APM 346 (Summer 2019), Homework 6 solutions.
APM 346, Homework 6. Due Wednesday, June 19, at 6.00 AM EDT. To be marked completed/not completed.

1. Solve the following boundary-value problem on the region $\{(\rho, \phi, z) \mid \rho<1,0<z<1\}$ in cylindrical coordinates:

$$
\nabla^{2} u=0,\left.\quad u\right|_{\rho=1}=0,\left.\quad u\right|_{z=0}=0,\left.\quad u\right|_{z=1}=1
$$

We know from class that the general solution to Laplace's equation on the given region which satisfies the first boundary condition $\left.u\right|_{\rho=1}=0$ is of the form

$$
u(\rho, \phi, z)=\sum_{m=0}^{\infty} \sum_{i=1}^{\infty} J_{m}\left(\lambda_{m, i} \rho\right)\left(a_{m i} \cos m \phi+b_{m i} \sin m \phi\right)\left(c_{m i} \cosh \lambda_{m, i} z+d_{m i} \sinh \lambda_{m, i} z\right)
$$

where $\left\{\lambda_{m, i}\right\}_{i=1}^{\infty}$ is the set of all positive zeroes of $J_{m}(x)$. It is now just a matter of determining the coefficients in the above expansion which will make it satisfy the remaining boundary conditions. At $z=0$, we have

$$
u_{z=0}=\sum_{m=0}^{\infty} \sum_{i=1}^{\infty} J_{m}\left(\lambda_{m, i} \rho\right)\left(a_{m i} \cos m \phi+b_{m i} \sin m \phi\right) c_{m i}=0
$$

thus (since $\left\{J_{m}\left(\lambda_{m, i} \rho\right) \cos m \phi, J_{m}\left(\lambda_{m, i} \rho\right) \sin m \phi\right\}$ is a complete orthogonal set on $[0,1] \times[0,2 \pi]$ ) we must have $c_{m i}=0$ for all $m$ and all $i$. Then we may absorb the coefficients $d_{m i}$ into $a_{m i}$ and $b_{m i}$ and write

$$
u(\rho, \phi, z)=\sum_{m=0}^{\infty} \sum_{i=1}^{\infty} J_{m}\left(\lambda_{m, i} \rho\right)\left(a_{m i} \cos m \phi+b_{m i} \sin m \phi\right) \sinh \lambda_{m, i} z
$$

At $z=1$, then, we have

$$
\left.u\right|_{z=1}=\sum_{m=0}^{\infty} \sum_{i=1}^{\infty} J_{m}\left(\lambda_{m, i} \rho\right)\left(a_{m i} \cos m \phi+b_{m i} \sin m \phi\right) \sinh \lambda_{m, i}=1
$$

Taking the inner product of this with functions $\cos m \phi, \sin m \phi, m>0$, we have

$$
\begin{aligned}
& 0=(1, \cos m \phi)=\sum_{i=1}^{\infty} J_{m}\left(\lambda_{m, i} \rho\right)\left(a_{m i} \pi\right) \sinh \lambda_{m, i}, \\
& 0=(1, \sin m \phi)=\sum_{i=1}^{\infty} J_{m}\left(\lambda_{m, i} \rho\right)\left(b_{m i} \pi\right) \sinh \lambda_{m, i},
\end{aligned}
$$

which gives (since $\left\{J_{m}\left(\lambda_{m, i} \rho\right)\right\}_{i=1}^{\infty}$ is a complete orthogonal set on $\left.[0,1]\right)$ that $a_{m i}=0$ and $b_{m i}=0$ for all $m>0$ and all $i$. Now $b_{0 i}=0$ for all $i$ by definition, so we are left simply with the condition

$$
\sum_{i=1}^{\infty} a_{0 i} J_{0}\left(\lambda_{0, i} \rho\right) \sinh \lambda_{0, i}=1
$$

Using the orthogonality properties of the $J_{0}\left(\lambda_{0, i} \rho\right)$, we conclude that

$$
a_{0 i} \sinh \lambda_{0, i}=\frac{\left(1, J_{0}\left(\lambda_{0, i} \rho\right)\right)}{\left(J_{0}\left(\lambda_{0, i} \rho\right), J_{0}\left(\lambda_{0, i} \rho\right)\right)}=\frac{2}{J_{1}^{2}\left(\lambda_{0, i}\right)} \int_{0}^{1} \rho J_{0}\left(\lambda_{0, i} \rho\right) d \rho .
$$

Now

$$
\int x J_{0}(x) d x=x J_{1}(x)+C
$$

$$
\text { APM } 346 \text { (Summer 2019), Homework } 6 \text { solutions. }
$$

so

$$
\int_{0}^{1} \rho J_{0}\left(\lambda_{0, i} \rho\right) d \rho=\frac{1}{\lambda_{0, i}^{2}} \int_{0}^{\lambda_{0, i}} x J_{0}(x) d x=\frac{1}{\lambda_{0, i}^{2}} \lambda_{0, i} J_{1}\left(\lambda_{0, i}\right)=\frac{1}{\lambda_{0, i}} J_{1}\left(\lambda_{0, i}\right)
$$

and

$$
a_{0 i}=\frac{2}{\lambda_{0, i} J_{1}\left(\lambda_{0, i}\right) \sinh \lambda_{0, i}},
$$

so finally

$$
u=\sum_{i=1}^{\infty} \frac{2}{\lambda_{0, i} J_{1}\left(\lambda_{0, i}\right) \sinh \lambda_{0, i}} J_{0}\left(\lambda_{0, i} \rho\right) \sinh \lambda_{0, i} z
$$

2. The same as 1 , except with the condition $\left.u\right|_{z=1}=1$ replaced by $\left.u\right|_{z=1}=\rho \cos \phi$.

The first few steps are of course the same as problem 1; thus we may start from the series expansion

$$
u(\rho, \phi, z)=\sum_{m=0}^{\infty} \sum_{i=1}^{\infty} J_{m}\left(\lambda_{m, i} \rho\right)\left(a_{m i} \cos m \phi+b_{m i} \sin m \phi\right) \sinh \lambda_{m, i} z
$$

At $z=1$ we now have

$$
\left.u\right|_{z=1}=\sum_{m=0}^{\infty} \sum_{i=1}^{\infty} J_{m}\left(\lambda_{m, i} \rho\right)\left(a_{m i} \cos m \phi+b_{m i} \sin m \phi\right) \sinh \lambda_{m, i}=\rho \cos \phi
$$

whence as before we may conclude that $a_{m i}=0, b_{m i}=0$ for $m \neq 1$, all $i$, and also that $b_{1 i}=0$, while

$$
\sum_{i=1}^{\infty} a_{1 i} J_{1}\left(\lambda_{1, i} \rho\right) \sinh \lambda_{1, i}=\rho
$$

Thus we have as in 1

$$
a_{1 i} \sinh \lambda_{1, i}=\frac{\left(\rho, J_{1}\left(\lambda_{1, i} \rho\right)\right)}{\left(J_{1}\left(\lambda_{1, i} \rho\right), J_{1}\left(\lambda_{1, i} \rho\right)\right)}=\frac{2}{J_{2}^{2}\left(\lambda_{1, i}\right)} \int_{0}^{1} \rho^{2} J_{1}\left(\lambda_{1, i} \rho\right) d \rho .
$$

Now since

$$
\int x^{2} J_{1}(x) d x=x^{2} J_{2}(x)+C
$$

we have

$$
\int_{0}^{1} \rho^{2} J_{1}\left(\lambda_{1, i} \rho\right) d \rho=\frac{1}{\lambda_{1, i}^{3}} \lambda_{1, i}^{2} J_{2}\left(\lambda_{1, i}\right)=\frac{1}{\lambda_{1, i}} J_{2}\left(\lambda_{1, i}\right),
$$

so

$$
a_{1 i}=\frac{2}{\lambda_{1, i} J_{2}\left(\lambda_{1, i}\right) \sinh \lambda_{1, i}}
$$

and

$$
u=\sum_{i=1}^{\infty} \frac{2}{\lambda_{1, i} J_{2}\left(\lambda_{1, i}\right) \sinh \lambda_{1, i}} J_{1}\left(\lambda_{1, i} \rho\right) \cos \phi \sinh \lambda_{1, i} z .
$$

