
APM346, Summer 2019 Nathan Carruth

APM346, Homework 1. Solutions.

1. Calculate the indicated derivatives.

(a) d
dx

(
10x6 − 5x3 + 4x2 − 7x+ 1

)
= 60x5 − 15x2 + 8x− 7.

(b) d
dx

(
ln
[
5x2 − 3x+ 100

])
= 10x−3

5x2−3x+100 .

(c) d
dx

(
e5x

10−10x5+102
)

=
(
50x9 − 50x4

)
e5x

10−10x5+102.

(d) d
dx (sin 2x) = 2 cos 2x.

(e) d
dx (cos kx) = −ksin kx, k a constant.

(f) ∂
∂y (cos k1x sin k2y) = k2 cos k1x cos k2y, k1, k2 constants.

(g)

∂

∂z

(
sin−1

(
ln
(
cos
(
tan

(
xyz + x2 + 10xy − 100

)))))
= − 1√

1− ln2 (cos (tan (xyz + x2 + 10xy − 100)))

sin
(
tan

(
xyz + x2 + 10xy − 100

))
cos (tan (xyz + x2 + 10xy − 100))

· xy sec2
(
xyz + x2 + 10xy − 100

)
= − 1√

1− ln2 (cos (tan (xyz + x2 + 10xy − 100)))
tan

(
tan

(
xyz + x2 + 10xy − 100

))
· xy sec2

(
xyz + x2 + 10xy − 100

)
.

2. Evaluate the following expressions.

(a) ∇
(
x2 + y2

)
= 2xi + 2yj.

(b) ∇
(
x2 + y2 − 2z2

)
= 2xi + 2yj− 4zk.

(c) div (xi + yj + 10k) = 1 + 1 + 0 = 2.

(d) div
(
∇
(
x2 + y2 − 2z2

))
= div (2xi + 2yj− 4zk) = 0.

(e) div (∇ (eysinx)) = div (ey cosxi + eysinxj) = −eysinx+ eysinx = 0.

3. Evaluate the following integrals. (You must show your work to get credit.)

(a) We use integration by parts:∫ 2π

0

x2 sinx dx = −x2 cosx
∣∣2π
0

+

∫ 2π

0

2x cosx dx = −4π2 +

(
2xsinx|2π0 −

∫ 2π

0

2sinx dx

)
= −4π2 + 2 cosx|2π0 = −4π2.

(b) We use integration by parts again:

∫ 2π

0

x sin (kx) dx = −1

k
x cos(kx)

∣∣∣∣2π
0

+

∫ 2π

0

1

k
cos(kx) dx = −2π

k
cos(2πk) +

1

k2
sin (kx)

∣∣∣∣2π
0

= −2π

k
cos(2πk) +

1

k2
sin (2πk).
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(c)
∫ +∞
0

xe−x dx = −xe−x|+∞0 +
∫ +∞
0

e−x dx = −e−x|+∞0 = 1, where we can use L’Hôpital’s rule to
conclude limx→+∞ xe−x = 0.

(d) This problem can be done two ways, one using a double integration by parts, and the other (for those
who are comfortable working with complex functions) using complex exponentials. The first is as follows.
We work with indefinite integrals:∫

ex cosx dx = ex cosx+

∫
exsinx dx

= ex cosx+

(
exsinx−

∫
ex cosx dx

)
from which we easily see that

∫
ex cosx dx = 1

2e
x (cosx+ sinx). From this it follows that

∫ 2π

0

ex cosx dx =
1

2

(
e2π − 1

)
.

The other method is as follows:∫
ex cosx dx =

∫
ex
eix + e−ix

2
dx =

1

2

∫
e(1+i)x + e(1−i)x dx =

1

2

(
e(1+i)x

1 + i
+
e(1−i)x

1− i

)
=

1

4

(
(1− i)e(1+i)x + (1 + i)e(1−i)x

)
=

1

4
2Re (1− i)ex (cosx+ isinx)

=
1

2
ex (cosx+ sinx) .

From this the definite integral follows as before.

(e)
∫ 2π

0
sin k1x sin k2x dx, k1, k2 ∈ Z, k1 6= k2.

This integral can be evaluated by using the trigonometric identity sin asin b = 1
2 (cos(a− b)− cos(a+ b)).

In the present case, this gives∫ 2π

0

sin k1x sin k2x dx =
1

2

∫ 2π

0

cos ((k1 − k2)x)− cos ((k1 + k2)x) dx

=
1

2

(
sin ((k1 − k2)x)

k1 − k2
− sin ((k1 + k2)x)

k1 + k2

)∣∣∣∣2π
0

= 0,

assuming k1 6= −k2, k1, k2 6= 0, and since k1 6= k2. The case k1 = −k2 is essentially identical to k1 = k2
(since sin is odd) and is covered (up to a minus sign) by the solution to (f), and when either k1 or k2 is zero
the integral is zero. (The author apologises for these oversights in setting the original problem; he should
have written k1, k2 ∈ Z, k1, k2 > 0.)

(f) Same as (e), but with k1 = k2.
Again, we assume k1 6= 0. In this case the identity above becomes sin 2k1x = 1

2 (1− cos (2k1x)), and
the above integral becomes ∫ 2π

0

sin 2k1x dx =
1

2

∫ 2π

0

1− cos (2k1x) dx = π,

since the integral of cos will vanish as in (e).

(g)
∫ 2π

0
sin k1x cos k2x dx, k1, k2 any two integers.
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This is very similar to (e) but uses instead the identity sin a cos b = 1
2 (sin (a+ b) + sin (a− b)). The

integral becomes, for k1 6= ±k2,∫ 2π

0

sin k1x cos k2x =
1

2

∫ 2π

0

sin ((k1 + k2)x) + sin ((k1 − k2)x) dx

= −1

2

(
cos ((k1 + k2)x)

k1 + k2
+

cos ((k1 − k2)x)

k1 − k2

)∣∣∣∣2π
0

= 0.

If k1 = k2, then sin ((k1 − k2)x) = 0 for all x, so its integral still vanishes, while if k1 = −k2 then the integral
of sin ((k1 + k2)x) vanishes for the same reason. If k1 = k2 = 0 then the entire integrand vanishes. Thus the
result above holds for all k1, k2 ∈ Z.

4. Evaluate the following integrals.

(a) If R = [0, π]× [0, π], then∫∫
R

sinx sin y dA =

∫ π

0

∫ π

0

sinx sin y dx dy

=

∫ π

0

sin y (− cosx)|π0 dy = 2

∫ π

0

sin y dy = 4.

(b)
∫∫
R
e−(x2+y2) dA, R the unit disk in the xy-plane.

In polar coordinates, R is represented by the set {(r, θ)|r ≤ 1}, and the integral becomes∫ 2π

0

∫ 1

0

e−r
2

r dr dθ =

∫ 2π

0

−1

2
e−r

2

∣∣∣∣1
0

dθ = π
(
1− e−1

)
.

(c)
∫∫∫

R
sin
(
x2 + y2 + z2

) 3
2 dV , R the unit ball in xyz-space.

In spherical polar coordinates, R is represented by the set {(r, θ, φ)|r ≤ 1}, and the integral becomes∫ 2π

0

∫ π

0

∫ 1

0

sin r3 r2sin θdr dθ dφ = 2π

∫ π

0

sin θ

(
−1

3
cos r3

)∣∣∣∣1
0

dθ

=
2π

3
(1− cos 1) (− cos θ)|π0 =

4π

3
(1− cos 1) .
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5. Consider the two-dimensional vector space of functions on the interval [0, 1]

V = {a sinπx+ b cosπx|a, b ∈ R}.

Let B = {sinπx, cosπx} ⊂ V .

(a) Prove that B is a basis for V . (Hint: Wronskian!)
The Wronskian of the functions sinπx and cosπx is given by

W (x) =

∣∣∣∣ sinπx cosπx
π cosπx −πsinπx

∣∣∣∣ = −π,

which is not zero on any interval. Thus the functions sinπx and cosπx are linearly independent on any open
interval, and hence on the interval [0, 1] itself, by the contrapositive of the proposition in the notes on the
Wronskian on the course website. Since they span the space V by definition, they must then be a basis for
V .

(b) Find the matrix representation [T ]B of the operator T in the basis B, for (i) T = d
dx ; (ii) T = d2

dx2 .
(i) We evaluate T on the basis elements:

T (sinπx) =
d

dx
sinπx = π cosπx, T (cosπx) = −πsinπx.

From this we see that (cf. the notes on linear algebra on the course website)

[T ]B =

(
0 −π
π 0

)
.

(ii) Again, we evaluate T on the basis elements:

T (sinπx) =
d

dx
π cosπx = −π2sinπx, T (cosπx) = −π2 cosπx.

From this we see that

[T ]B =

(
−π2 0

0 −π2

)
.

We note that this is the square of the matrix in (i), as it should be.

6. Consider the differential equation d2y
dx2 = −4y.

(a) Find the set of all solutions to this equation.

Writing the equation as d2y
dx2 + 4y = 0, we have the characteristic equation r2 + 4 = 0, which has the

imaginary roots r = ±2i. This means that (as we could have determined by inspection in this case) the
equation has solutions sin 2x, cos 2x; since (as we show in (b) in a moment) these are linearly independent,
the solution set is {asin 2x+ b cos 2x|a, b ∈ R}.

(b) Find a basis for this solution set. (You must prove that your answer is in fact a basis.)
We claim that {sin 2x, cos 2x} is a basis for the solution set to this equation. We know from the theory

of ordinary differential equations that the set of solutions to this equation is two-dimensional, so to show
this it suffices to show that {sin 2x, cos 2x} is linearly independent. This can be effected by computing its
Wronskian:

W (x) =

∣∣∣∣ sin 2x cos 2x
2 cos 2x −2sin 2x

∣∣∣∣ = −2,

so as in 5(a) above this set is indeed linearly independent and hence (as noted in part (a) of this problem)
a basis for the set of solutions to the equation.
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(c) (Optional) Can you find the set of all solutions to d2y
dx2 + 4y = sin 4x?

By the theory of ordinary differential equations, the general solution to this equation will be the sum of
a particular solution and the general solution to the corresponding homogeneous equation from (a), which
we already know. Now we note that

d2

dx2
sin 4x = −16sin 4x,

so that if y = − 1
12 sin 4x,

d2y

dx2
+ 4y = − 1

12
(−16sin 4x+ 4sin 4x) = sin 4x,

and the set of all solutions to d2y
dx2 + 4y = sin 4x is {− 1

12 sin 4x+ asin 2x+ b cos 2x|a, b ∈ R}.

7. Find all (a) local and (b) global maxima of f(x, y) = ey cosx on the rectangle [0, 2π]× [0, 1].
To find any local extrema, we compute the gradient and set it to zero:

∇ey cosx = −eysinxi + ey cosxj = 0.

Since ey 6= 0 for any y, this gives the system sinx = cosx = 0; but since sin 2x+cos2 x = 1, this is impossible.
Thus this function has no local extrema in the rectangle (or anywhere in the plane, for that matter).

To find global extrema, we thus need only consider the function on the boundary. Now if x = 0 or
x = 2π, we have f(x, y) = ey, which (on [0, 1]) has a minimum of 1 at y = 0 and a maximum of e at y = 1.
If y = 0 then f(x, y) = cosx, which has a maximum of 1 at x = 0 and a minimum of −1 at x = π, while if
y = 1 then f(x, y) = e cosx, which has a maximum of e at x = 0 and a minimum of −e at x = π. Putting all
of this together, we see that the global maximum of ey cosx is e, at the point (0, 1), and the global minimum
is −e, at (π, 1). (Only the global maximum was required for this problem; the author put in the solution for
the global minimum by mistake.)
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