APM 346, Homework 8. Due Monday, July 15, at 6.00 AM EDT. To be marked completed/not completed.

Using our derivation of the eigenfunctions and eigenvalues of the Laplacian in class, solve the following problems.

1. Write out a series expansion for the solution to the following problem on $Q=\{(x, y, z) \mid 0 \leq x, y, z \leq 1\}$:

$$
\nabla^{2} u=\chi(x) \chi(y) \chi(z),\left.\quad u\right|_{\partial Q}=0
$$

where ∂Q is the boundary of the cube Q and

$$
\chi(x)= \begin{cases}0, & 0 \leq x<\frac{1}{2} \\ 1, & \frac{1}{2}<x \leq 1\end{cases}
$$

2. Write out a series expansion for the solution to the following problem on $Q \times(0,+\infty)$, where Q is as in problem 1:

$$
\frac{\partial u}{\partial t}=\nabla^{2} u,\left.\quad u\right|_{\partial Q}=0,\left.\quad u\right|_{t=0}=\sin \pi x \sin \pi y
$$

where we denote an arbitrary point in $Q \times(0,+\infty)$ by (x, y, z, t).

