :

$$
\nabla^{2} u=3 \sin ^{2} \theta \cos 2 \phi\left\{\begin{array}{rc}
r^{2}, & r<\frac{1}{2} \\
0, & \frac{1}{2}<r<1
\end{array},\left.\quad u\right|_{\partial B}=0\right.
$$

Again, we expand the right-hand side:

$$
\left\{\begin{array}{cc}
r^{2}, & r<\frac{1}{2} \\
0, & \frac{1}{2}<r<1
\end{array}=\sum_{\ell=0}^{\infty} \sum_{m=0}^{\ell} \sum_{i=1}^{\infty} j_{\ell}\left(\kappa_{\ell i} r\right) P_{\ell m}(\cos \theta)\left(a_{\ell m i} \cos m \phi+b_{\ell m i} \sin m \phi\right),\right.
$$

whence as before we have $b_{\ell m i}=0$ for all ℓ, m, and i, while $a_{\ell m i}=0$ unless $m=2$. Now $P_{22}(\cos \theta)=3 \sin ^{2} \theta$, so since $\left\{P_{\ell 2}(\cos \theta)\right\}_{\ell=2}^{\infty}$ is a complete orthogonal set on $[0, \pi]$, we must also have $a_{\ell 2 i}=0$ unless $\ell=2$. Finally, denoting the above right-hand side by f,

$$
\begin{aligned}
a_{22 i} & =\frac{\left(f, j_{2}\left(\kappa_{2 i} r\right) P_{22}(\cos \theta) \cos 2 \phi\right)}{\left(j_{2}\left(\kappa_{2 i} r\right) P_{22}(\cos \theta) \cos 2 \phi, j_{2}\left(\kappa_{2 i} r\right) P_{22}(\cos \theta) \cos 2 \phi\right)} \\
& =\frac{2}{j_{3}^{2}\left(\kappa_{2 i}\right)} \int_{0}^{\frac{1}{2}} r^{4} j_{2}\left(\kappa_{2 i} r\right) d r=\frac{2}{j_{3}^{2}\left(\kappa_{2 i}\right)} \int_{0}^{\frac{1}{2}} r^{\frac{7}{2}} \sqrt{\frac{\pi}{2}} J_{\frac{5}{2}}\left(\kappa_{2 i} r\right) d r \\
& =\frac{2}{\kappa_{2 i} j_{3}^{2}\left(\kappa_{2 i}\right)} \sqrt{\frac{\pi}{2}}\left(\frac{1}{\sqrt{128}} J_{\frac{7}{2}}\left(\frac{1}{2} \kappa_{2 i}\right)\right)=\frac{1}{8 \sqrt{\kappa_{2 i}} j_{3}^{2}\left(\kappa_{2 i}\right)} j_{3}\left(\frac{1}{2} \kappa_{2 i}\right),
\end{aligned}
$$

so (since the eigenvalue corresponding to $j_{m}\left(\kappa_{m i} r\right) P_{\ell m}(\cos \theta) \cos m \phi$ is simply $\left.-\kappa_{m i}^{2}\right)$

$$
u=\sum_{i=1}^{\infty}-\frac{1}{8 j_{3}^{2}\left(\kappa_{2 i}\right) \kappa_{2 i}^{\frac{5}{2}}} j_{3}\left(\frac{1}{2} \kappa_{2 i}\right) j_{2}\left(\kappa_{2 i} \rho\right) P_{22}(\cos \theta) \cos 2 \phi .
$$

APM 346 (Summer 2019), Homework 9.
3. Solve the following problem on the unit cube Q :

$$
\nabla^{2} u=0,\left.\quad u\right|_{x=0}=\left.u\right|_{x=1}=\left.u\right|_{y=0}=\left.u\right|_{y=1}=0,\left.\quad u\right|_{z=0}=\sin \pi x \sin 2 \pi y,\left.\quad u\right|_{z=1}=0
$$

One way of doing this (which is not really detailed enough to count as a full solution on a test!) is to note that the solution will be a linear combination of $\sin \pi x \sin 2 \pi y \cosh \pi \sqrt{5} z$ and $\sin \pi x \sin 2 \pi y \sinh \pi \sqrt{5} z$, after which a little thought shows that the solution is exactly

$$
\sin \pi x \sin 2 \pi y(\cosh \pi \sqrt{5} z-\operatorname{coth} \pi \sqrt{5} \sinh \pi \sqrt{5} z)
$$

More systematically, we note that the solution can be written in the form

$$
u=\sum_{\ell, m=1}^{\infty} \sin \ell \pi x \sin m \pi y\left(a_{\ell m} \cosh \pi \sqrt{\ell^{2}+m^{2}} z+b_{\ell m} \sinh \pi \sqrt{\ell^{2}+m^{2}} z\right)
$$

then the boundary conditions give that for $(\ell, m) \neq(1,2)$

$$
a_{\ell m}=0, \quad a_{\ell m} \cosh \pi \sqrt{\ell^{2}+m^{2}}+b_{\ell m} \sinh \pi \sqrt{\ell^{2}+m^{2}}=0,
$$

whence it is easily seen that $a_{\ell m}=b_{\ell m}=0$ for all $(\ell, m) \neq(1,2)$; further,

$$
a_{12}=1, \quad a_{12} \cosh \pi \sqrt{5}+b_{12} \sinh \pi \sqrt{5}=0
$$

so $b_{12}=-\operatorname{coth} \pi \sqrt{5}$ and we obtain $u=\sin \pi x \sin 2 \pi y(\cosh \pi \sqrt{5} z-\operatorname{coth} \pi \sqrt{5} \sinh \pi \sqrt{5} z)$, as claimed.
4. Recall the function χ defined in problem 1 of assignment 8:

$$
\chi(x)= \begin{cases}0, & 0 \leq x<\frac{1}{2} \\ 1, & \frac{1}{2}<x \leq 1\end{cases}
$$

Let u_{0} denote the solution to problem 3. Solve the following problem on the unit cube Q :

$$
\frac{\partial u}{\partial t}=\nabla^{2} u,\left.\quad u\right|_{\partial Q}=\left.u_{0}\right|_{\partial Q},\left.\quad u\right|_{t=0}=\chi(x) \chi(y) \chi(z) .
$$

[Optional: compute the coefficients in the series for u for two choices of ℓ, m, and n, one small (say $\ell=m=n=1$) and another large (say $\ell, m, n>10$). Compare the ratio of these coefficients for $t=0$ and $t=10$.]

Does the function u have a limit as $t \rightarrow+\infty$?
By what we did in class, this reduces to solving the two problems

$$
\begin{gathered}
\nabla^{2} U_{1}=0,\left.\quad U_{1}\right|_{\partial Q}=\left.u_{0}\right|_{\partial Q} \\
\frac{\partial u_{2}}{\partial t}=\nabla^{2} u_{2},\left.\quad u_{2}\right|_{\partial Q}=0,\left.\quad u_{2}\right|_{t=0}=\chi(x) \chi(y) \chi(z)-U_{1}
\end{gathered}
$$

now since u_{0} satisfies $\nabla^{2} u_{0}=0$, the first problem gives clearly $U_{1}=u_{0}$, whence we need only to satisfy the problem

$$
\frac{\partial u_{2}}{\partial t}=\nabla^{2} u_{2},\left.\quad u_{2}\right|_{\partial Q}=0,\left.\quad u_{2}\right|_{t=0}=\chi(x) \chi(y) \chi(z)-u_{0} .
$$

From problem 1 of assignment 8, we have the expansion

$$
\chi(x) \chi(y) \chi(z)=\sum_{\ell, m, n=1}^{\infty} \frac{8}{\pi^{3} \ell m n}\left((-1)^{\ell+1}+\cos \frac{1}{2} \ell \pi\right)\left((-1)^{m+1}+\cos \frac{1}{2} m \pi\right)\left((-1)^{n+1}+\cos \frac{1}{2} n \pi\right)
$$

$\cdot \sin \ell \pi x \sin m \pi y \sin n \pi z$.

Now it is necessary to expand u_{0} in the basis $\{\sin \ell \pi x \sin m \pi y \sin n \pi z\}$; the only tricky part of this is the expansion in the z direction. For this we note the following integral:

$$
\begin{aligned}
\int_{0}^{1} e^{a z} \sin n \pi z d z & =-\left.\frac{\cos n \pi z}{n \pi} e^{a z}\right|_{0} ^{1}+\frac{a}{n \pi} \int_{0}^{1} \cos n \pi z e^{a z} d z \\
& =\frac{1}{n \pi}\left[1-(-1)^{n} e^{a}\right]+\frac{a}{n \pi}\left[\left.\frac{\sin n \pi z}{n \pi} e^{a z}\right|_{0} ^{1}-\frac{a}{n \pi} \int_{0}^{1} \sin n \pi z e^{a z} d z\right]
\end{aligned}
$$

whence

$$
\int_{0}^{1} e^{a z} \sin n \pi z d z=\frac{\frac{1}{n \pi}\left[1-(-1)^{n} e^{a}\right]}{1+\frac{a^{2}}{n^{2} \pi^{2}}}=\frac{n \pi\left[1-(-1)^{n} e^{a}\right]}{n^{2} \pi^{2}+a^{2}}
$$

From this we see easily that $\left(\right.$ since $\cosh x=\frac{1}{2}\left(e^{x}+e^{-x}\right)$ and $\left.\sinh x=\frac{1}{2}\left(e^{x}-e^{-x}\right)\right)$

$$
\begin{gathered}
\int_{0}^{1} \cosh \pi \sqrt{5} z \sin n \pi z d z=\frac{n \pi\left[1-(-1)^{n} \cosh \pi \sqrt{5}\right]}{5 \pi^{2}+n^{2} \pi^{2}}, \\
\int_{0}^{1} \sinh \pi \sqrt{5} z \sin n \pi z d z=-\frac{n \pi(-1)^{n} \sinh \pi \sqrt{5}}{5 \pi^{2}+n^{2} \pi^{2}},
\end{gathered}
$$

and

$$
\begin{aligned}
\int_{0}^{1}(\cosh \pi \sqrt{5} z-\operatorname{coth} \pi \sqrt{5} \sinh & \pi \sqrt{5} z) \sin n \pi z d z \\
& =\frac{n \pi}{5 \pi^{2}+n^{2} \pi^{2}}\left(\left[1-(-1)^{n} \cosh \pi \sqrt{5}\right]+\operatorname{coth} \pi \sqrt{5}(-1)^{n} \sinh \pi \sqrt{5}\right) \\
& =\frac{n \pi}{5 \pi^{2}+n^{2} \pi^{2}}
\end{aligned}
$$

From this we see that

$$
u_{0}=\frac{2}{\pi} \sin \pi x \sin 2 \pi y \sum_{n=1}^{\infty} \frac{n}{5+n^{2}} \sin n \pi z
$$

so that

$$
\begin{array}{r}
\chi(x) \chi(y) \chi(z)-u_{0}=\sum_{\substack{\ell, m, n=1 \\
(\ell, m) \neq(1,2)}}^{\infty} \frac{8}{\pi^{3} \ell m n}\left((-1)^{\ell+1}+\cos \frac{1}{2} \ell \pi\right)\left((-1)^{m+1}+\cos \frac{1}{2} m \pi\right)\left((-1)^{n+1}+\cos \frac{1}{2} n \pi\right) \\
\cdot \sin \ell \pi x \sin m \pi y \sin n \pi z \\
+\sin \pi x \sin 2 \pi y \sum_{n=1}^{\infty}\left[\frac{8}{\pi^{3} n}\left((-1)^{n+1}+\cos \frac{1}{2} n \pi\right)-\frac{2 n}{\pi\left(5+n^{2}\right)}\right] \sin n \pi z
\end{array}
$$

and thus, by our usual method,

$$
\begin{array}{r}
u_{2}=\sum_{\substack{\ell, m, n=1 \\
(\ell, m) \neq(1,2)}}^{\infty} \frac{8}{\pi^{3} \ell m n}\left((-1)^{\ell+1}+\cos \frac{1}{2} \ell \pi\right)\left((-1)^{m+1}+\cos \frac{1}{2} m \pi\right)\left((-1)^{n+1}+\cos \frac{1}{2} n \pi\right) \\
\quad \cdot \sin \ell \pi x \sin m \pi y \sin n \pi z e^{-\pi^{2}\left(\ell^{2}+m^{2}+n^{2}\right) t} \\
\quad+\sin \pi x \sin 2 \pi y \sum_{n=1}^{\infty}\left[\frac{8}{\pi^{3} n}\left((-1)^{n+1}+\cos \frac{1}{2} n \pi\right)-\frac{2 n}{\pi\left(5+n^{2}\right)}\right] \sin n \pi z e^{-\pi^{2}\left(5+n^{2}\right) t}
\end{array}
$$

APM 346 (Summer 2019), Homework 9.

and the solution to our original problem is

$$
\begin{aligned}
u=\sin \pi x \sin 2 \pi y & (\cosh \pi \sqrt{5} z-\operatorname{coth} \pi \sqrt{5} \sinh \pi \sqrt{5} z) \\
& +\sum_{\substack{\ell, m, n=1 \\
(\ell, m) \neq(1,2)}}^{\infty} \frac{8}{\pi^{3} \ell m n}\left((-1)^{\ell+1}+\cos \frac{1}{2} \ell \pi\right)\left((-1)^{m+1}+\cos \frac{1}{2} m \pi\right)\left((-1)^{n+1}+\cos \frac{1}{2} n \pi\right) \\
& \quad \cdot \sin \ell \pi x \sin m \pi y \sin n \pi z e^{-\pi^{2}\left(\ell^{2}+m^{2}+n^{2}\right) t} \\
& \sin \pi x \sin 2 \pi y \sum_{n=1}^{\infty}\left[\frac{8}{\pi^{3} n}\left((-1)^{n+1}+\cos \frac{1}{2} n \pi\right)-\frac{2 n}{\pi\left(5+n^{2}\right)}\right] \sin n \pi z e^{-\pi^{2}\left(5+n^{2}\right) t} .
\end{aligned}
$$

Clearly, $u \rightarrow \sin \pi x \sin 2 \pi y(\cosh \pi \sqrt{5} z-\operatorname{coth} \pi \sqrt{5} \sinh \pi \sqrt{5} z)$ as $t \rightarrow+\infty$. We leave the optional part of this exercise to the reader.

