APM 346, Homework 9. Due Monday, July 22, at 8.00 AM EDT. To be marked completed/not completed.

1. Using the eigenfunctions and eigenvalues for the Laplacian on the cylinder $C=\{(\rho, \phi, z) \mid \rho<1,0 \leq z \leq 1\}$ derived in class, solve the following problem on C :

$$
\nabla^{2} u=z\left\{\begin{array}{cc}
0, & \rho<\frac{1}{2} \\
\rho^{3} \cos 3 \phi, & \frac{1}{2}<\rho<1
\end{array},\left.\quad u\right|_{\partial C}=0\right.
$$

2. Using the eigenfunctions and eigenvalues for the Laplacian on the unit ball $B=\{(r, \theta, \phi) \mid r<1\}$ derived in class, solve the following problem on B :

$$
\nabla^{2} u=3 \sin ^{2} \theta \cos 2 \phi\left\{\begin{array}{cc}
r^{2}, & r<\frac{1}{2} \\
0, & \frac{1}{2}<r<1
\end{array},\left.\quad u\right|_{\partial B}=0\right.
$$

3. Solve the following problem on the unit cube Q :

$$
\nabla^{2} u=0,\left.\quad u\right|_{x=0}=\left.u\right|_{x=1}=\left.u\right|_{y=0}=\left.u\right|_{y=1}=0,\left.\quad u\right|_{z=0}=\sin \pi x \sin 2 \pi y,\left.\quad u\right|_{z=1}=0
$$

4. Recall the function χ defined in problem 1 of assignment 8:

$$
\chi(x)= \begin{cases}0, & 0 \leq x<\frac{1}{2} \\ 1, & \frac{1}{2}<x \leq 1\end{cases}
$$

Let u_{0} denote the solution to problem 3. Solve the following problem on the unit cube Q :

$$
\frac{\partial u}{\partial t}=\nabla^{2} u,\left.\quad u\right|_{\partial Q}=\left.u_{0}\right|_{\partial Q},\left.\quad u\right|_{t=0}=\chi(x) \chi(y) \chi(z)
$$

[Optional: compute the coefficients in the series for u for two choices of ℓ, m, and n, one small (say $\ell=m=n=1$) and another large (say $\ell, m, n>10$). Compare the ratio of these coefficients for $t=0$ and $t=10$.]

Does the function u have a limit as $t \rightarrow+\infty$?

