APM 346 (Summer 2019), Homework 1.

APM 346, Homework 1. Due Monday, May 13, at 6 AM EDT. To be marked completed/not completed.

- 1. Calculate the indicated derivatives.
- (a) $\frac{d}{dx} \left(10x^6 5x^3 + 4x^2 7x + 1 \right)$.
- (b) $\frac{d}{dx} \left(\ln \left[5x^2 3x + 100 \right] \right)$.
- (c) $\frac{d}{dx} \left(e^{5x^{10} 10x^5 + 102} \right)$.
- (d) $\frac{d}{dx}(\sin 2x)$.
- (e) $\frac{d}{dx}(\cos kx)$, k a constant.
- (f) $\frac{\partial}{\partial y} (\cos k_1 x \sin k_2 y)$, k_1 , k_2 constants.
- (g) $\frac{\partial}{\partial z} \left(\sin^{-1} \left(\ln \left(\cos \left(\tan \left(xyz + x^2 + 10xy 100 \right) \right) \right) \right) \right)$.
- 2. Evaluate the following expressions.
- (a) $\nabla (x^2 + y^2)$.
- (b) $\nabla (x^2 + y^2 2z^2)$.
- (c) div (xi + yj + 10k).
- (d) div $(\nabla (x^2 + y^2 2z^2))$.
- (e) div $(\nabla (e^y \sin x))$.
- 3. Evaluate the following integrals. (You must show your work to get credit.)
- (a) $\int_0^{2\pi} x^2 \sin x \, dx$.
- (b) $\int_0^{2\pi} x \sin(kx) dx$, k a constant.
- (c) $\int_0^{+\infty} xe^{-x} dx$.
- (d) $\int_0^{2\pi} e^x \cos x \, dx.$
- (e) $\int_0^{2\pi} \sin k_1 x \sin k_2 x \, dx$, $k_1, k_2 \in \mathbf{Z}$, $k_1 \neq k_2$.
- (f) Same as (e), but with $k_1 = k_2$.
- (g) $\int_0^{2\pi} \sin k_1 x \cos k_2 x dx$, k_1 , k_2 any two integers.
- 4. Evaluate the following integrals.
- (a) $\iint_R \sin x \, \sin y \, dA, \, R = [0,\pi] \times [0,\pi].$
- (b) $\iint_R e^{-(x^2+y^2)} dA$, R the unit disk in the xy-plane.
- (c) $\iiint_R \sin (x^2 + y^2 + z^2)^{\frac{3}{2}} dV$, R the unit ball in xyz-space.

APM 346 (Summer 2019), Homework 1.

5. Consider the two-dimensional vector space of functions on the interval [0,1]

$$V = \{a\sin \pi x + b\cos \pi x | a, b \in \mathbf{R}\}.$$

Let $B = \{\sin \pi x, \cos \pi x\} \subset V$.

- (a) Prove that B is a basis for V. (Hint: Wronskian!)
- (b) Find the matrix representation $[T]_B$ of the operator T in the basis B, for (i) $T = \frac{d}{dx}$; (ii) $T = \frac{d^2}{dx^2}$.

- 6. Consider the differential equation $\frac{d^2y}{dx^2} = -4y$.
- (a) Find the set of all solutions to this equation.
- (b) Find a basis for this solution set. (You must prove that your answer is in fact a basis.)
- (c) (Optional) Can you find the set of all solutions to $\frac{d^2y}{dx^2} + 4y = \sin 4x$?

7. Find all (a) local and (b) global maxima of $f(x,y) = e^y \cos x$ on the rectangle $[0,2\pi] \times [0,1]$.