APM 346, Homework 4. Due Monday, June 3, at 6.00 AM EDT. To be marked completed/not completed.

Consider the following boundary-value problem on $[0,1] \times[0,1]$:

$$
\begin{array}{llrl}
\nabla^{2} u=0 \quad \text { on } \quad(0,1) \times(0,1), & u(0, y)=0, & u_{x}(1, y)=-u(1, y), \\
u(x, 0)=\sin n \pi x, & u(x, 1)=\cos n \pi x,
\end{array}
$$

where $n \in \mathbf{Z}, n>0$ is some fixed positive integer.

1. Determine all separated solutions satisfying the homogeneous boundary conditions (these are the boundary conditions on $x=0$ and $x=1$ above).
2. Assuming that the functions of x appearing in the separated solutions in 1 form a complete set on $[0,1]$, write out the general solution to $\nabla^{2} u=0$ satisfying the first three boundary conditions above.
3. Finally, determine the unique solution to the full boundary-value problem.
[NOTE. In 2 and 3, if you wish to use orthogonality of a certain set of functions, you must say how you know it is orthogonal (for example, by citing a specific result you have seen earlier in the course, or by giving a proof).]

The next two problems deal with Laplace's equation in spherical coordinates.
4. Consider the boundary-value problem on the region given by $\{(r, \theta, \phi) \mid 1 \leq r \leq 2\}$:

$$
\nabla^{2} u=0, \quad 1<r<2, \quad u(r=1)=1, u_{r}(r=2)=-u(r=2) .
$$

Using our work with the Laplace equation in class, find the solution to this problem. [Hint: it depends only on r, not on θ or ϕ.]
5. Consider the same problem as in 4 , but with the second boundary condition replaced by $u(r=2)=$ $\cos \theta$. Find the solution to this problem. [Hint: it can be written as a sum of two separated solutions.]

