APM 346, Homework 7. Due Monday, July 8, at 6.00 AM EDT. To be marked completed/not completed.

1. Solve on $\{(\rho, \phi, z) \mid \rho<2,0 \leq z \leq 3\}$:

$$
\nabla^{2} u=0,\left.u\right|_{\rho=2}=0,\left.u\right|_{z=0}=\rho \cos \phi,\left.u\right|_{z=3}=\rho \sin \phi
$$

We have the general series expansion (as introduced in class on Thursday; this form for the expansion turns out to be much more convenient for this particular problem than the one we have been using)

$$
\begin{aligned}
u=\sum_{m=0}^{\infty} \sum_{i=1}^{\infty} J_{m}\left(\frac{1}{2} \lambda_{m i} \rho\right)\left(\alpha_{m i} \cos m \phi \cosh \frac{1}{2} \lambda_{m i} z+\beta_{m i} \cos m \phi \sinh \frac{1}{2} \lambda_{m i} z\right.
\end{aligned} \quad \begin{aligned}
& \left.\quad+\gamma_{m i} \sin m \phi \cosh \frac{1}{2} \lambda_{m i} z+\delta_{m i} \sin m \phi \sinh \frac{1}{2} \lambda_{m i} z\right)
\end{aligned}
$$

where as usual $\lambda_{m i}$ denotes the i th positive zero of J_{m}. At $z=0$, this gives

$$
\sum_{m=0}^{\infty} \sum_{i=1}^{\infty} J_{m}\left(\frac{1}{2} \lambda_{m i} \rho\right)\left(\alpha_{m i} \cos m \phi+\gamma_{m i} \sin m \phi\right)=\rho \cos \phi
$$

whence we see that $\gamma_{m i}=0$ for all m, i, while $\alpha_{m i}=0$ unless $m=1$, and in this case

$$
\sum_{i=1}^{\infty} \alpha_{1 i} J_{1}\left(\frac{1}{2} \lambda_{1 i} \rho\right)=\rho
$$

whence

$$
\begin{aligned}
\alpha_{1 i} & =\frac{2}{2^{2} J_{2}^{2}\left(\lambda_{1 i}\right)} \int_{0}^{2} \rho^{2} J_{1}\left(\frac{1}{2} \lambda_{1 i} \rho\right) d \rho=\frac{1}{2 J_{2}^{2}\left(\lambda_{1 i}\right)}\left(\frac{2}{\lambda_{1 i}}\right)^{3} \int_{0}^{\lambda_{1 i}} x^{2} J_{1}(x) d x \\
& =\frac{4}{\lambda_{1 i}^{3} J_{2}^{2}\left(\lambda_{1 i}\right)} \lambda_{1 i}^{2} J_{2}\left(\lambda_{1 i}\right)=\frac{4}{\lambda_{1 i} J_{2}\left(\lambda_{1 i}\right)}
\end{aligned}
$$

At $z=3$ we have

$$
\sum_{m=0}^{\infty} \sum_{i=1}^{\infty} J_{m}\left(\frac{1}{2} \lambda_{m i} \rho\right)\left(\alpha_{m i} \cos m \phi \cosh \frac{3}{2} \lambda_{m i}+\beta_{m i} \cos m \phi \sinh \frac{3}{2} \lambda_{m i}+\delta_{m i} \sin m \phi \sinh \frac{3}{2} \lambda_{m i}\right)=\rho^{2} \sin \phi
$$

whence we see that $\alpha_{m i} \cosh \frac{3}{2} \lambda_{m i}+\beta_{m i} \sinh \frac{3}{2} \lambda_{m i}=0$ for all m, i, which gives $\beta_{m i}=0$ for $m \neq 1$ and $\beta_{1 i}=-\operatorname{coth} \frac{3}{2} \lambda_{1 i} \frac{4}{\lambda_{1 i} J_{2}^{2}\left(\lambda_{1 i}\right)}$; also $\delta_{m i}=0$ for $m \neq 1$, while

$$
\sum_{i=1}^{\infty} \delta_{1 i} \sinh \frac{3}{2} \lambda_{1 i} J_{1}\left(\frac{1}{2} \lambda_{1 i} \rho\right)=\rho
$$

whence we see from the above calculation for $\alpha_{1 i}$ that

$$
\delta_{1 i}=\frac{4}{\lambda_{1 i} J_{2}\left(\lambda_{1 i}\right) \sinh \frac{3}{2} \lambda_{1 i}}
$$

Thus finally

$$
u=\sum_{i=1}^{\infty} J_{1}\left(\frac{1}{2} \lambda_{1 i} \rho\right)\left[\left(\cosh \frac{1}{2} \lambda_{1 i} z-\operatorname{coth} \frac{3}{2} \lambda_{1 i} \sinh \frac{1}{2} \lambda_{1 i} z\right) \cos \phi+\frac{\sinh \frac{1}{2} \lambda_{1 i} z}{\sinh \frac{3}{2} \lambda_{1 i}} \sin \phi\right] \frac{4}{\lambda_{1 i} J_{2}\left(\lambda_{1 i}\right)} .
$$

APM 346 (Summer 2019), Homework 7 solutions.

[It is worth noting how the quantity in parentheses interpolates between $\cos \phi$ at $z=0$ and $\sin \phi$ at $z=3$: the coefficients of $\cos \phi$ and $\sin \phi$ are exactly those linear combinations of $\cosh \frac{1}{2} \lambda_{1 i} z$ and $\sinh \frac{1}{2} \lambda_{1 i} z$ which are 1 at $z=0$ and $z=3$ and 0 at $z=3$ and $z=0$, respectively. In both cases, the remaining coefficient is exactly that needed for the ρ part to come out to ρ.]
2. Solve on $\{(\rho, \phi, z) \mid \rho<1,0 \leq z \leq 1\}$:

$$
\nabla^{2} u=0,\left.u\right|_{z=0}=\left.u\right|_{z=1}=0,\left.\quad u\right|_{\rho=1}=\left\{\begin{array}{cc}
-\phi, & 0<\phi<\pi \\
\phi, & \pi<\phi<2 \pi
\end{array} .\right.
$$

In this case we have the general series expansion

$$
u=\sum_{m=0}^{\infty} \sum_{n=1}^{\infty} I_{m}(n \pi \rho)\left(a_{m n} \cos m \phi+b_{m n} \sin m \rho\right) \sin n \pi z .
$$

Thus

$$
\begin{aligned}
a_{0 n} I_{0}(n \pi) & =\frac{1}{\pi} \int_{0}^{1} \sin n \pi z\left[\int_{0}^{\pi}-\phi d \phi+\int_{\pi}^{2 \pi} \phi d \phi\right] d z=\frac{1}{\pi}\left(-\left.\frac{1}{n \pi} \cos n \pi z\right|_{0} ^{1}\right)\left(-\frac{p i^{2}}{2}+\frac{1}{2}\left(4 \pi^{2}-\pi^{2}\right)\right) \\
& =\frac{1}{n}\left(1-(-1)^{n}\right)
\end{aligned}
$$

while $b_{0 i}=0$ by definition and for $m>0$

$$
\begin{aligned}
a_{m n} I_{m}(n \pi) & =\frac{2}{\pi} \int_{0}^{1}\left[\int_{0}^{\pi}-\phi \cos m \phi \sin n \pi z d \phi+\int_{\pi}^{2 \pi} \phi \cos m \phi \sin n \pi z d \phi\right] d z \\
& =\frac{2}{\pi} \int_{0}^{1} \sin n \pi z\left[-\frac{\phi}{m} \sin m \phi-\left.\frac{1}{m^{2}} \cos m \phi\right|_{0} ^{\pi}+\frac{\phi}{m} \sin m \phi+\left.\frac{1}{m^{2}} \cos m \phi\right|_{\pi} ^{2 \pi}\right] d z \\
& =\frac{2}{\pi} \int_{0}^{1} \sin n \pi z\left[\frac{1}{m^{2}}\left(1-(-1)^{m}\right)+\frac{1}{m^{2}}\left(1-(-1)^{m}\right)\right] d z=\frac{4}{n \pi^{2} m^{2}}\left(1-(-1)^{m}\right)\left(1-(-1)^{n}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
b_{m n} I_{m}(n \pi) & =\frac{2}{\pi} \int_{0}^{1}\left[\int_{0}^{\pi}-\phi \sin m \phi \sin n \pi z d \phi+\int_{0}^{2 \pi} \phi \cos m \phi \sin n \pi z d \phi\right] d z \\
& =\frac{2}{\pi} \int_{0}^{1} \sin n \pi z\left[\frac{\phi}{m} \cos m \phi-\left.\frac{1}{m^{2}} \sin m \phi\right|_{0} ^{\pi}-\frac{\phi}{m} \cos m \phi+\left.\frac{1}{m^{2} \sin m \phi}\right|_{\pi} ^{2 \pi}\right] d z \\
& =\frac{2}{n \pi^{2}}\left(1-(-1)^{n}\right)\left[\frac{\pi}{m}(-1)^{m}-\left(\frac{\pi}{m}\left(2-(-1)^{m}\right)\right)\right]=-\frac{4}{m n \pi}\left(1-(-1)^{n}\right)\left(1-1(-1)^{m}\right)
\end{aligned}
$$

so finally

$$
\begin{aligned}
u=\sum_{n=1}^{\infty} \frac{1}{n} & \left(1-(-1)^{n}\right) \frac{I_{0}(n \pi \rho)}{I_{0}(n \pi)} \sin n \pi z \\
& +\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{I_{m}(n \pi \rho)}{I_{m}(n \pi)}\left(\frac{4}{n m \pi}\left(1-(-1)^{n}\right)\left(1-(-1)^{m}\right)\right)\left[\frac{2}{m \pi} \cos m \phi-\sin m \phi\right] \sin n \pi z
\end{aligned}
$$

3. Solve on $\{(\rho, \phi, z) \mid \rho<1,0 \leq z \leq 1\}$:

$$
\nabla^{2} u=0,\left.u\right|_{z=0}=\rho^{2} \cos 2 \phi,\left.u\right|_{z=1}=\rho^{2} \sin 2 \phi,\left.u\right|_{\rho=1}=\left\{\begin{array}{cc}
-\phi, & 0<\phi<\pi \\
\phi, & \pi<\phi<2 \pi
\end{array} .\right.
$$

[Hint: This is basically just problems 1 and 2 combined.]
We decompose this problem as $u=u_{1}+u_{2}$, where u_{1} is the solution to problem 2 and u_{2} satisfies on $\{(\rho, \phi, z) \mid \rho<1,0 \leq z \leq 1\}$

$$
\nabla^{2} u_{2}=0,\left.\quad u_{2}\right|_{\rho=1}=0,\left.\quad u_{2}\right|_{z=0}=\rho^{2} \cos 2 \phi,\left.\quad u_{2}\right|_{\mathbf{z}=1}=\rho^{2} \sin 2 \phi
$$

This has solution

$$
u_{2}=\sum_{m=0}^{\infty} \sum_{n=1}^{\infty} J_{m}\left(\lambda_{m i} \rho\right)\left(\alpha_{m i} \cos m \phi \cosh \lambda_{m i} z+\beta_{m i} \cos m \phi \sinh \lambda_{m i} z\right.
$$

$$
\left.+\gamma_{m i} \sin m \phi \cosh \lambda_{m i} z+\delta_{m i} \sin m \phi \sinh \lambda_{m i} z\right)
$$

Now at $z=0$

$$
u_{2}=\sum_{m=0}^{\infty} \sum_{n=1}^{\infty} J_{m}\left(\lambda_{m i} \rho\right)\left(\alpha_{m i} \cos m \phi+\gamma_{m i} \sin m \phi\right)=\rho^{2} \cos 2 \phi
$$

so just as in problem 1 we see that $\gamma_{m i}=0$ for all m and all i, while $\alpha_{m i}=0$ for $m \neq 2$ and we have after a standard calculation [we have done this calculation a number of times by this point, but on a test I would expect you to write it out anyway!]

$$
\alpha_{2 i}=\frac{2}{J_{3}^{2}\left(\lambda_{2 i}\right)} \int_{0}^{1} \rho^{3} J_{2}\left(\lambda_{2 i}\right) d \rho=\frac{2}{\lambda_{2 i} J_{3}\left(\lambda_{2 i}\right)} .
$$

Similarly, at $z=1$

$$
u_{2}=\sum_{m=0}^{\infty} \sum_{n=1}^{\infty} J_{m}\left(\lambda_{m i} \rho\right)\left(\alpha_{m i} \cos m \phi \cosh \lambda_{m i}+\beta_{m i} \cos m \phi \sinh \lambda_{m i}+\delta_{m i} \sin m \phi \sinh \lambda_{m i}\right)=\rho^{2} \sin 2 \phi
$$

so $\alpha_{m i} \cosh \lambda_{m i}+\beta_{m i} \sinh \lambda_{m i}=0$ for all m and all i, meaning that $\beta_{m i}=0$ for $m \neq 2$ while

$$
\beta_{2 i}=-\operatorname{coth} \lambda_{m i} \frac{2}{\lambda_{2 i} J_{3}\left(\lambda_{2 i}\right)},
$$

and $\delta_{m i}=0$ for $m \neq 2$ while

$$
\delta_{2 i} \sinh \lambda_{2 i}=\frac{2}{J_{3}^{2}\left(\lambda_{2 i}\right)} \int_{0}^{1} \rho^{3} J_{2}\left(\lambda_{2 i}\right) d \rho=\frac{2}{\lambda_{2 i} J_{3}\left(\lambda_{2 i}\right)},
$$

giving

$$
\delta_{2 i}=\frac{2}{\lambda_{2 i} J_{3}\left(\lambda_{2 i}\right) \sinh \lambda_{2 i}},
$$

so

$$
u_{2}=\sum_{i=1}^{\infty} J_{2}\left(\lambda_{2 i} \rho\right)\left(\frac{2}{\lambda_{2 i} J_{3}\left(\lambda_{2 i}\right)}\right)\left[\left(\cosh \lambda_{2 i} z-\operatorname{coth} \lambda_{2 i} \sinh \lambda_{2 i} z\right) \cos 2 \phi+\frac{\sinh \lambda_{2 i} z}{\sinh \lambda_{2 i}} \sin 2 \phi\right]
$$

[note again how the coefficients on $\cos 2 \phi$ and $\sin 2 \phi$ interpolate between 0 and 1 , exactly as with the solution in problem 1!] and finally

$$
\begin{aligned}
u=u_{1}+ & u_{2}=\sum_{i=1}^{\infty} J_{2}\left(\lambda_{2 i} \rho\right)\left(\frac{2}{\lambda_{2 i} J_{3}\left(\lambda_{2 i}\right)}\right)\left[\left(\cosh \lambda_{2 i} z-\operatorname{coth} \lambda_{2 i} \sinh \lambda_{2 i} z\right) \cos 2 \phi+\frac{\sinh \lambda_{2 i} z}{\sinh \lambda_{2 i}} \sin 2 \phi\right] \\
& +\sum_{n=1}^{\infty} \frac{1}{n}\left(1-(-1)^{n}\right) \frac{I_{0}(n \pi \rho)}{I_{0}(n \pi)} \sin n \pi z \\
& +\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{I_{m}(n \pi \rho)}{I_{m}(n \pi)}\left(\frac{4}{n m \pi}\left(1-(-1)^{n}\right)\left(1-(-1)^{m}\right)\right)\left[\frac{2}{m \pi} \cos m \phi-\sin m \phi\right] \sin n \pi z .
\end{aligned}
$$

4. [Optional. This problem requires knowledge of basic complex function theory. I am only putting it here because I think it is exceptionally cool and can't resist.] Solve on $\{(\rho, \phi, z) \mid \rho<1,0 \leq z \leq 1\}$:

$$
\nabla^{2} u=0,\left.u\right|_{\rho=1}=0,\left.u\right|_{z=0}=0,\left.u\right|_{z=1}=\cos (\rho \cos \phi) \cosh (\rho \sin \phi) .
$$

[Hint: can you recognise the boundary datum at $z=1$ as the real part of an analytic function of $x+i y$? Try writing out the power series of that function and solving the above problem term-by-term in that power series, noting that $x+i y=\rho e^{i \phi}$.]
[Sketch.] We note that $x+i y=\rho \cos \phi+i \rho \sin \phi=\rho e^{i \phi}$, so

$$
\begin{aligned}
\cos (x+i y) & =\cos x \cos i y-\sin x \sin i y=\cos x \cosh y+i \sin x \sinh y=\cos (\rho \cos \phi) \cosh (\rho \cos \phi)+\cdots \\
& =\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n)!}(x+i y)^{2 n}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n)!}\left(\rho e^{i \phi}\right)^{2 n}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n)!} \rho^{2 n} e^{2 i n \phi} \\
& =\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n)!} \rho^{2 n}(\cos 2 n \phi+i \sin 2 n \phi)
\end{aligned}
$$

so

$$
\cos (\rho \cos \phi) \cosh (\rho \sin \phi)=\Re \cos (x+i y)=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n)!} \rho^{2 n} \cos (2 n+1) \phi
$$

Now the general solution to $\nabla^{2} u=0$ on the given region satisfying the first two boundary conditions is

$$
u=\sum_{m=0}^{\infty} \sum_{i=1}^{\infty} J_{m}\left(\lambda_{m i} \rho\right)\left(a_{m i} \cos m \phi+b_{m i} \sin m \phi\right) \sinh \lambda_{m i} z
$$

applying the boundary condition at $z=1$ then gives

$$
\sum_{m=0}^{\infty} \sum_{i=1}^{\infty} J_{m}\left(\lambda_{m i} \rho\right)\left(a_{m i} \cos m \phi+b_{m i} \sin m \phi\right) \sinh \lambda_{m i}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n)!} \rho^{2 n} \cos 2 n \phi
$$

From this we easily see that $b_{m i}=0$ for all m, i, while $a_{m i}=0$ when m is odd. If $m=2 n$ for some $n \in \mathbf{Z}$, $n \geq 0$, then we obtain

$$
\begin{gathered}
a_{2 n, i} \sinh \lambda_{2 n, i}=\frac{(-1)^{n}}{(2 n)!} \frac{2}{J_{2 n+1}^{2}\left(\lambda_{2 n, i}\right)} \int_{0}^{1} \rho^{2 n} J_{2 n}\left(\lambda_{2 n, i} \rho\right) \rho d \rho=\frac{(-1)^{n} 2}{(2 n)!\lambda_{2 n, i} J_{2 n+1}\left(\lambda_{2 n, i}\right)} \\
a_{2 n, i}=\frac{(-1)^{n} 2}{(2 n)!\lambda_{2 n, i} J_{2 n+1}\left(\lambda_{2 n, i}\right) \sinh \lambda_{2 n, i}},
\end{gathered}
$$

and

$$
u=\sum_{n=0}^{\infty} \sum_{i=1}^{\infty} \frac{(-1)^{n} 2}{(2 n)!\lambda_{2 n, i} J_{2 n+1}\left(\lambda_{2 n, i}\right) \sinh \lambda_{2 n, i}} J_{2 n}\left(\lambda_{2 n, i} \rho\right) \cos 2 n \phi \sinh \lambda_{2 n, i} z .
$$

