APM 346 (Summer 2019), Homework 2.
APM 346, Homework 2. Due Monday, May 20, at 6 AM EDT. To be marked completed/not completed.

1. Use the identity $e^{3 i \theta}=\left(e^{i \theta}\right)^{3}(\theta \in \mathbf{R})$ to find an expression for $\cos 3 \theta$ in terms of $\cos \theta$ and $\sin \theta$. We have

$$
\begin{aligned}
\cos 3 \theta+i \sin 3 \theta & =e^{3 i \theta}=\left(e^{i \theta}\right)^{3}=(\cos \theta+i \sin \theta)^{3} \\
& =\cos ^{3} \theta+3 \cos ^{2} \theta(i \sin \theta)+3 \cos \theta(i \sin \theta)^{2}+(i \sin \theta)^{3} \\
& =\cos ^{3} \theta-3 \cos \theta \sin ^{2} \theta+i\left(3 \cos ^{2} \theta \sin \theta-\sin ^{3} \theta\right) .
\end{aligned}
$$

Since two complex numbers are equal if and only if their real and imaginary parts are equal, we see that

$$
\cos 3 \theta=\cos ^{3} \theta-3 \cos \theta \sin ^{2} \theta
$$

2. Find all numbers $\lambda>0$ for which there is a nonzero function f on $(0,1)$ satisfying

$$
f^{\prime \prime}=-\lambda^{2} f, \quad f(0)=0, \quad f^{\prime}(1)=-f(1)
$$

Also find the corresponding functions f. (Note: it is enough to find an equation which λ must satisfy. It is in general not possible to solve this equation.)

The general solution to the given differential equation is (using x as the independent variable) $f(x)=$ $a \sin \lambda x+b \cos \lambda x$. The first boundary condition gives

$$
f(0)=a \sin 0+b \cos 0=b=0
$$

so that we may write $f(x)=a \sin \lambda x$. The second boundary condition then gives

$$
f^{\prime}(1)=a \lambda \cos \lambda=-f(1)=-a \sin \lambda
$$

Since we want $f \neq 0$ (note that this means that f and 0 are not the same function, i.e., that f is not identically zero; it does not mean that there is no x for which $f(x)=0$!), we cannot have $a=0$; thus we may cancel the a from this equation to obtain

$$
\lambda=-\tan \lambda .
$$

Thus, if $\lambda>0$ is any solution to this equation, then $f(x)=a \sin \lambda x$ will satisfy the given boundary value problem for any a. (In principle, a could even be a complex number.)
3. (You need only do one of problems 3 and 4.) Suppose that $A_{n} \in \mathbf{R}, n=0,1,2, \ldots, B_{n} \in \mathbf{R}$, $n=1,2, \ldots$, are such that

$$
x=\frac{1}{2} A_{0}+\sum_{n=1}^{\infty}\left(A_{n} \cos 2 n \pi x+B_{n} \sin 2 n \pi x\right)
$$

for $x \in(0,1)$. Find an expression for the A_{n} and B_{n}.
The set

$$
\{1\} \cup\{\cos 2 n \pi x, \sin 2 n \pi x \mid n \in \mathbf{Z}, n>0\}
$$

is an orthogonal set, so we may calculate as follows, letting $(f, g)=\int_{0}^{1} f(x) \overline{g(x)} d x$ denote the standard inner product on functions:

$$
\begin{aligned}
\frac{1}{2} A_{0} & =\frac{(x, 1)}{(1,1)} \\
& =\frac{\int_{0}^{1} x d x}{\int_{0}^{1} d x}=\frac{\left.\frac{1}{2} x^{2}\right|_{0} ^{1}}{1}=\frac{1}{2}
\end{aligned}
$$

APM 346 (Summer 2019), Homework 2.
so that $A_{0}=1$, while if $n>0$

$$
\begin{aligned}
A_{n} & =\frac{(x, \cos 2 n \pi x)}{(\cos 2 n \pi x, \cos 2 n \pi x)} \\
& =\frac{\int_{0}^{1} x \cos 2 n \pi x d x}{\int_{0}^{1} \cos ^{2} 2 n \pi x d x}=\frac{\left.x \frac{1}{2 n \pi} \sin 2 n \pi x\right|_{0} ^{1}-\int_{0}^{1} \frac{1}{2 n \pi} \sin 2 n \pi x d x}{\int_{0}^{1} \frac{1}{2}+\frac{1}{2} \cos 4 n \pi x d x} \\
& =\frac{\left.\frac{1}{4 n^{2} \pi^{2}} \cos 2 n \pi x\right|_{0} ^{1}}{\frac{1}{2}}=0,
\end{aligned}
$$

where we have used the fact that the integral of cosine over any integer number of periods is zero, and that $\cos 2 n \pi=1, \sin 2 n \pi=0$ for all integers n. Finally, we have

$$
\begin{aligned}
B_{n} & =\frac{(x, \sin 2 n \pi x)}{(\sin 2 n \pi x, \sin 2 n \pi x)} \\
& =\frac{\int_{0}^{1} x \sin 2 n \pi x d x}{\int_{0}^{1} \sin ^{2} 2 n \pi x d x}=\frac{-\left.\frac{1}{2 \pi n} x \cos 2 \pi n x\right|_{0} ^{1}+\int_{0}^{1} \frac{1}{2 \pi n} \cos 2 \pi n x d x}{\int_{0}^{1} \frac{1}{2}(1-\cos 4 \pi n x) d x} \\
& =-\frac{1}{\pi n} .
\end{aligned}
$$

4. (You need only do one of problems 3 and 4.) Suppose that $A_{n} \in \mathbf{C}, n=0,1,2, \ldots$, are such that

$$
x=\sum_{n=0}^{\infty} A_{n} e^{2 i n \pi x}
$$

for $x \in(0,1)$. Find an expression for the A_{n}.
Since $\left\{e^{2 i \pi n x} \mid n \in \mathbf{Z}, n \geq 0\right\}$ is an orthonormal set, we may calculate as follows:

$$
A_{0}=(x, 1)=1,
$$

while for $n \neq 0$,

$$
\begin{aligned}
A_{n} & =\left(x, e^{2 i \pi n x}\right)=\int_{0}^{1} x e^{-2 i \pi n x} d x \\
& =-\left.\frac{1}{2 i \pi n} x e^{-2 i \pi n x}\right|_{0} ^{1}+\int_{0}^{1} \frac{1}{2 i \pi n} e^{-2 i \pi n x} d x \\
& =-\frac{1}{2 i \pi n}+\left.\frac{1}{4 \pi^{2} n^{2}} e^{-2 i \pi n x}\right|_{0} ^{1}=-\frac{1}{2 i \pi n},
\end{aligned}
$$

where we have used $e^{2 i \pi n}=1$ for all integers n.
(Note. There was in fact a typographical error in the original problem, and the sum should have been extended from $-\infty$ to ∞; in other words, there is in fact no expansion of the form indicated in the problem statement. Technically, though, this does not affect our ability to solve the problem; and anyway the above calculation works for $n<0$ just as well as for $n>0$.)

