
APM 346 (Summer 2019), Homework 3.

APM 346, Homework 3. Due Monday, May 27, at 6.05 AM EDT. To be marked completed/not completed.

1. Recall the following boundary-value problem on the interval [0, 1] from Homework 2:

f ′′ = −λ2f, f(0) = 0, f ′(1) = −f(1).

Show that if (λ1, f1) and (λ2, f2) are two solutions to this boundary-value problem, λ1, λ2 > 0, λ1 6= λ2,

then f1 and f2 are orthogonal with respect to the standard inner product (f, g) =
∫ 1

0
f(x)g(x) dx. (You may

use the solution posted on the course website, or work directly from the equation and boundary conditions
above.)

There are two ways of doing this problem. First, we know that we may write (letting i = 1, 2)

fi = aisinλix, λi = − tanλi.

Thus

(f1, f2) =

∫ 1

0

f(x)f2(x) dx =

∫ 1

0

a1a2sinλ1xsinλ2x dx = a1a2 ·
1

2
∈10 cos [(λ1 − λ2)x]− cos [(λ1 + λ2)x] dx

=
1

2
a1a2

[
sin [λ1 − λ2)x]

λ1 − λ2

∣∣∣∣1
0

− sin [(λ1 + λ2)x]

λ1 + λ2

∣∣∣∣1
0

]
=

1

2
a1a2

[
sin (λ1 − λ2)

λ1 − λ2
− sin (λ1 + λ2)

λ1 + λ2

]
=

1

2
a1a2

[
sinλ1 cosλ2 − cosλ1sinλ2
− tanλ1 + tanλ2

+
sinλ1 cosλ2 + cosλ1sinλ2

tanλ1 + tanλ2

]
=

1

2
a1a2

[
sinλ1 cosλ2 − cosλ1sinλ2

(−sinλ1 cosλ2 + cosλ1sinλ2) 1
cosλ1 cosλ2

+
sinλ1 cosλ2 + cosλ1sinλ2

(sinλ1 cosλ2 + cosλ1sinλ2) 1
cosλ1 cosλ2

]

=
1

2
a1a2 [− cosλ1 cosλ2 + cosλ1 cosλ2] = 0.

Alternatively, we may work directly from the equation. Since λ1 6= λ2, at least one of λ1, λ2 6= 0; we may
assume that λ1 6= 0 without loss of generality (since our inner product satisfies (f1, f2) = (f2, f1)). Then
(note that we may assume that f1 and f2 are real, but this is not really necessary; we do assume however
that λ is real, as we assumed in Homework 2)∫ 1

0

f1(x)f2(x) dx = − 1

λ1

∫ 1

0

f ′′1 (x)f2(x) dx = − 1

λ1

[
f ′1(x)f2(x)

∣∣∣1
0
−
∫ 1

0

f ′1(x)f ′2(x) dx

]
= − 1

λ1

[
f ′1(x)f2(x)

∣∣∣1
0
−
[
f1(x)f ′2(x)

∣∣∣1
0
−
∫ 1

0

f1(x)f ′′2 (x) dx

]]
= − 1

λ1

[
f ′1(x)f2(x)

∣∣∣1
0
− f1(x)f ′2(x)

∣∣∣1
0
− λ2

∫ 1

0

f1(x)f2(x) dx

]
,

whence we see that, solving for
∫ 1

0
f1(x)f2(x) dx,(

1− λ2
λ1

)∫ 1

0

f1(x)f2(x) dx = − 1

λ1

[
−f1(1)f2(1)− f1(1)

[
−f2(1)

]]
= 0,

where we have used the boundary conditions. Since λ1 6= λ2, this shows that (f1, f2) =
∫ 1

0
f1(x)f2(x) dx = 0,

as desired.
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2. Solve the following boundary-value problem on [0, 1]× [0, 1]:

∇2u = 0, f(x, 0) =

{
1, x ∈ [0, 12 )
0, x ∈ ( 1

2 , 1]
, f(x, 1) =

{
0, x ∈ [0, 12 )
1, x ∈ ( 1

2 , 1]
,

f(0, y) = 0, f(1, y) = 0.

(You may use the expansion of f(x, 0) given in the lecture notes.)

[Erratum: please read ‘u’ for ‘f ’ at each occurence in the foregoing. We apologise and hope this did not
cause too much confusion.]

We begin by looking for separated solutions: suppose that u(x, y) = X(x)Y (y); then we have

X ′′(x)

X(x)
+
Y ′′(y)

Y (y)
= 0,

whence as discussed in lecture we must have X ′′ = −λ2X, Y ′′ = λ2Y , for some constant λ (which will be

real since the boundary conditions force us to have X′′

X < 0, and which we may then take to be positive1).
These equations have solutions X = aλ cosλx + bλsinλx, Y = cλcoshλy + dλsinhλy. Thus we posit that
the full solution will have the form

u =
∑
λ

(aλ cosλx+ bλsinλx) (cλcoshλy + dλsinhλy) .

We may now apply the boundary conditions to determine λ and the coefficients in the above expansion.
First of all, we apply the homogeneous conditions:

u(0, y) =
∑
λ

aλ (cλcoshλy + dλsinhλy) = 0

whence we take aλ = 0;

u(1, y) =
∑
λ

bλsinλ (cλcoshλy + dλsinhλy) = 0,

whence we take λ = nπ, n ∈ Z, n > 0. Absorbing bλ by writing

αn = bnπcnπ, βn = bnπdnπ,

we may now write

u =

∞∑
n=1

sinnπx (αncoshnπy + βnsinhnπy) .

We may now apply the other boundary conditions:

u(x, 0) =

∞∑
n=1

sinnπx (αn) =

{
1, x ∈ [0, 12 )
0, x ∈ ( 1

2 , 1]

We let h(x) denote the function on the right-hand side above. Since, as discussed in lecture, the set
{sinnπx|n ∈ Z, n > 0} is complete on [0, 1], and since it is also orthogonal2, we may calculate αn as
follows (exactly as was done in lecture):

αn =
(u, sinnπx)

sinnπx, sinnπx)
=

∫ 1

0
h(x)sinnπx dx∫ 1

0
sin 2nπx dx

=

∫ 1
2

0
sinnπx dx∫ 1

0
1
2 (1− cos 2nπx) dx

=
− 1
nπ cosnπx

∣∣ 12
0

1
2

= − 2

nπ

[
cos

nπ

2
− 1
]
.

1It should be noted that in principle λ = 0 should also be considered. However, it is readily seen that the
solution for X in this case is of the form ax+ b, which cannot satisfy the boundary conditions at (0, y) and
(1, y) unless a = b = 0 and may thus be dropped.
2The instructor thinks he may have forgotten to demonstrate this point in class. It may be shewn easily as

follows:
∫ 1

0
sinnπxsinmπx = 1

2

[
sin [(n−m)πx]

n−m

∣∣∣1
0
− sin [(n+m)πx]

n+m

∣∣∣1
0

]
= 0.
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Finally, the last boundary condition gives

u(x, 1) =

∞∑
n=1

sinnπx (αncoshnπ + βnsinhnπ) = 1− h,

whence we have

αncoshnπ + βnsinhnπ =
(1− h, sinnπx)

sinnπx, sinnπx)
=

(1, sinnπx)− (h, sinnπx)

(sinnπx, sinnπx)

= 2

∫ 1

0

sinnπx dx− αn = − 2

nπ
cosnπx|10 − αn

= − 2

nπ
[(−1)n − 1]− 2

nπ

[
1− cos

nπ

2

]
= − 2

nπ

[
(−1)n − cos

nπ

2

]
,

whence

βn = −αn cothnπ− 2

nπsinhnπ

[
(−1)n − cos

nπ

2

]
= − 2

nπsinhnπ

[
coshnπ

(
1− cos

nπ

2

)
+ (−1)n − cos

nπ

2

]
.

Thus we have finally the grand expression3

u(x, y) =

∞∑
n=1

2

nπ

[(
1− cos

nπ

2

)
coshnπy +

1

sinhnπ

(
coshnπ

(
cos

nπ

2
− 1
)

+ cos
nπ

2
− (−1)n

)
sinhnπy

]
· sinnπx.

3. (a) Write x4 on (−1, 1) as a series of Legendre polynomials. (Hint: the series has only finitely many
terms. But you need to prove this!)

(b) (Optional) Is the series expansion from (a) valid outside of the interval (−1, 1)? Is this likely to
matter for our applications of Legendre polynomials?

(a) We have the first five Legendre polynomials (see p. 254 in the textbook)

P0(x) = 1, P1(x) = x, P2(x) =
3

2
x2 − 1

2
,

P3(x) =
5

2
x3 − 3

2
x, P4(x) =

35

8
x4 − 15

4
x2 +

3

8
.

Thus we may write x2 = 2
3

(
P2 + 1

2P0

)
, whence

x4 =
8

35

(
P4 +

15

4
x2 − 3

8
P0

)
=

8

35

(
P4 +

5

2

(
P2 +

1

2
P0

)
− 3

8
P0

)
=

8

35

(
P4 +

5

2
P2 +

7

8
P0

)
=

8

35
P4 +

4

7
P2 +

1

5
P0.

3This is typical of the kinds of solutions one obtains by separation of variables. We should get some
satisfaction out of our ability to construct such an expression! The author once read a biography of one Hugh
Nibley (“A Consecrated Life”, probably published by Deseret Book in 2002 or 2003, though the remaining
bibliographical details escape me at the moment) in which he is reported to have written to his mother during
training in meteorology (if my memory serves me correctly) in the US military prior to deployment in World
War II, expressing the following sentiment: “We have become quite the little mathematician, and work great
big problems sometimes passing within sight, almost, of the correct answer”! One of the author’s colleagues
at UC Berkeley expressed a similar sentiment regarding their common graduate quantum mechanics class,
that she was learning how to actually solve quantum mechancis problems. For those of you who go on to
study electrodynamics at the graduate level, the experience gained in producing solutions of this type will
be extremely useful.
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Alternatively, we may use the fact that the Legendre polynomials are orthogonal on the interval [−1, 1]
– since we have not yet discussed this we shall omit it for the moment. (The above calculation shows that
the expansion can have only finitely many terms.)

(b) [NB This was added when it was anticipated that we would be able to discuss the orthogonality of
the Legendre polynomials on [−1, 1] before this homework was due. In that case, the point was that the
expression in (a) would be derived using our general orthogonal function theory, in the which case it would
not be clear a priori that it would hold outside of [−1, 1]. To prove that it does hold everywhere, though,
it would be sufficient to note that polynomials equal on an interval are equal on the entire real line. This
is not relevant for our applications of Legendre polynomials, though, since (as we shall see shortly) we are
interested in Legendre polynomials of cos θ, and cos θ ∈ [−1, 1] for all θ.]


