APM 346, Homework 3. Due Monday, May 27, at 6.05 AM EDT. To be marked completed/not completed.

1. Recall the following boundary-value problem on the interval $[0,1]$ from Homework 2:

$$
f^{\prime \prime}=-\lambda^{2} f, \quad f(0)=0, \quad f^{\prime}(1)=-f(1)
$$

Show that if $\left(\lambda_{1}, f_{1}\right)$ and $\left(\lambda_{2}, f_{2}\right)$ are two solutions to this boundary-value problem, $\lambda_{1}, \lambda_{2}>0, \lambda_{1} \neq \lambda_{2}$, then f_{1} and f_{2} are orthogonal with respect to the standard inner product $(f, g)=\int_{0}^{1} f(x) \overline{g(x)} d x$. (You may use the solution posted on the course website, or work directly from the equation and boundary conditions above.)
2. Solve the following boundary-value problem on $[0,1] \times[0,1]$:

$$
\begin{array}{rrr}
\nabla^{2} u=0, & f(x, 0)=\left\{\begin{array}{ll}
1, & x \in\left[0, \frac{1}{2}\right) \\
0, & x \in\left(\frac{1}{2}, 1\right]
\end{array},\right. & f(x, 1)=\left\{\begin{array}{ll}
0, & x \in\left[0, \frac{1}{2}\right) \\
1, & x \in\left(\frac{1}{2}, 1\right]
\end{array},\right. \\
f(0, y)=0, & f(1, y)=0 .
\end{array}
$$

(You may use the expansion of $f(x, 0)$ given in the lecture notes.)
3. (a) Write x^{4} on $(-1,1)$ as a series of Legendre polynomials. (Hint: the series has only finitely many terms. But you need to prove this!)
(b) (Optional) Is the series expansion from (a) valid outside of the interval $(-1,1)$? Is this likely to matter for our applications of Legendre polynomials?

