APM 346, Homework 2. Due Monday, May 20, at 6 AM EDT. To be marked completed/not completed.

1. Use the identity $e^{3i\theta} = (e^{i\theta})^3$ ($\theta \in \mathbf{R}$) to find an expression for $\cos 3\theta$ in terms of $\cos \theta$ and $\sin \theta$.

2. Find all numbers $\lambda > 0$ for which there is a nonzero function f on (0, 1) satisfying

$$f'' = -\lambda^2 f,$$
 $f(0) = 0,$ $f'(1) = -f(1).$

Also find the corresponding functions f. (Note: it is enough to find an equation which λ must satisfy. It is in general not possible to solve this equation.)

3. (You need only do one of problems 3 and 4.) Suppose that $A_n \in \mathbf{R}, n = 0, 1, 2, ..., B_n \in \mathbf{R}$, n = 1, 2, ..., are such that

$$x = \frac{1}{2}A_0 + \sum_{n=1}^{\infty} \left(A_n \cos 2n\pi x + B_n \sin 2n\pi x\right)$$

for $x \in (0, 1)$. Find an expression for the A_n and B_n .

4. (You need only do one of problems 3 and 4.) Suppose that $A_n \in \mathbb{C}$, n = 0, 1, 2, ..., are such that

$$x = \sum_{n=0}^{\infty} A_n e^{2in\pi x}$$

for $x \in (0, 1)$. Find an expression for the A_n .