APM 346, Homework 8. Due Monday, July 15, at 6.00 AM EDT. To be marked completed/not completed.

Using our derivation of the eigenfunctions and eigenvalues of the Laplacian in class, solve the following problems.

1. Write out a series expansion for the solution to the following problem on $Q=\{(x, y, z) \mid 0 \leq x, y, z \leq 1\}$:

$$
\nabla^{2} u=\chi(x) \chi(y) \chi(z),\left.\quad u\right|_{\partial Q}=0
$$

where ∂Q is the boundary of the cube Q and

$$
\chi(x)= \begin{cases}0, & 0 \leq x<\frac{1}{2} \\ 1, & \frac{1}{2}<x \leq 1\end{cases}
$$

We note the following integral:

$$
\begin{aligned}
\int_{0}^{1} \chi(x) \sin \ell \pi x d x & =\int_{\frac{1}{2}}^{1} \sin \ell \pi x d x=-\left.\frac{\cos \ell \pi x}{\ell \pi}\right|_{\frac{1}{2}} ^{1} \\
& =\frac{(-1)^{\ell+1}}{\ell \pi}+\frac{\cos \frac{1}{2} \ell \pi}{\ell \pi} \\
& =\left\{\begin{array}{cc}
\frac{1}{\ell \pi}, & \ell \text { odd } \\
\frac{1}{\ell \pi}\left((-1)^{\frac{\ell}{2}}-1\right), & \ell \text { even }
\end{array}\right.
\end{aligned}
$$

There is no convenient way to simplify a triple sum over a product of three versions of this last quantity, so we shall use the second-to-last line instead in the formulæ below. Thus we write

$$
\begin{aligned}
\int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \chi(x) \chi & \chi(y) \chi(z) \sin \ell \pi x \sin m \pi x \sin n \pi x d x d y d z \\
& =\frac{1}{\pi^{3} \ell m n}\left((-1)^{\ell+1}+\cos \frac{1}{2} \ell \pi\right)\left((-1)^{m+1}+\cos \frac{1}{2} m \pi\right)\left((-1)^{n+1}+\cos \frac{1}{2} n \pi\right)
\end{aligned}
$$

whence we may write

$$
\chi(x) \chi(y) \chi(z)=\sum_{\ell, m, n=1}^{\infty} \frac{8}{\pi^{3} \ell m n}\left((-1)^{\ell+1}+\cos \frac{1}{2} \ell \pi\right)\left((-1)^{m+1}+\cos \frac{1}{2} m \pi\right)\left((-1)^{n+1}+\cos \frac{1}{2} n \pi\right)
$$

$$
\cdot \sin \ell \pi x \sin m \pi y \sin n \pi z
$$

From our general technique, if we denote the coefficients in the above series by $\chi_{\ell} \chi_{m} \chi_{n}$, then the coefficients $u_{\ell m n}$ in the series expansion for u will be given by

$$
u_{\ell m n}=-\frac{1}{\pi^{2}\left(\ell^{2}+m^{2}+n^{2}\right)} \chi_{\ell} \chi_{m} \chi_{n}
$$

whence the solution for u will be

$$
\begin{aligned}
& u=\sum_{\ell, m, n=1}^{\infty}-\frac{8}{\pi^{5} \ell m n\left(\ell^{2}+m^{2}+n^{2}\right)} {\left[\left((-1)^{\ell+1}+\cos \frac{1}{2} \ell \pi\right)\left((-1)^{m+1}+\cos \frac{1}{2} m \pi\right)\left((-1)^{n+1}+\cos \frac{1}{2} n \pi\right)\right.} \\
&\cdot \sin \ell \pi x \sin m \pi y \sin n \pi z] .
\end{aligned}
$$

APM 346 (Summer 2019), Homework 8.
2. Write out a series expansion for the solution to the following problem on $Q \times(0,+\infty)$, where Q is as in problem 1:

$$
\frac{\partial u}{\partial t}=\nabla^{2} u,\left.\quad u\right|_{\partial Q}=0,\left.\quad u\right|_{t=0}=\sin \pi x \sin \pi y
$$

where we denote an arbitrary point in $Q \times(0,+\infty)$ by (x, y, z, t).
We proceed similarly to question 1 and first calculate the expansion coefficients for the nonhomogeneous boundary term $\sin \pi x \sin \pi y$. Since

$$
\int_{0}^{1} \sin \ell \pi x \sin \pi x d x= \begin{cases}\frac{1}{2}, & \ell=1 \\ 0, & \ell \neq 1\end{cases}
$$

and

$$
\int_{0}^{1} \sin n \pi z d z=-\left.\frac{1}{n \pi} \cos n \pi z\right|_{0} ^{1}=\frac{1}{n \pi}\left(1-(-1)^{n}\right),
$$

we see that

$$
\int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \sin \pi x \sin \pi y \sin \ell \pi x \sin m \pi y \sin n \pi z d x d y d z=\left\{\begin{array}{cc}
\frac{1}{4 n \pi}\left(1-(-1)^{n}\right), & \ell=m=1 \\
0, & \text { otherwise }
\end{array}\right.
$$

whence

$$
\sin \pi x \sin \pi y=\sum_{k=0}^{\infty} \frac{4}{(2 k+1) \pi} \sin \pi x \sin \pi y \sin (2 k+1) \pi z
$$

We note that the eigenvalue corresponding to the k th term in the above sum is $-\pi^{2}\left(2+(2 k+1)^{2}\right)$ (since the k th term corresponds to the (ℓ, m, n) term in the original sum with $\ell=m=1$ and $n=2 k+1$). Thus the solution to our original problem is simply

$$
u=\sum_{k=0}^{\infty} \frac{4}{(2 k+1) \pi} \sin \pi x \sin \pi y \sin (2 k+1) \pi z e^{-\pi^{2}\left(2+(2 k+1)^{2}\right) t} .
$$

