APM 346, Homework 7. Due Monday, July 8, at 6.00 AM EDT. To be marked completed/not completed.

1. Solve on $\{(\rho, \phi, z) \mid \rho<2,0 \leq z \leq 3\}$:

$$
\nabla^{2} u=0,\left.u\right|_{\rho=2}=0,\left.u\right|_{z=0}=\rho \cos \phi,\left.u\right|_{z=3}=\rho \sin \phi
$$

2. Solve on $\{(\rho, \phi, z) \mid \rho<1,0 \leq z \leq 1\}$:

$$
\nabla^{2} u=0,\left.u\right|_{z=0}=\left.u\right|_{z=1}=0,\left.\quad u\right|_{\rho=1}=\left\{\begin{array}{cc}
-\phi, & 0<\phi<\pi \\
\phi, & \pi<\phi<2 \pi
\end{array} .\right.
$$

3. Solve on $\{(\rho, \phi, z) \mid \rho<1,0 \leq z \leq 1\}$:

$$
\nabla^{2} u=0,\left.u\right|_{z=0}=\rho^{2} \cos 2 \phi,\left.u\right|_{z=1}=\rho^{2} \sin 2 \phi,\left.u\right|_{\rho=1}=\left\{\begin{array}{cc}
-\phi, & 0<\phi<\pi \\
\phi, & \pi<\phi<2 \pi
\end{array} .\right.
$$

[Hint: This is basically just problems 1 and 2 combined.]
4. [Optional. This problem requires knowledge of basic complex function theory. I am only putting it here because I think it is exceptionally cool and can't resist.] Solve on $\{(\rho, \phi, z) \mid \rho<1,0 \leq z \leq 1\}$:

$$
\nabla^{2} u=0,\left.u\right|_{\rho=1}=0,\left.u\right|_{z=0}=0,\left.u\right|_{z=1}=\cos (\rho \cos \phi) \cosh (\rho \sin \phi) .
$$

[Hint: can you recognise the boundary datum at $z=1$ as the real part of an analytic function of $x+i y$? Try writing out the power series of that function and solving the above problem term-by-term in that power series, noting that $x+i y=\rho e^{i \phi}$.]

