APM346, Summer 2019 Nathan Carruth
APM346, Homework 1. Solutions.

1. Calculate the indicated derivatives.

(a) £ (10;56 —5a® + 42% — Tz + 1) = 602° — 1522 + 8z — 7

In [52? — 3z + 100]) = 51225
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sin 2x) = 2 cos 2.

coskx) = —ksinkz, k a constant.

|
—~ o~

cos k1 sin kay) = ks cos kyx cos kay, k1, ko constants.

% (sin_1 (ln (cos (tan (xyz + 22 4+ 10zy — 100)))))
_ 1 sin (tan (xyz + 22 + 102y — 100))
\/1 —In? (cos (tan (zyz 4 22 4 10zy — 100))) (tan (zyz + 27 + 10zy — 100))
- xy sec? (myz + 2% + 10zy — 100)
_ 1
\/1 — In? (cos (tan (zyz + 22 + 10zy — 100)))
-aysec? (zyz + 2% + 102y — 100) .

tan (tan (acyz + 2% + 10zy — 100))

2. Evaluate the following expressions.

(a) V (22 + y?) = 2zi + 2yj.

(b) V (2% + y* — 22%) = 2zi + 2yj — 42k.

(¢)div (zi+yj+10k)=1+14+0=2.

(d) div (V (22 + y* — 22?)) = div (2zi + 2yj — 42k) = 0.

(e) div (V (e¥sinz)) = div (e¥ coszi + e¥sinzj) = —e¥sinx + e¥sinz = 0.

3. Evaluate the following integrals. (You must show your work to get credit.)

(a) We use integration by parts:

27 2m 2
. 27 . 2 .
/ r?sinxdr = —x? cosx|0 —I—/ 2x cosx dr = —47? + (29&smx|07r —/ ZSlnfcdx)
0 0 0

= —47? + 2cos x|} = —4x2.

(b) We use integration by parts again:
27 2

2m 1 2m 1 2 1
/ xsin (kx)dx = ——xcos(kx)| + / — cos(kx) dx = 7 cos(27k) + —sin (kx)
; k o K 2 2

0 0

2 1
= —% cos(2mk) + ﬁsin (2mk).
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(c) 0+OO re Tdr = —xe‘w\goo + f0+oo e dx = —e_f”|aroo = 1, where we can use L'Hopital’s rule to

conclude lim,_, 1 o xe™® = 0.

(d) This problem can be done two ways, one using a double integration by parts, and the other (for those
who are comfortable working with complex functions) using complex exponentials. The first is as follows.
We work with indefinite integrals:

/emcosxdx:emcosa:+/e$sina:dx

=e"cosx + (ewsinx - /e”” cosxdac)

from which we easily see that [ e” cosz dz = je” (cosz + sinz). From this it follows that

27 1
/ e””cosxdx:f(e%—l).
O 2
The other method is as follows:

iz —ix 1 ) ) 1 (1+i)x (1—d)z
/ew coszdr = /e’”% dx = 3 /6(1“):” + 1= gy = 5 (el i + 61 — )

1 Nz , 1 ,
=1 ((1 —i)e )T 4 (1 4+ i)e(l_z)””) = Z2Re (1 —1i)e” (cosz + isinx)

1
= 56”’ (cosx +sinx).

From this the definite integral follows as before.

(e) fo% sin kixsinkox dx, ki, ko € Z, ki # ko.
This integral can be evaluated by using the trigonometric identity sin asinb = % (cos(a — b) — cos(a + b)).
In the present case, this gives

2 1 27
/ sin kyx sin ko da = 5/ cos ((k1 — k2)x) — cos ((k1 + ko)) dx
0 0

_ % (Sin (kb — kp)z)  sin ((ky + kg)x))

2

klsz k1+k2 0

assuming ki # —ko, k1, ko # 0, and since ky # ko. The case k1 = —ko is essentially identical to k1 = ko
(since sin is odd) and is covered (up to a minus sign) by the solution to (f), and when either k; or ks is zero
the integral is zero. (The author apologises for these oversights in setting the original problem; he should
have written ki1, ks € Z, k1,k2 > 0.)

(f) Same as (e), but with k1 = ko.
Again, we assume ki # 0. In this case the identity above becomes sin?k1z = % (1 — cos (2k1)), and
the above integral becomes

2m 2m
1
/ sin?kyxdr = = / 1 — cos (2k12) dx = 7,
0 2 Jo

since the integral of cos will vanish as in (e).

(2) fozﬂ sin k1x cos kox dx, ki, ks any two integers.

2
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This is very similar to (e) but uses instead the identity sinacosb = 1 (sin(a + b) + sin (a —b)). The
integral becomes, for ky # t+ko,

27 1 27
/ sin kyx cos kax = 5/ sin ((k1 + ko)) +sin ((k1 — k2)x) dx
0 0

1 (cos ((ky + ka)z) . cos (ks — ka)z) | |*"
( . )

2 ki + ko ki — ko

=0.

0

If ky = ko, then sin ((k1 — k2)z) = 0 for all x, so its integral still vanishes, while if k&; = —ky then the integral
of sin ((k1 4 k2)z) vanishes for the same reason. If k; = ko = 0 then the entire integrand vanishes. Thus the
result above holds for all ki, ks € Z.

4. Evaluate the following integrals.

(a) If R =0, 7] x [0, 7], then

// SinxsinydAz/ / sinzx siny dzx dy
R o Jo

:/ siny (—cosz)|y dyz?/ siny dy = 4.
0 0

(d) [I5 e~ (**+9°) 4A, R the unit disk in the zy-plane.
In polar coordinates, R is represented by the set {(r,0)|r < 1}, and the integral becomes

2m 1 2 2m 1 2
/ / e " rdrdf :/ ——e "
o Jo 0 2

3
(¢) [[[5sin (2% +y* +22)* dV, R the unit ball in zyz-space.
In spherical polar coordinates, R is represented by the set {(r, 0, ¢)|r < 1}, and the integral becomes

2w ™ 1 T
/ / / sin® r2sin Odr d0 d¢ = 27r/ sin 6 (1 cos 1"3)
o Jo Jo 0 3

27

4
=3 (1—cosl) (—cosh)|s = %(1 —cos1).

1
d9:7r(1—e_1).
0

1
do
0
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5. Consider the two-dimensional vector space of functions on the interval [0, 1]
V = {asinmx + beosmzx|a,b € R}.

Let B = {sinmx,cosma} C V.

(a) Prove that B is a basis for V. (Hint: Wronskian!)
The Wronskian of the functions sin 7z and cos 7wz is given by

W((E) _ SIN T COSTXT .

Tcosmx —msinwx

which is not zero on any interval. Thus the functions sin 72 and cos wx are linearly independent on any open
interval, and hence on the interval [0, 1] itself, by the contrapositive of the proposition in the notes on the
Wronskian on the course website. Since they span the space V' by definition, they must then be a basis for
V.

(b) Find the matrix representation [T]p of the operator T in the basis B, for (i) T = %; (i) T = j—;.
(i) We evaluate T' on the basis elements:

d
T(sinmzx) = d—sin T = T COSTX, T(cosmx) = —msin 7.
x
From this we see that (cf. the notes on linear algebra on the course website)
0 —m
= (0 )

(ii) Again, we evaluate T' on the basis elements:

T(sinmzx) = o T eosTE = —r2sin e, T(cosmx) = —m° cos .
x

M= (75 ).

We note that this is the square of the matrix in (i), as it should be.

From this we see that

6. Consider the differential equation ji—g = —4y.

(a) Find the set of all solutions to this equation.

Writing the equation as ZZTZ + 4y = 0, we have the characteristic equation 72 + 4 = 0, which has the
imaginary roots r = 42i. This means that (as we could have determined by inspection in this case) the
equation has solutions sin 2z, cos 2z; since (as we show in (b) in a moment) these are linearly independent,
the solution set is {asin 2z + bcos2z|a,b € R}.

(b) Find a basis for this solution set. (You must prove that your answer is in fact a basis.)

We claim that {sin2x,cos2z} is a basis for the solution set to this equation. We know from the theory
of ordinary differential equations that the set of solutions to this equation is two-dimensional, so to show
this it suffices to show that {sin 2z, cos 2z} is linearly independent. This can be effected by computing its
Wronskian:

sin 2z cos 2x
Wi(z) = 2cos2r —2sin2z| >
so as in 5(a) above this set is indeed linearly independent and hence (as noted in part (a) of this problem)
a basis for the set of solutions to the equation.
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(c) (Optional) Can you find the set of all solutions to g%{ + 4y = sin4a?

By the theory of ordinary differential equations, the general solution to this equation will be the sum of
a particular solution and the general solution to the corresponding homogeneous equation from (a), which
we already know. Now we note that

d2
Wsin 4xr = —16sin4zx,
so that if y = —%sin 4z,
d*y 1 . . :
T2 +4y = T (—16sin 4z + 4sin 4z) = sin4x,

and the set of all solutions to 2272 + 4y = sindx is {—%sin 4x + asin 2x + bcos 2x|a, b € R}.

7. Find all (a) local and (b) global maxima of f(x,y) = e¥ cosz on the rectangle [0, 27] x [0, 1].
To find any local extrema, we compute the gradient and set it to zero:

VeYcosx = —eVsinxi + e¥ cosxj = 0.

Since e¥ # 0 for any v, this gives the system sin 2 = cos x = 0; but since sin 2z +cos? 2 = 1, this is impossible.
Thus this function has no local extrema in the rectangle (or anywhere in the plane, for that matter).

To find global extrema, we thus need only consider the function on the boundary. Now if z = 0 or
x = 2w, we have f(x,y) = e¥, which (on [0,1]) has a minimum of 1 at y = 0 and a maximum of e at y = 1.
If y = 0 then f(z,y) = cosx, which has a maximum of 1 at = 0 and a minimum of —1 at z = 7, while if
y = 1 then f(z,y) = ecosx, which has a maximum of e at z = 0 and a minimum of —e at = 7. Putting all
of this together, we see that the global maximum of e¥ cos z is e, at the point (0, 1), and the global minimum
is —e, at (m,1). (Only the global maximum was required for this problem; the author put in the solution for
the global minimum by mistake.)



