APM 346, Homework 5. Due Monday, June 10, at 6.00 AM EDT. To be marked completed/not completed.

1. Solve the following boundary-value problem on the region $\{(r, \theta, \phi) \mid 1<r<2\}$:

$$
\nabla^{2} u=0,\left.\quad u\right|_{r=2}=\left\{\begin{array}{cc}
1, & 0 \leq \theta<\frac{\pi}{2} \\
-1, & \frac{\pi}{2}<\theta \leq \pi
\end{array},\left.\quad u_{r}\right|_{r=1}=\left\{\begin{array}{cc}
0, & 0 \leq \theta<\frac{\pi}{2} \\
1, & \frac{\pi}{2}<\theta \leq \pi
\end{array}\right.\right.
$$

[Hint: use Legendre polynomial identities to calculate $\int_{0}^{1} P_{\ell}(x) d x$ and $\int_{-1}^{0} P_{\ell}(x) d x$.]
2. Solve the following boundary-value problem on the region $\{(r, \theta, \phi) \mid r<2\}$:

$$
\nabla^{2} u=0,\left.\quad u\right|_{r=2}=x(1+y)
$$

(Here $x=r \sin \theta \cos \phi$ and $y=r \sin \theta \sin \phi$ are the standard Cartesian coordinates corresponding to the given spherical coordinate system.)

