
APM 346 (Summer 2019), Homework 10.

APM 346, Homework 10. Due Monday, July 29, at 6.00 AM EDT. To be marked completed/not completed.

1. Starting from separation of variables, give the series expansion to the solution for the following problem in
terms of an appropriate set of eigenfunctions of the Laplacian on the unit cube Q = {(x, y, z)|0 ≤ x, y, z ≤ 1}:

∇2u =

{
1, 0 ≤ z < 1

2
−1, 1

2 < z ≤ 1
, ∂νu|∂Q = 0, u(

1

2
,

1

2
,

1

2
) = 0,

where ∂ν denotes the outward normal derivative on the surface (e.g., on the surface ∂Q∩{z = 0}, it is − ∂
∂z ).

We begin by finding the eigenfunctions of the Laplacian on Q appropriate to the given boundary con-
ditions. (The last condition u( 1

2 ,
1
2 ,

1
2 ) = 0 is a condition on the solution, not the eigenfunctions, and will

be dealt with at the end.) We shall look as usual for separated eigenfunctions; thus we seek functions
u = X(x)Y (y)Z(z) and numbers λ satisfying

∇2u = λu, ∂νu|∂Q = 0;

now substituting u = X(x)Y (y)Z(z) into the first equation and dividing through by u (since we assume that
u, as an eigenfunction, is not identically zero), we have as usual the equation

X ′′

X
+
Y ′′

Y
+
Z ′′

Z
= λ. (1)

Now we need to determine how the boundary conditions are to be implemented in terms of X, Y , and Z.
Now the boundary ∂Q of Q has six parts, which lie in the planes z = 0, z = 1, x = 0, x = 1, y = 0,
y = 1; since ∂ν is the unit outward normal derivative on the boundary of Q, we see that on the plane
z = 0, ∂ν = − ∂

∂z , while on z = 1 we have ∂ν = ∂
∂z ; thus the parts of the boundary condition ∂νu|∂Q = 0

corresponding to the top and bottom surfaces of the cube are

X(x)Y (y) (−Z ′(0)) = 0, X(x)Y (y)Z ′(1) = 0,

i.e., X(x)Y (y)Z ′(0) = X(x)Y (y)Z ′(1) = 0 for all x and y. Since X and Y are not identically zero, we
conclude that Z ′(0) = Z ′(1) = 0. Analogously, the boundary conditions on the other sides of the cube give
X ′(0) = X ′(1) = 0, Y ′(0) = Y ′(1) = 0, and we thus have in addition to (1) the boundary conditions

X ′(0) = X ′(1) = Y ′(0) = Y ′(1) = Z ′(0) = Z ′(1) = 0.

From these we see as usual (since the derivative of a linear combination of exponentials is still a linear

combination of exponentials) that X, Y , and Z must all be oscillatory; thus X′′

X , Y ′′

Y , Z′′

Z < 0, so we may
write

X ′′ = −λ21X, Y ′′ = −λ22Y, Z ′′ = −λ23Z

(note that we do not yet know what the λi are since the boundary conditions are not the homogeneous
Dirichlet conditions we have met previously; in other words, we cannot just directly write λ1 = `π, etc.).
Let us consider the problem for X:

X ′′ = −λ21X, X ′(0) = X ′(1) = 0.

From the equation, we have
X = a cosλ1x+ bsinλ1x,

whence the boundary conditions give

X ′(0) = −λ1b = 0, X ′(1) = −aλ1sinλ1 + bλ1 cosλ1 = 0;
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APM 346 (Summer 2019), Homework 10.

the first gives either λ1 = 0, in the which case X = a is constant, or b = 0; in the first case the second
boundary condition is satisfied automatically, while in the second case (λ1 6= 0, b = 0) it gives

aλ1sinλ1 = 0,

so (since a 6= 0 as X 6= 0, and λ1 6= 0 by assumption) we must have λ1 = `π, ` ∈ Z, ` > 0, as before. Thus
we have two separate cases: either X = a or X = a cos `πx, ` ∈ Z, ` > 0. Clearly, we may combine these
two cases; dropping the arbitrary constant a, we may write

X = cos `πx, ` ∈ Z, ` ≥ 0.

Similar logic clearly applies also to Y and Z, so we have

Y = cosmπy, m ∈ Z,m ≥ 0,

Z = cosnπz, n ∈ Z, n ≥ 0,

and we have finally the eigenfunctions

e`mn = cos `πx cosmπy cosnπz, `,m, n ∈ Z, `,m, n ≥ 0,

while the corresponding eigenvalues are

λ`mn = −π2
(
`2 +m2 + n2

)
.

Note that λ000 = 0, i.e., we have a zero eigenvalue; this is because the constant function satisfies the boundary
condition in this case. This will create some extra wrinkles in our solution, one of which is obvious while
one is less so, as we shall see shortly.

We note that the set {cos `πx}∞`=0 is complete on [0, 1]; this can be shown in a way similar to that by
which we showed {sin `πx}∞`=1 complete on [0, 1]: if f : [0, 1] → R1 is any suitable function, then we may
extend it to [−1, 1] by requiring it to be even, i.e., we may define a new function

f∗ : [−1, 1], f∗(x) =

{
f(x), x ≥ 0
f(−x), x ≤ 0

;

since {cos `πx, sin `πx}∞`=0 is complete on [−1, 1], we may expand f∗ in a aeries in cos `πx and sin `πx; but
since f∗ is even, all of the coefficients for the sin `πx terms vanish, meaning that f∗ can be written in a series

f∗ =

∞∑
`=0

a` cos `πx

on [−1, 1]. But from this it follows that on [0, 1] we have the series

f =

∞∑
`=0

a` cos `πx,

meaning that {cos `πx}∞`=0 is complete on [0, 1], as desired. By standard logic, it follows that the set of
eigenfunctions {e`mn}∞`,m,n=0 is complete on Q.

We may now proceed as usual to solve the equation. We begin by expanding the right-hand side of the
given Poisson equation in terms of the above basis of eigenfunctions. Thus let

g(x, y, z) =

{
1, 0 ≤ z < 1

2
−1, 1

2 < z ≤ 1
;
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then we may write

g(x, y, z) =

∞∑
`,m,n=0

a`mn cos `πx cosmπy cosnπz.

To write out a formula for the a`mn, we need to determine the normalisation constants for the e`mn. Now∫ 1

0

cos2 `πx dx =

{
1, ` = 0
1
2 , ` 6= 0

;

if we denote this quantity by N`, then we may write∫
Q

e2`mn(x, y, z) dV = N`NmNn.

Thus we may write the coefficients a`mn in the above expansion as

a`mn =
1

N`NmNn

∫
Q

g(x, y, z)e`mn dV =
1

N`NmNn

∫ 1

0

∫ 1

0

∫ 1

0

g(x, y, z) cos `πx cosmπy cosnπz dz dy dx

=
1

N`NmNn

∫ 1

0

cos `πx dx

∫ 1

0

cosmπy dy

∫ 1

0

g cosnπz dz,

where we have used the fact that g depends only on z. Now we may write∫ 1

0

cos `πx dx = (1, cos `πx) =

{
1, ` = 0
0, ` 6= 0

,

since both 1 = cos 0πx is an element of the orthogonal set {cos `πx}∞`=0. From this, we see that a`mn = 0
unless ` = m = 0. Further, we see that∫ 1

0

g cos 0πz dz =

∫ 1

0

g dz = 0,

so that a000 = 0, while if n 6= 0

a00n = 2

∫ 1

0

g cosnπz dz = 2

(∫ 1
2

0

cosnπz dz −
∫ 1

1
2

cosnπz dz

)

= 2

(
1

nπ
sinnπz

∣∣∣∣ 12
0

− 1

nπ
sinnπz

∣∣∣∣1
1
2

)
=

4

nπ
sin

nπ

2
.

Thus we have finally

g(x, y, z) =

∞∑
n=1

4

nπ
sin

nπ

2
cosnπz.

Now we assume that the solution u to ∇2u = g may be expanded in the basis {e`mn}∞`,m,n=0 as

u =

∞∑
`,m,n=0

b`mn cos `πx cosmπy cosnπz;

substituting this in, and using the series expansion for g above, we have

∞∑
`,m,n=0

λ`mnb`mne`mn =

∞∑
n=1

4

nπ
sin

nπ

2
cosnπz;
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from this we see, first of all, that

λ000b000 = a000 = 0;

but since λ000 = 0, this tells us nothing about b000. Thus b000 is not determined by the boundary conditions
on u. We note also that had g been such that a000 6= 0 – which, unravelling everything, amounts to saying∫
Q
g dV 6= 0 – then the above equation would become

λ000b000 = 0 = a000 6= 0,

which has no solution. If we recall our abstract formula for the solution to Poisson’s equation nabla2u = g,

u =
∑
I

1

λI

(g, eI)

(eI , eI)
eI ,

we see that this is exactly the condition that (g, eI) = 0 for all I for which λI vanishes, while also the
coefficients in the series for u corresponding to such I are undetermined. These are common difficulties
when the Laplacian has a zero eigenvalue.

Proceeding to the nonzero eigenvalues, we see that b`mn = 0 unless ` = m = 0, while for n 6= 0

b00n =
1

λ`mn

4

nπ
sin

nπ

2
= − 4

n3π3
sin

nπ

2
.

Thus we have the series solution

u = b000 −
∞∑
n=1

4

n3π3
sin

nπ

2
cosnπz.

To determine b000, we apply the final condition, noting that sin nπ
2 cos nπ2 = 1

2 sinnπ = 0 for all n ∈ Z:

u(
1

2
,

1

2
,

1

2
) = b000 −

∞∑
n=1

4

n3π3
sin

nπ

2
cos

nπ

2
= b000 = 0,

so that finally we have the solution

u(x, y, z) = −
∞∑
n=1

4

n3π3
sin

nπ

2
cosnπz.

2. Compute the Fourier transforms of the following functions:

f(x) =

{
1, x ∈ [−1, 1]
0, otherwise

.

f(x) =

{
1− |x|, x ∈ [−1, 1]

0, otherwise
.

f(r, θ, φ) =

{
1, r ≤ 1
0, otherwise

.

f(x) = e−ax
2

, a ∈ R, a > 0.

f(r, θ, φ) = e−ar
2

, a ∈ R, a > 0.

f(x) = xe−ax
2

, a ∈ R, a > 0.

[For the fifth of these, it may be simpler to change to rectangular coordinates.]
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We take these one by one:

F [f ](k) =

∫ ∞
−∞

f(x)e−2πikx dx =

∫ 1

−1
e−2πikx dx =

i

2πk
e−2πikx

∣∣∣∣1
−1

=
i

2πk

(
e−2πik − e2πik

)
=

sin 2πk

πk
.

The above calculation only works for k 6= 0; but for k = 0 we have clearly F [f ](0) = 2, which is the limit of
the above function as k → 0. Thus we have

F [f ](k) =

{
2, k = 0

sin 2πk
πk , k 6= 0

.

This function of k is closely related to the so-called sinc function, which is useful in many different places.
We shall typically just write it as sin 2πk

πk , with the understanding that its value at k = 0 is taken to be
2. (We note that with this definition it is actually an analytic function of k with a power series expansion
convergent on the entire real line, or complex plane.)

Next, we have

F [f ](k) =

∫ ∞
−∞

f(x)e−2πikx dx =

∫ 1

−1
(1− |x|) e−2πikx dx.

To compute this integral, we note that for k 6= 0∫
xe−2πikx dx = − 1

2πik
xe−2πikx +

1

2πik

∫
e−2πikx dx =

(
− 1

2πik
x+

1

4π2k2

)
e−2πikx + C,

while when k = 0 ∫
xe−2πikx dx =

∫
x dx =

1

2
x2 + C.

Thus the above integrals become∫ 1

−1
(1− |x|) e−2πikx dx =

∫ 1

−1
e−2πikx dx+

∫ 0

−1
xe−2πikx dx−

∫ 1

0

xe−2πikx dx;

the first of these is just sin 2πk
πk , while the second two give(

− 1

2πik
x+

1

4π2k2

)
e−2πikx

∣∣∣∣0
−1
−
(
− 1

2πik
x+

1

4π2k2

)
e−2πikx

∣∣∣∣1
0

=
1

4π2k2
−
(

1

2πik
+

1

4π2k2

)
e2πik −

((
− 1

2πik
+

1

4π2k2

)
e−2πik − 1

4π2k2

)
=

1

2π2k2

(
1− 1

2

(
e2πik + e−2πik

))
− 1

πk

1

2i

(
e2πik − e−2πik

)
=

1

2π2k2
(1− cos 2πk)− sin 2πk

πk
,

in the case that k 6= 0; when k = 0, they give simply∫ 0

−1
x dx−

∫ 1

0

x dx =
1

2
x2
∣∣∣∣0
−1
− 1

2
x2
∣∣∣∣1
0

= −1,

which is seen to be the limiting value of the above expression as k → 0. Taking it to have this value at k = 0
(as we did with sin 2πk

πk above), we have finally

F [f ](k) =
sin 2πk

πk
+

1

2π2k2
(1− cos 2πk)− sin 2πk

πk

=
1

2π2k2
(1− cos 2πk).
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(We note that, defining this function to have its limiting value at k = 0, it is also analytic.)
Proceeding, we have

F [f ](k) =

∫
R3

f(r, θ, φ)e−2πik·x dx.

Fix some k ∈ R3. Now since f is spherically symmetric, we may assume that our spherical coordinate
system (r, θ, φ) is such that in it k = (k, 0, 0), i.e., that k points along the positive z axis. In this case,
k · x = kr cos θ, and the above integral may be written∫ 2π

0

∫ π

0

∫ 1

0

e−2πikr cos θr2sin θ dr dθ dφ

which may be evaluated as

2π

∫ 1

0

1

2πik
re−2πikr cos θ

∣∣∣∣π
0

dr = 2π

∫ 1

0

1

2πik
r
(
e2πikr − e−2πikr

)
dr = 2π

∫ 1

0

rsin 2πkr

πk
dr

=
2

k

(
−r cos 2πkr

2πk

∣∣∣∣1
0

+
1

2πk

∫ 1

0

cos 2πkr dr

)

=
2

k

(
−cos 2πk

2πk
+

1

4π2k2
sin 2πkr

∣∣∣∣1
0

)
=

2

k

(
−cos 2πk

2πk
+

sin 2πk

4π2k2

)
=

1

2π2k3
(−2πk cos 2πk + sin 2πk) ,

for k 6= 0, while if k = 0 it is clearly just 4
3π, the volume of the unit sphere; and we note that this is just the

limit of the above expression as k → 0:

1

2π2k3
(−2πk cos 2πk + sin 2πk) =

1

2π2k3

(
−2πk + πk (2πk)

2 − · · ·+ 2πk − 1

6
(2πk)

3
+ · · ·

)
=

1

2π2k3

(
4π3k3 − 4

3
π3k3 + · · ·

)
=

8
3π

3k3 + · · ·
2π2k3

=
4

3
π + · · · ,

where · · · indicates terms of order in k higher than those preceding. This expression thus clearly approaches
4
3π as k → 0, as claimed.

Continuing with fortitude, we have, noting the Gaussian integral∫
R1

e−ax
2

dx =

√
π

a

(which holds for all complex a with <a > 0)

F [f ](k) =

∫ ∞
−∞

e−ax
2

e−2πikx dx

=

∫ ∞
−∞

e−a(x+
πik
a )

2−π2k2

a dx = e−
π2k2

a

∫ ∞
−∞

e−a(x+
πik
a )

2

dx

=

√
π

a
e−

π2k2

a ,

where we have used the substitution u = x+ πik
a in the last equality. (This can be justified more rigorously in

the context of complex variable theory by thinking of adjusting the contour z = t to the contour z = t+ πik
a

bit by bit, and noting that the integrand rapidly goes to zero as t → ±∞ along either contour.) We note
that the width of the Gaussian giving the Fourier transform is proportional to the reciprocal of the width
of the original Gaussian; this is a manifestation of the celebrated uncertainty principle, which is probably

6



APM 346 (Summer 2019), Homework 10.

best known from quantum mechanics but can also be formulated as a theorem on Fourier transforms (since,
we note for those who have seen some quantum mechanics, the momentum-space representation of the
wavefunction is essentially just the Fourier transform of its position-space representation).

Continuing, and using the hint, we have

F [f ](k) =

∫
R3

e−ar
2

e−2πik·x dx

=

∫
R3

e−a(x
2+y2+z2)e−2πi(k1x+k2y+k3z) dx,

which is easily seen to be a product of three transforms of Gaussians; in other words, we have

F [f ](k) =
(π
a

) 3
2

e−
π2(k21+k2

2
+k2

3)
a =

(π
a

) 3
2

e−
π2|k|2
a .

For the final Fourier transform, we could proceed directly, but that would be quite a nuisance; instead we
use a property of the Fourier transform to write

F [xe−ax
2

](k) = F
[
− 1

2a

d

dx

(
e−ax

2
)]

(k) = − 1

2a
2πik

√
π

a
e−

π2k2

a

= −ik
(π
a

) 3
2

e−
π2k2

a .

This formula is related to the properties of the so-called Hermite polynomials discussed in section 5.2.8 of
the textbook.
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