APM 346 (Summer 2019), Homework 9.
APM 346, Homework 9. Due Monday, July 22, at 8.00 AM EDT. To be marked completed/not completed.

1. Using the eigenfunctions and eigenvalues for the Laplacian on the cylinder C = {(p, ¢, 2)|p < 1,0 < z < 1}
derived in class, solve the following problem on C":
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we see as usual that by,,; = 0 for all n, m, and ¢, while a,;,; = 0 unless m = 3, and in that case (using the
standard normalisation integrals for J3 (Ag;p) and sinnwz on [0, 1])
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2. Using the eigenfunctions and eigenvalues for the Laplacian on the unit ball B = {(r, 0, ¢)|r < 1} derived
in class, solve the following problem on B:
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Again, we expand the right-hand side:
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whence as before we have by,,,; = 0 for all £, m, and i, while az,,; = 0 unless m = 2. Now Pay (cos #) = 3sin 20,
so since { Py (cosd)}2°, is a complete orthogonal set on [0, 7], we must also have agy; = 0 unless £ = 2.
Finally, denoting the above right-hand side by f,
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APM 346 (Summer 2019), Homework 9.
3. Solve the following problem on the unit cube Q:
VZu =0, Ulg=0 = U|p=1 = Uly=0 = uly=1 =0, u|.—o =sinmasin27ry, ul.— =0.
One way of doing this (which is not really detailed enough to count as a full solution on a test!) is to

note that the solution will be a linear combination of sin masin 2wycosh 75z and sin rzsin 2mysinh ﬂ\/gz,
after which a little thought shows that the solution is exactly

sin wsin 27y (cosh 7v/5z — coth mv/5sinh 7r\/52> .

More systematically, we note that the solution can be written in the form

o0
U= Z sin fzsin mmy (agmcosh TV 2 +m2z + by,sinh my/ €2 + m22) ;
£,m=1

then the boundary conditions give that for (¢,m) # (1, 2)
agm =0, agmcoshﬂ'\/éQ—&—77712 + bgmsinhwm =0,
whence it is easily seen that ag,, = bey, = 0 for all (¢,m) # (1,2); further,
a2 =1, ajscosh V5 + b1osinh Vb = 0,

$0 bis = — coth mv/5 and we obtain u = sin wzsin 21y (cosh 752z — coth mv/bsinh T\/SZ), as claimed.
4. Recall the function x defined in problem 1 of assignment 8:
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Let ug denote the solution to problem 3. Solve the following problem on the unit cube Q:
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U~ VPu, ulog = wolaq, =0 = X(x)x()X(:).
[Optional: compute the coefficients in the series for u for two choices of ¢, m, and n, one small (say
¢ =m =n =1) and another large (say ¢, m,n > 10). Compare the ratio of these coeflicients for ¢ = 0 and
t=10]

Does the function v have a limit as ¢t — +o00?

By what we did in class, this reduces to solving the two problems

VU, =0, Uilag = uolag,

T = Ve, u2lag =0, wsfi=o = x(@)x(¥)x() = Us;
now since uq satisfies V2uy = 0, the first problem gives clearly U; = ug, whence we need only to satisfy the
problem

=V2uy, uslag =0, usli—o= x(2)x(¥)x(2) — uo.

ot

From problem 1 of assignment 8, we have the expansion
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Now it is necessary to expand wg in the basis {sin{rzsin mmysinnmz}; the only tricky part of this is the
expansion in the z direction. For this we note the following integral:
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From this we see easily that (since coshz = 1 (e + e7%) and sinhz = 1 (e — 7))
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From this we see that
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and thus, by our usual method,
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and the solution to our original problem is

u = sin wxsin 27y (cosh 75z — coth v/5sinh 7'('\/52’)
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Clearly, u — sin masin 2y (cosh mv/5z — coth m/5sinh wv/5z) as t — +00. We leave the optional part of this

exercise to the reader.



