APM 346 (Summer 2019), Homework 8.

APM 346, Homework 8. Due Monday, July 15, at 6.00 AM EDT. To be marked completed/not completed.

Using our derivation of the eigenfunctions and eigenvalues of the Laplacian in class, solve the following
problems.

1. Write out a series expansion for the solution to the following problem on @ = {(z,y,2)|0 < z,y,z < 1}:

V2u = x(2)x(y)x(2), ulag =0,

where 0Q) is the boundary of the cube @ and

_Jo, o0<z<i
M@—{L ler<l

We note the following integral:
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There is no convenient way to simplify a triple sum over a product of three versions of this last quantity, so
we shall use the second-to-last line instead in the formulae below. Thus we write
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From our general technique, if we denote the coefficients in the above series by x¢Xm Xn, then the coefficients
Upmn N the series expansion for u will be given by
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whence the solution for u will be
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2. Write out a series expansion for the solution to the following problem on @ x (0,400), where @ is as in

problem 1:

ou . .
— = V?, ulog =0, uli=o = sinmasin ny,

ot

where we denote an arbitrary point in @ x (0, +00) by (z,v, 2, t).
We proceed similarly to question 1 and first calculate the expansion coefficients for the nonhomogeneous
boundary term sin wzsin y. Since
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we see that

1,1 pl 11— (=1)" =m =
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otherwise ’
whence
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We note that the eigenvalue corresponding to the kth term in the above sum is —7%(2 + (2k + 1)?) (since
the kth term corresponds to the (¢,m,n) term in the original sum with £ =m =1 and n = 2k 4+ 1). Thus
the solution to our original problem is simply

— 4
u= ;:: msin masin wysin (2k + 1)er_”2(2+(2k+1)2)t.
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