APM 346, Homework 12. Due Monday, August 12, at 11.59 PM EDT. To be marked turned in/not turned in.

1. Using the eigenfunctions and eigenvalues for the Laplacian on the unit disk $D=\{(\rho, \phi) \mid \rho<1\}$ derived in class, solve the following problem on $(0,+\infty) \times D$:

$$
\frac{\partial u}{\partial t}=\nabla^{2} u,\left.\quad u\right|_{\partial D}=0,\left.\quad u\right|_{t=0}=\rho^{4} \cos 4 \phi
$$

2. Using Fourier transforms in space, solve the following problem on $(0,+\infty) \times \mathbf{R}^{1}$:

$$
\frac{\partial^{2} u}{\partial t^{2}}=\frac{\partial^{2} u}{\partial x^{2}},\left.\quad u\right|_{t=0}=e^{-x^{2}},\left.\quad u_{t}\right|_{t=0}=0 .
$$

3. Again using Fourier transforms, consider the following problem on $(0,+\infty) \times \mathbf{R}^{1}$; give an integral expression for the solution, and evaluate it as far as possible:

$$
\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}+u,\left.\quad u\right|_{t=0}=e^{-x^{2}} .
$$

What is the behaviour of this solution in the limit $t \rightarrow+\infty$?

