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1 Introduction

Finding the character table and hence the irreducible characters of a group is
not difficult. Realizing these as representations, however, takes a little more
work. The aim of this project is to find all the irreducible representations of
the group As, or rather, at least one representative of each equivalence class.
The character table of As is found in Appendix 4.2, and it is:

e (123) (12)(34) (12345) (13452)

X1 1 1 1 1 1
X2 4 1 —1 —1
s 5 -1 1 0 0
V5 -5
x« 3 0 -1 132 1 2;
— +
X5 3 0 -1 2 2

So there are 5 irreducible characters, and in Section 3, representations with
each of these characters are found. But first some background theory is
needed.

2 Background Theory

Here we list some general results which will be useful later, when looking for
representations with specific characters.

2.1 (CG-modules

Representations are equivalent to C'G-modules, using the following theorem:

Theorem 1:

If p: G — GL(n,C) is a representation of G over C' and V = F™ then
V becomes a C'GG-module if we define the multiplication vg by vg = vp(g).
There is a basis 8 of V such that p(g) = [¢]s for all g € G.
Also, if V is a C'G-module with basis 5 then the function ¢ — [g]s is a
representation of (.

Proof:

See [1] p. 40.

Hence we can work with modules rather than with representations, because
by Theorem 1 they are equivalent. In particular, a 1 dimensional character



X (which is a representation), corresponds to a module as follows:

U, = span{)_ x(9)g}

geG

In the search for irreducible modules, we will encounter many which are non-
irreducible. It is therefore important to be able to decompose a module into
irreducible components. Applying the following theorem allows us to do so.

Maschke’s Theorem:

Let (G be a finite group and let V' be a C'G-module. If U is a C'G-submodule
of V, then there is a C'G-submodule W of V' such that V =U @& W.

Proof:

(See [1].) First choose any vector space W’ with the desired property, i.e.
V =U & W'. Then use this to find a module as follows. Define ¢ : V — V
by &(v) = u where u is the unique element of U such that v = u + w for
some element w in W'. Le. ¢ is the projection of V onto W’. Use ¢ to define
p:V =V by

(v) (v)
@S

where ¢g(v) means multiplication by g as in Theorem 1. Then ¢ is linear, and
maps V into U, because y := ¢(x) € U Va € V and since U is a module,
g '(y) € U Yy € U. The aim is to show ¢ is a projection onto U, and let
W =kerp. ¢isa CG—homomorphism because for all v € V. h € G we have

o(hv) = |G| gzeg;g g(hv)) |G| thE:Gh gh)~ (&((gh)(v))) =
= (|G| ghzeth gh)” gh)(v)))) = lip(v)

So ¢ is a C'G-homomorphism. Also, ¢* = . This is because for all u €
U,g € G we have g(u) € U since U is a module. Therefore ¢(g(u)) = g(u)

s0 g7 ¢(g(u)) = g‘lg(U) = u. Hence

-1
(u) g (u) u =
-z -z
So ¢ fixes U, hence p* = . This also shows imp = U. So ¢ is a projection
onto U and it is a C'G-homomorphism. Let W = keryp. Then W is a C'G-
module since it is the kernel of a C'G-homomorphism, and V' = U & W, as
desired. QED



The proof of this will be helpful later.

2.2 Induced Representations

Section 2.1 was concerned with C'G-modules in general. In this section we
introduce a few facts about a specific way of finding representations and
modules; induced representations. This is a powerful way of finding repre-
sentations of GG by looking at subgroups of G.

Definition:

If H is a subgroup of GG, and U is a C'H-submodule of C H, thenlet U T G =
span{ug :u € U,g € G}. Call U 1 G the module of G induced from U. (This
is indeed a C'G-submodule of C'G.) The degree of U 1 (i is:

|G
degU 1 G = —xl(e
Vi ()

When inducing modules from a subgroup to GG there is often some particu-
lar module one aims to find. Therefore it would be helpful to know which
module(s) of (¢ a particular module of H will induce to.

In order to find out how a module U with character ¥} will induce to a module
of G, it is helpful to form the matrix A with ij-entry < x; | H,v¥; >g. By
Frobenius Reciprocity Theorem (proved in class),

<Xid H,p >p=<xi,¢; T G >q

Hence, if ¢, is a character of H, the exact combination of characters of ¢
which v induces too, is given by the columns of the matrix A. This will
be very useful in suggesting beforehand which characters/modules would be
useful to induce.



3 Realising the Representations of A;

The aim of this project is, as mentioned in the introduction, to find at least
one representation for each character in the character table of As. There are
5 irreducible characters, and they are found in Appendix 4.2:

e (123) (12)(34) (12345) (13452)

v 1 1 1 1
2 4 0 —1 —1
X3 5 =1 1 0 0
i 1mE
xe 3 0 —1 1*2; 1 2;
-5 +v'5
X5 3 0 —1 5 5

In the remainder of Section 3, explicit irreducible representations with the
above irreducible characters are found. In some cases, alternative approaches
are given. For consistency purposes, the trivial character has its own section
as well as each of the other characters.

3.1 Representation Corresponding to y;

The trivial character is one dimensional, so is the trace of a representation
into 1 x 1 matrices, which is the 1 x 1 matrix itself. So the trivial character
equals the trivial representation, which is irreducible.

The other representations will take substantially much more work.

3.2 Representation Corresponding to y»

It is shown when finding the character table of As in Appendix 4.2 that
x2(g9) = |fiz(g)] — 1 Vg € G. This is related to the “permutation rep-
resentation” having character x(g) = |fiz(g)| Vg € G. The permutation
representation sends g to a matrix permuting the columns in the same way
g permutes {1,2,3.4,5} . E.g.

00100
1000 0
(123) | 0 1 0 0 0
00010
0000 1



Unfortunately this representation is not irreducible as it has character y =
X1+x2. But we can decompose it into irreducible components using Maschke’s
Theorem.

Let V' be the module equivalent to this representation, and let 5 = {vy, ..., v5}
be a basis. ¢ acts on v; by ¢g(vi) = vy). Then Uy := span{vy + ... + vs} is
a l-dimensional submodule of V. G acts on Uy by g(v;) = v,(i) Vg € G.
Therefore g(u) = v Vu € U;. Hence U is equivalent to the trivial module,
and thus the character of U; is equal to the trivial character.

By Maschke’s Theorem U; has a complement, i.e. there is a C'G-module W
such that
V=Ua&W

To find W, let W' = span{vy,vq,vs,v4}. Then W' is a subspace of V' such
that V = U; @ W’'. Now use this W’ to find a C'G-module, as in the proof of
Maschke’s Theorem.

Define

v, — 0 1=1,2,3,4

vy — v+ ...+ s

i.e. ¢ is the projection onto U; with kernel W’. Also define

p: V=V, o¢:

o(r) = 5 3 g7 lo(v)

geG

Then if a; = the number of elements which send v; to vs, we have

1 1
p(vi) = @%(1}1 + o vs) = 5(?}1 + ...+ vs)
because a; = 12 Vi. By Maschke’s Theorem, the W we are looking for is the
kernel of ¢:

W = kerp = span{v; — vy, v3 — v3, 03 — V4,04 — U5} = {Z Aivi] Z A =0}

The representation my equivalent to the module W can be found using The-
orem 1, taking as our basis f = {v; — vy, 09 — v3,v3 — V4,04 — v5}. A few
examples are:

—1
—1
0
0

Tyt (123) —

OO~ O
O =
_o o O



-1 1 0 0
0 1 0 0
Tyt (12)(34) — 0 1 -1 1
0 0 0 1
0 0 0 —1
1 00 —1
ma(12345) = |
0 0 1 —1
-1 1 0 0
-1 1 0 -1
m(13452) = | o
0 01 -1

The character of this representation is x(g) = xv—xuv, = |fiz(g9)|—-1Vg € G,
which is exactly y,. The representation is irreducible since its character
agrees with yo which is an irreducible character.

NOTE: The above can be done for S, or any subgroup of 5,,.

3.3 Representation Corresponding to y;

The representation corresponding to ys can be found using representations
of a subgroup of A5 and inducing them to representations of As. The size of
the subgroup together with the degree of the representation determines the
degree of the induced representation, as mentioned in Section 2.2:
. A
dim(U 1 43) = 5y )

where H is the subgroup of As having a module U with character y, and
U 1 As is the module of A5 induced from the module U of H.

Ay is a subgroup of Ajs of size 12, so a 1-dimensional representation of Ay
would induce to a 5-dimensional representation of As. The character table
of Ay (see Appendix 4.3) is as follows:



e (12)(34) (123) (132)

o1 1 1 1
v 3 -1 0 0
by 1 AN
by 1 A2

where A is a 3rd root of unity.

So inducing e.g. 15 would give a 5-dimensional representation of As, which
would hopefully be the desired one, i.e. have character ys. In order to see in
advance how it will induce, compute the matrix A mentioned in Section 2.2:

b1y Y3 iy
X1 1 0 0 0
2 11 0 0
X3 o 1 1 1
X4 0 1 0 0
X5 0 1 0 0

So inducing a module of either ¥3 or ¥4 will give the required module. Let’s
choose 3. Since the character 15 is 1-dimensional, it is also a representation.
A I-dimensional C'H-module can be created using 3 as follows:

Uy = span{ > ws(h)h}

h€A4

Then

Uy T As = span{uglu € Uy, g € A5} =
= span{ > s(h)h, Y s(h)h(125), > bs(h)h(135),

h€A, h€A, h€A,
Z L/)g(h 145 Z 77Z)3 152 } =
h€A, h€Ay

= span{e + (12)(34) + (13)(24) + (14)(23) + A(123) + A(134) +
A(142) + A(243) + A*(132) + A*(143) + A*(234) + N\?(124),
(125) + (25)(34) + (14253) + (13254) + A(13)(25) + A(12534) +
A(254) + A(14325) + A?(253) 4 A2(12543) + A*(13425) + A*(14)(25),
(135) + (14352) + (24)(35) 4 (12354) + A(235) + A(14)(35) +



13542) + A(12435) 4+ \*(12)(35
45) + (13452) + (12453) + (23)
12)(45) + A(13245) + A*(14532) + A*(13)(45) + A*(12345) + A?(245),
52) + (15)(34) + (15423) + (15324) + A(153) + A(15234) +

(15)(24) + A(15432) + A*(15)(23) + A*(15243) + A*(15342) + A*(154)}

+ A?(354) 4+ A*(14235) + A*(13524),

)
(45) + A(14523) + A(345) +

N T

Al
1
(
1

N T

This has dimension 5 so let these 5 elements of be a basis 3 of Uy T As. That

makes Us 1 As equivalent to the representation

T3 g+ [g]s

as in Theorem 1. Here are a few examples of how 73 acts:

A0 1 0 0
0 0 0 0 O
71 (123) — 0 0 0 0 XN
0 00 X O
0O X0 0 0

75 (12)(34) —

jenilen il en e i
_— o O O O
O O OO
g©
jenilan e N

0 0 0 0 X
0 0 X 0 0
m5: (12345)— 1 0 0 0 1 0
A0 0 0O
0 X 0 00
0 XM 0 00
0 0 0 0 A
m5: (13452) — | 0 0 0 X 0
1 0 0 0 0
0 0 X 00

Calculating the traces of these (and noting that MNE+A+1 = 0), we see that
the representation w3 has character ys, so must be irreducible.
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3.4 Representation Corresponding to y4

We could find a representation corresponding to y4 using modules in a similar
approach to that in Sections 3.2 and 3.3 (see Section 3.4.1). Alternatively,
and perhaps more interesting, is the approach taken in Section 3.4.2; using
a geometric interpretation of As. This also turns out to be much shorter.

3.4.1 Algebraic Approach

If we can find a subgroup of the right size, we can use the same approach as in
finding the representation corresponding to x3. Unfortunately the subgroups
would have to be of size 20 or larger, but the largest subgroup of As is Ay,
of size 12. However, a smaller subgroup would have representations which
induce to linear combinations of representations of As, which could then be
decomposed to irreducible components.

The second largest subgroup of As is isomorphic to Dyg. For example, let

Dio = {e, (12345), (13524), (14253), (15432),

(12)(35), (13)(45), (14)(23), (15)(24), (25)(34)}
The character table of Dyq is (see Appendix 4.4):

e (12)(35) (12345) (13452)

o1 1 1 1
b 1 -1 1 1
S48 —1-B
¢3 2 0 1-|2— 5 12 5
¢s 2 0 A6 obS

In order to find out beforehand how these representations will induce to
representations of As, we again calculate the matrix A mentioned earlier in
Section 2.2:

b1 2 Q3 P

Yi 1 0 0 0
vs 1 0 1 1
va 0 1 1 0
X5 0o 1 0 1

11



To find a module of x4 we can induce a module of ¢3, and then break it down
into irreducible components. To do that we first need to find a module for ¢s.
This leads us to look at the subgroup Zs = {e, (12345), (13524), (14253), (15432)}
of Dyg. It has character table:

e (12345) (13524) (14253) (15432)

e 11 1 1 1
P2 1 I I I I
O 1w Ty 11
T N Ty 11 Iy
s 1t 11 I 11

where p is a 5th root of unity.

Using the formula in Section 2.1 a module for e.g @y is Us = span{e +
1(12345) + p?(13524) + p°(14253) + p*(15432)}.  Call this element z, so
Us = span{x}. Inducing this to Dy we get
Ust Do = span{z,x(12)(35)}
= spanfe + p(12345) + p?(13524) + p(14253) + p*(15432),
(12)(35) + 1(13)(45) + #2(14)(23) + 1(15)(24), " (25)(34)}
Inducing this further, to a module of As, we get:
(Us 1 Do) T As = span{x,x(12)(35)

= span{e+ p(12345) + 1% (13524) + 1>(14253) + p*(15432),
(12)(35) + p(13)(45) + p*(14)(23) + *(15)(24), " (25)(34)
(123) + (13245) + p2(14)(25) + p°(15342) + p*(354),
(124) + p(13425) + p*(14352) + 1>(153) + p*(23)(45),
(125) + 1(13452) + p*(14)(35) + p*(15423) + p*(243),
(135) + 1(14523) + 2(15324) + 1%(254) + p*(12)(34),
(145) + (15234) + 2(24)(35) + p°(12543) + p*(132),
(134) + p(14235) + p(15243) + 12(253) 4 p*(12)(45),
(234) + (12435) + 2 (13)(25) + p°(14532) + p*(154),
(235) + 1(12453) + 1%(13254) + 1>(142) + p*(15)(34),
(245) + (12534) + 12(13542) + 1*(143) + p*(15)(23),
(345) + 1(12354) + 2(13)(24) + p°(14325) 4 p*(152), }

This is not an irreducible module; it is a combination of a module with
character yq, one with character ys and one with character y4. We could

12



try to factor out a module with character y; e.g., but since the module
found earlier in Section 3.3, may only be equivalent to the module to be
factored out, this may be very difficult. Instead, we could try to project
this 12 dimensional module onto a 3 dimensional submodule, with character
Xa4. This involves calculating Y- ,¢ 4, x4(9)[g]3, which is a sum of 40 12 x 12
matrices. (The 20 3-cycles have y4(g) = 0 so they will not appear in the
sum.) This will give the required module and representation, although it is
very computational.

3.4.2 Geometric Approach

There are many different ways to find representations with a given character.
Here is a completely different approach to that above, using geometrical
interpretations rather than modules.

The icosahedron, the 3-dimensional platonic solid consisting of 20 equilateral
triangles, has symmetry group related to As. This fact can be used to find a
representation of degree 3 of As. The symmetry group of the icosahedron is
As X Zy, and the rotational symmetry group is just As (see [2]). This can be
seen as follows: Let an orthogonal set be a set of 6 points, so that 3 pairwise
orthogonal lines can be drawn between pairs of them. The midpoints of the
30 edges of icosahedron can be divided into 5 orthogonal sets (see Figure 1
below). Once an edge is specified, the entire orthogonal set is specified, so
these are permuted by the rotations in the symmetry group. Since there are
5 of them, the rotational symmetry group is isomorphic to As.

This shows As is isomorphic to a subgroup of GGLs(C'), with an isomorphism
sending any element of A5 to the equivalent rotation of the orthogonal sets.
This is exactly the definition of a representation of degree 3. It is not yet
clear weather this representation has character y4 or x5, but because As has
no representations of degree 2, it is likely that any ‘nontrivial’ representation
of degree 3 is irreducible.

To see how each element of A5 corresponds to a rotation, consider the image of
an icosahedron in Figure 1. Here the orthogonal sets have been numbered, so
that an element g of As corresponds to the rotation permuting the orthogonal
sets in the same way g permutes the numbers 1 to 5. Take the coordinate
system to have horizontal z-axis, vertical z-axis, and a y-axis perpendicular
to the image.

13



Figure 1: Orthogonal sets in Icosahedron

Define this representation of As as follows:

T4 1 g —

cosf + (1 —cosf)z* (1 —cosf)ay — zsinf (1 —cosf)xz + ysinb
(1 —cos@)zy + zsinf cosf + (1 —cosf)y* (1 — cosf)yz — xsinb
(1 —cosb)zz —ysinf (1 —cosh)yz+ xsinfd cosh + (1 — cosh)z?

where ¢ corresponds to the rotation of the icosahedron with axis (x, y, 2)
(a unit vector) and angle #. (This is a rotation matrix; see [3].) All axes
of rotation corresponding to 5H-cycles pass through a pair of vertices of the
icosahedron; the reason these have order 5 is that there are 5 faces attached
to each vertex. 3-cycles on the other hand correspond to rotations with axes
passing through the centre of two opposite faces; the faces are triangles, so
these rotations have order 3. Finally, two 2-cycles have rotations with axes
passing through the midpoints of two edges, and have order 2.

For example, the element (12345) of As corresponds to a rotation with an-

gle ZX and axis of rotation the unit vector a(% 1""\/5,0) where a = ,/5_:;\/5.

5 20 4

Therefore

7y 0 (12345) —

27 a2 a2 2 2 1-I—\/g 1-|-\/§ s 27
cos (1 o ) —I—\/Z (1 — cos = \)/c_z 2 . a2 sin 2
B 27y 2145 27 (1 _ 23+/5 23+v5 1 o 27
(1 — cos = Ja 2 cos = (1 a’ =5 ) + a*5 5 sin
o 1—|—\/§ s 27 a i 2T 2
a5 sin 2 5 sin = cos

To calculate the trace we first need to find the exact value of cos 2% This can

be done by noting that one of the 5th roots of unity is cos 2% + ¢sin 2%, and
the 5th roots of unity can easily be found. The result is that cos 2% = %

14



27 5+v5

and sin? = /2222 So the trace is

3 1""2\/5. Hence this representation has
character y4 because no other degree 3 character (irreducible of not) takes
this value on (12345).

Similarly one can calculate m4((13452)). This rotation has angle & and axis

1+\/501)
s Yy 9

. where a is as before!. Therefore:

of rotation the unit vector a(—

7y 0 (13452) —

671 _ 23+V5 2345 a6 67 21+v/5
cos % (1—a > )+a 5 S sin % (cos . \/_l)a 2
@ qin 87 én 1+V5 i 67

S sin & . co\j_5 a5 SH215 2

6 _ 21+v5 VS o BT 6r (1 _ a’ a”

(cos : Da 2 a=2sin 2 cos % (1 4)—I— .

This has trace %
One last example shows how m4 acts on (23)(45). This element corre-
sponds to rotation through 7 with axis of rotation being the y-axis. Hence

cosm 0 —sinmw -1 0 0
740 (23)(45) — 0 1 0 = 0 1 0
sinm 0 cosT 0 0 -1

and this has trace -1, as required. So we have found an irreducible represen-
tation with character yy.

3.5 Representation Corresponding to y;

To find a representation with character ys one can take a similar approach to
that in Section 3.4.1. In the notation of Section 3.4.1, we could e.g. induce a
module of Dig with character ¢, rather than one with character ¢5. However,
a faster approach builds on the result found in Section 3.4.2.

There is an automorphism 7 of As sending the element (12345) to (13452),
namely the conjugation by the element (12) in S5. In As, these two 5-cycles
are not conjugate, but in S5 they are (any elements of the same cycle type
are conjugate in S,). 7 maps into As because As is normal in Ss.

The automorphism 7 sends 3-cycles to other 3-cycles, and elements of the
conjugacy class of (12)(34) to other elements conjugate to (12)(34). Also, 7
sends elements in the conjugacy class of (12345) to elements in the conjugacy
class of (13452) and vice versa.

Tn fact, every 5-cycle corresponds to a rotation with axis similar to the two calculated
so far; one coordinate is 0, another :I:% and a third :I:%.

15



An automorphism composed with a representation is again a representation,
so the map 74 := w3 0 7 is a representation of As. The conjugacy classes of
(123) and (12)(34) are fixed by 7, so the character of 75 must agree with the
character of m4 on these conjugacy classes. Also, 7 swaps the two remaining
conjugacy classes, so the character of w5 is the opposite of the character of
74 on these conjugacy classes. This is exactly ys, so m5 must be irreducible
and we have found an irreducible representation with character ys.

We have hence found a representative for each of the 5 equivalence classes of
irreducible representations; one for each character in the character table of

As.

4 Appendices

4.1 Character Table of S;
Let G = S5. Then G has 7 conjugacy classes, as follows:

Representative: e (12) (123) (12)(34) (1234) (123)(45) (12345)
Order: 1 10 20 15 30 20 24
Centralizer order: 120 12 6 8 4 6 5

There are therefore 7 irreducible characters. Two of them are 1 dimensional;
the trivial character, x; and the character defined by x2(g) = sn(g). This is
a representation because it is a homomorphism from G to the group of 1 x 1
complex matrices. Another character is given by

xs(g) = lfix(g)] =1

where [fix(¢)| is the number of i fixed by ¢g. This is a character (See [1] and
also Section 3.2).

It is a known fact that a character y is irreducible iff < y,x >= 1 (See
course notes p. 17). In this way it can be verified that all three characters
mentioned thus far are irreducible. Hence we have the first three rows of the
character table:

e (12) (123) (12)(34) (1234) (123)(45) (12345)
i1 11 1 1 1 1
2 1 -1 1 1 ~1 ~1 1
s 4 2 1 0 ~1 ~1

16



It is also a known fact that the product of two characters again a charac-
ter. In this manner we obtain y4; = y2x3. This is also irreducible because
< X4,X4 >= 1. Another way to form new characters from old ones is to
take the symmetric and antisymmetric parts of it. By [1] pp. 196-198 these
are characters and are given by:

xs(g) = 5 (X*(9) + x(gh)

[N

and

xalg) = % (V*(9) = x(¢")

Therefore the symmetric and antisymmetric parts of y3 are respectively

e (12) (123) (12)(34) (1234) (123)(45) (12345)
xXa 6 0 0 —2 0 0 1
xs 10 4 1 2 0 1 0

We have
< Xa,xa >=1

and
3 100 16,1 4 0 1 0
XSXS 2= o0 T 1o T T80 "4 6T

Hence y 4 is irreducible, but ys is not. However, this means ygs is a sum of
irreducible characters. We can find out which of the characters y; to x5 are
contained in ygs:

< xs,x1 >=1

< xs, X2 >=10
< Xs,x3 >=1
< Xxs,Xe>=10
< Xs, X5 >=0

Therefore ys contains a copy of y; and ys but none of the other characters
found so far. Since < ys,ys >= 3, ys must be the sum of three irreducible
characters. That means xys = y1 + x3 + xe¢ where yg is the irreducible
character we are looking for. Hence y¢ = xs — x3 — x1 s0

e (12) (123) (12)(34) (1234) (123)(45) (12345)
xe 5 1 -1 1 ~1 1 0

17



This can be verified to be irreducible by seeing < y¢, x¢ >= 1. Finally, let
Y7 = Xa2Xe. This is also irreducible, so is the last row of the character table.
Hence the character table of S5 is:

e (12) (123) (12)(34) (1234) (123)(45) (12345)

i1 1 1 1 1 1 1
Yo 1 -1 1 1 1 1 1
s 42 1 0 0 1 1
a4 -2 1 0 0 1 1
vs 6 0 —2 0 0 1
e 5 1 -1 1 1 1 0
i 5 -1 —1 1 1 1 0

4.2 Character Table of A;

Let G = As. First note that |As| = 60 and that G has 5 conjugacy classes,
with representatives and sizes as follows:

Representative: e (123) (12)(34) (12345) (13452)
Order: 1 20 15 12 12
Centralizer order: 60 3 4 5 5

Hence there are 5 irreducible characters. One of them is obviously the trivial
representation, with the trivial character x1(g) = 1Vg € G. In order to find
the other characters we must look at the characters of S5 and restrict them
to As in the hopes that some of them will be irreducible. Restricting all
irreducible characters of S5 to As we get:

e (123) (12)(34) (12345) (13452)

vi 1 1 1 1 1
2 1 1 1 1 1
s o4 1 0 ~1 ~1
ve 4 1 0 ~1 ~1
vs 6 0 —2 1 1
ve 5 -1 1 0 0
i 5 -1 1 0 0

Then we have < 3, x5 >=1, < y5, x5 >= 2 and < x4, X6 >= 1. So we have
found two irreducible characters, apart from the trivial one. We know that
there are 5 irreducible characters, since there are 5 conjugacy classes in As.
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We also know that the sum of the squares of the degrees equal the size of the
group. Therefore the degrees of the last two characters satisfy:

14+4* 45+ f2+ f3 =60

The only solution to this is f; = fo = 3. We can now use column and row
orthogonality relations to determine the rest of the table. For reference, label
the missing values as follows:

e (123) (12)(34) (12345) (13452)

Y1 1 1 1 1 1
X3 4 1 0 —1 —1
Y6 5 —1 1 0 0
Xa 3 ay as as aq
Xb 3 by by bs by

Now < column 1, column 2 >= 3(a;+b;) = 0 and < column 2, column 2 >=
3—|—a%—|—b%:3soa1:blz()

Also < column 1, column 3 >= 6+3(az+b2) = 0 and < column 3, column 3 >=
2—|—a§—|—b§:4so g =by = —1

Also < column 1, column 4 >= —3+3(as+bs) = 0 and < column 4, column 4 >=
24+ ai+0bi=5s0ai—az—1=0and by = 1 — a3. The same equations
arise for column 5. The two remaining characters must be different, so the
two solutions of the quadratic occur in the two characters respectively. (The
order is irrelevant.) Hence the character table for As is:

e (123) (12)(34) (12345) (13452)

X1 1 1 1 1 1
X2 4 1 0 —1 —1
X3 5 -1 1 0 0
/5 /5
Y4 3 0 -1 13; 1 2;
—/5 +V5
X5 3 0 -1 2 2

with the characters relabelled.

4.3 Character table of A,

The character table of A4 is even more straight forward to find than those
of A5 and S5. A, has 4 conjugacy classes with the details shown in the table
below.
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Order: 1

Centralizer order: 12

Representative: e (12)(34) (123) (132)
3 4 4
4 3 3

The commutator subgroup of Ay is A} = {e, (12)(34), (13)(24), (14)(23)} so
AyfA, ~ Zs. This is a cyclic group, so has character table

e (123)A4, (132)4,

Un 1 1 1
Py 1 A 22
Y3 1 A2 A

Inducing these characters to characters of Ay, we get three of the 4 rows.
The last row can be obtained either by using column orthogonality relations,
or by noting that, just like S5 and As, A4 also has a character taking the
values x2(g) = |fiz(g)| — 1 Vg € Ay. Hence the full character table of Ay is:

e (12)(34) (123) (132)

o1 1 1 1
v 3 —1 0 0
by 1 1 AN
by 1 1 A2

4.4 Character table of Dy

Here we find the Character table of Dyy. This group has 4 conjugacy classes,
and hence 4 irreducible characters:

Representative: e (12)(35) (12345) (13452)
Order: 1 5 2 2
Centralizer order: 10 2 5 5

The commutator subgroup of Djg is the set of all ‘rotations’, so in this case
the set of 5-cycles together with the identity. Therefore Dyo/ D}, has order
2, so is isomorphic to Z,. Lifting the characters of 73 we get

e (12)(35) (12345) (13452)

& 11 1 1
s 1 -1 1 1
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Using the fact that

Y deg(¢i)? = Dyl

¢; irreducible

we see that the remaining two characters must have degree 2. The rest of the
table can now be found using column orthogonality relations. The complete
character table of Dy is:

e (12)(35) (12345) (13452)

¢1 1 1 1 1
by 1 —1 1 1
14/5 o5
ooz e g
¢4 9 0 —1; 5 —1-|2—5
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