APM 346, Homework 2. Due Monday, May 20, at 6 AM EDT. To be marked completed/not completed.

1. Use the identity $e^{3 i \theta}=\left(e^{i \theta}\right)^{3}(\theta \in \mathbf{R})$ to find an expression for $\cos 3 \theta$ in terms of $\cos \theta$ and $\sin \theta$.
2. Find all numbers $\lambda>0$ for which there is a nonzero function f on $(0,1)$ satisfying

$$
f^{\prime \prime}=-\lambda^{2} f, \quad f(0)=0, \quad f^{\prime}(1)=-f(1)
$$

Also find the corresponding functions f. (Note: it is enough to find an equation which λ must satisfy. It is in general not possible to solve this equation.)
3. (You need only do one of problems 3 and 4.) Suppose that $A_{n} \in \mathbf{R}, n=0,1,2, \ldots, B_{n} \in \mathbf{R}$, $n=1,2, \ldots$, are such that

$$
x=\frac{1}{2} A_{0}+\sum_{n=1}^{\infty}\left(A_{n} \cos 2 n \pi x+B_{n} \sin 2 n \pi x\right)
$$

for $x \in(0,1)$. Find an expression for the A_{n} and B_{n}.
4. (You need only do one of problems 3 and 4.) Suppose that $A_{n} \in \mathbf{C}, n=0,1,2, \ldots$, are such that

$$
x=\sum_{n=0}^{\infty} A_{n} e^{2 i n \pi x}
$$

for $x \in(0,1)$. Find an expression for the A_{n}.

