
CHAPTER 5

Topological Groups, Representations, and Haar Measure

5.1. Topological spaces

If X is a set, a family U of subsets of X defines a topology on X if
(i) ∅ ∈ U , X ∈ U .
(ii) The union of any family of sets in U belongs to U .
(iii) THe intersection of a finite number of sets in U belongs to U .

If U defines a topology on X, we say that X is a topological space. The sets in U are
called open sets. The sets of the form X \U , U ∈ U , are called closed sets. If Y is a subset
of X the closure of Y is the smallest closet set in X that contains Y .

Let Y be a subset of a topological space X. Then we may define a topology UY on
Y , called the subspace or relative topology, or the topology on Y induced by the topology
on X, by taking UY = {Y ∩ U | U ∈ U }.

A system B of subsets of X is called a basis (or base) for the topology U if every open
set is the union of certain sets in B. Equivalently, for each open set U , given any point
x ∈ U , there exists B ∈ B such that x ∈ B ⊂ U .

Example: The set of all bounded open intervals in the real line R forms a basis for the
usual topology on R.

Let x ∈ X. A neighbourhood of x is an open set containing x. Let Ux be the set of all
neighbourhoods of x. A subfamily Bx of Ux is a basis or base at x, a neighbourhood basis at
x, or a fundamental system of neighbourhoods of x, if for each U ∈ Ux, there exists B ∈ Bx

such that B ⊂ U . A topology on X may be specified by giving a neighbourhood basis at
every x ∈ X.

If X and Y are topological spaces, there is a natural topology on the Cartesian product
X × Y that is defined in terms of the topologies on X and Y , called the product topology.
Let x ∈ X and y ∈ Y . The sets Ux × Vy, as Ux ranges over all neighbourhoods of x,
and Vy ranges over all neighbourhoods of y forms a neighbourhood basis at the point
(x, y) ∈ X × Y (for the product topology).

If X and Y are topological spaces, a function f : X → Y is continuous if whenever
U is an open set in Y , the set f−1(U) = {x ∈ X | f(x) ∈ U } is an open set in X. A
function f : X → Y is a homeomorphism (of X onto Y ) if f is bijective and both f and
f−1 are continuous functions.

An open covering of a topological space X is a family of open sets having the property
that every x ∈ X is contained in at least one set in the family. A subcover of an open
covering is a an open covering of X which consists of sets belonging to the open covering.
A topological space X is compact if every open covering of X contains a finite subcover.

1



A subset Y of a topological space X is compact if it is compact if Y is compact in the
subspace topology. A topological space X is locally compact if for each x ∈ X there exists
a neighbourhood of x whose closure is compact.

A topological space X is Hausdorff (or T2) if given distinct points x and y ∈ X, there
exist neighbourhoods U of x and V of y such that U ∩ V = ∅. A closed subset of a locally
compact Hausdorff space is locally compact.

5.2. Topological groups

A topological group G is a group that is also a topological space, having the property
the maps (g1, g2) 7→ g1g2 from G×G → G and g 7→ g−1 from G to G are continuous maps.
In this definition, G×G has the product topology.

Lemma. Let G be a topological group. Then

(1) The map g 7→ g−1 is a homeomorphism of G onto itself.

(2) Fix g0 ∈ G. The maps g 7→ g0g, g 7→ gg0, and g 7→ g0gg−1
0 are homeomorphisms of G

onto itself.

A subgroup H of a topological group G is a topological group in the subspace topology.
Let H be a subgroup of a topological group G, and let p : G → G/H be the canonical
mapping of G onto G/H. We define a topology UG/H on G/H, called the quotient topology,
by UG/H = { p(U) | U ∈ UG }. (Here, UG is the topology on G). The canonical map p is
open (by definition) and continuous. If H is a closed subgroup of G, then the topological
space G/H is Hausdorff. If H is a normal subgroup of G, then G/H is a topological group.

If G and G′ are topological groups, a map f : G → G′ is a continuous homomorphism
of G into G′ if f is a homomorphism of groups and f is a continuous function. If H is a
closed normal subgroup of a topological group G, then the canonical mapping of G onto
G/H is an open continuous homomorphism of G onto G/H.

A topological group G is a locally compact group if G is locally compact as a topological
space.

Proposition. Let G be a locally compact group and let H be a closed subgroup of G.

Then

(1) H is a locally compact group (in the subspace topology).

(2) If H is normal in G, then G/H is a locally compact group.

(3) If G′ is a locally compact group, then G×G′ is a locally compact group (in the product

topology).

5.3. General linear groups and matrix groups

Let F be a field that is a topological group (relative to addition). Assume that
points in F are closed sets in the topology on F . For example, we could take F = R,
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C or the p-adic numbers Qp, p prime. Let n be a positive integer. The space Mn×n(F )
of n × n matrices with entries in F is a topological group relative to addition, when
Mn×n(F ) ' Fn2

is given the product topology. The multiplicative group GLn(F ), being
a subset (though not a subgroup) of Mn×n(F ), is a topological space in the subspace
topology. The determinant map det from Mn×n(F ) to F , being a polynomial in matrix
entries, is a continuous function. Now F× = F \{0} is an open subset of F (since points are
closed in F ). Therefore, by continuity of det, GLn(F ) = det−1(F×) is an open subset of
Mn×n(F ). It is easy to show that matrix multiplication, as a map (not a homomorphism)
from Mn×n(F ) × Mn×n(F ) to Mn×n(F ) is continuous. It follows that the restriction to
GLn(F )×GLn(F ) is also continuous. Let g ∈ GLn(F ). Recall that Cramer’s rule gives a
formula for the ijth entry of g−1 as the determinant of the matrix given by deleting the
ith row and jth column of g, divided by det g. Using this, we can prove that g 7→ g−1 is a
continuous map from GLn(F ) to GLn(F ). Therefore GLn(F ) is a topological group. We
can also see that if F is a locally compact group (for example if F = R, C or Qp), then
GLn(F ) is a locally compact group.

The group SLn(F ), being the kernel of the continuous homomorphism det : GLn(F ) →
F×, is a closed subgroup of SLn(F ), so is a locally compact group whenever F is a lo-

cally compact group. If In is the n × n identity matrix and J =
(

0 In

−In 0

)
, then

Sp2n(F ) = { g ∈ GL2n(F ) | tgJg = J } is a closed subgroup of GL2n(F ). If S ∈ GLn(F )
is a symmetric matrix, that is tS = S, the group On(S) = { g ∈ GLn(F ) | tgSg = S }
is an orthogonal group, and is a closed subgroup of GLn(F ). Depending on the field
F , different choices of S can give rise to non-isomorphic orthogonal groups. If E is a
quadratic extension of F and X ∈ Mn×n(E), let X̄ be the matrix obtained from X by
letting the nontrivial element of the Galois group Gal(E/F ) act on each the entries of X.
Suppose that h ∈ GLn(E) is a matrix such that th̄ = h (h is hermitian). Then the group
U(h) = { g ∈ GL2n(E) | tḡhg = h } is called a unitary group and is a closed subgroup
of GLn(E). If (n1, . . . , nr) is a partition of n then the corresponding standard parabolic
subgroup P = P(n1,...,nr) of GLn(F ) is a closed subgroup of GLn(F ), as are any Levi factor
of P , and the unipotent radical of P .

5.4. Matrix Lie groups

A Lie group is a topological group that is a differentiable manifold with a group
structure in which the multiplication and inversion maps from G×G to G and from G to G

are smooth maps. Without referring to the differentiable manifolds, we may define a matrix
Lie group, or a closed Lie subgroup of GLn(C) to be a closed subgroup of the topological
group GLn(C). (This latter definition is reasonable because GLn(C) is a Lie group, and
it can be shown that a closed subgroup of a Lie group is also a Lie group). A connected
matrix Lie group is reductive if it is stable under conjugate transpose, and semisimple
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if it is reductive and has finite centre. The book of Hall [Hall] gives an introduction to
matrix Lie groups, their structure, and their finite-dimensional representations. For other
references on Lie groups and their representations, see [B], [K1] and [K2].

5.5. Finite-dimensional representations of topological groups and matrix Lie
groups

Let G be a topological group. A (complex) finite-dimensional continuous representa-
tion of G is a finite-dimensional (complex) representation (π, V ) of G having the property
that the map g 7→ [π(g)]β from G to GLn(C) is a continuous homomorphism for some
(hence any) basis β of V . The continuity property is equivalent to saying that every ma-
trix coefficient of π is a continuous function from G to C. Hence to prove the following
lemma, we need only observe that the character of π is a finite sum of matrix coefficients
of π.

Lemma. Let π be a continuous finite-dimensional representation of G. Then the character

χπ of π is a continuous function on G.

Example: Let π be a continuous one-dimensional representation of the locally compact
group R. Then π is a continuous function from R to C such that π(0) = 1 and π(t1 + t2) =
π(t1)π(t2) for all t1, t2 ∈ R. If f : R → C is continuously differentiable and the support
of f is contained in a compact subset of R, then

∫∞
−∞ f(t)π(t) dt converges. Choose f so

that c =
∫∞
−∞ f(t)π(t) dt 6= 0. Multiplying π(t1 + t2) by f(t2) and integrating, we have∫ ∞

−∞
f(t2)π(t1 + t2) dt2 = π(t1)

∫ ∞

−∞
f(t2)π(t2) dt2 = cπ(t1), t1 ∈ R.

Then

π(t1) = c−1

∫ ∞

−∞
f(t2)π(t1 + t2) dt2 = c−1

∫ ∞

−∞
π(t)f(t− t1) dt, t1 ∈ R.

Because t1 7→
∫∞
−∞ π(t)f(t − t1) dt is a differentiable function of t1, we see that π is a

differentiable function. Differentiating both sides of π(t1 + t2) = π(t1)π(t2) with respect
to t1 and then setting t1 = 0 and t = t2, we obtain π′(t) = π′(0)π(t). Setting k = π′(0),
we have π′(t) = kπ(t), t ∈ R. Solving this differential equation yields π(t) = aekt for some
a ∈ C. And π(0) = 1 forces a = 1. Hence π(t) = ekt. Now if we take a z ∈ C, it is clear
that t 7→ ezt is a one-dimensional continuous representation of R.

Lemma. Let z ∈ C. Then πz(t) = ezt defines a one-dimensional continuous representation

of R. The representation πz is unitary if and only if the real part of z equals 0. Each

one-dimensional continuous representation of R is of the form πz for some z ∈ C, and
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any one-dimensional continuous representation of R is a smooth (infinitely differentiable)

function of t.

Theorem. A continuous homomorphism from a Lie group G to a Lie group G′ is smooth.

Let G be a Lie group (for example, a matrix Lie group). Then, because GLn(C) is
a Lie group, via a choice of basis for the space of the representation, a finite-dimensional
representation of G is a continuous homomorphism from G to GLn(C). According to the
theorem, the representation must be a smooth map from G to GLn(C).

Corollary. A continuous finite-dimensional representation of a Lie group is smooth.

Definition. A Lie algebra over a field F is a vector space g over F endowed with a bilinear
map, the Lie bracket, denoted (X, Y ) 7→ [X, Y ] ∈ g satisfying [X, Y ] = −[Y,X] and the
Jacobi identity

[X, [Y,Z]] + [Y, [Z,X]] + [Z, [X, Y ]] = 0 ∀ X, Y, Z ∈ g.

If G is a Lie group, the Lie algebra g of G is defined to be the set of left-G-invariant
smooth vector fields on G. A vector field is a smoothly varying family of tangent vectors,
one for each g ∈ G, and it can be shown that if X is identified with the corresponding
tangent vector at the identity element, then the Lie algebra g is identified with the tangent
space at the identity.

If we work with matrix Lie groups, we can take a different approach. If X ∈ Mn×n(C),
then the matrix exponential eX =

∑∞
k=0 Xk/k! is an element of GLn(C).

Proposition. Let G be a matrix Lie group. Then the Lie algebra g is equal to

g = {X ∈ Mn×n(C) | etX ∈ G ∀ t ∈ R }.

and the bracket [X, Y ] of two elements of g is equal to the element XY −Y X of Mn×n(C).

Using the fact that det(eX) = etr X , we can see that the Lie algebra sln(C), resp.
sln(R), of SLn(C), resp. SLn(R), is just the set of matrices in Mn×n(C), resp. Mn×n(R),
that have trace equal to 0. Now suppose that G = Sp2n(F ) with F = R or C. Note that
etX ∈ G if and only if JetXt

J−1 = e−tX . From

X =
d

dt
(etX) |t=0 = lim

t→0
(etX − 1)/t.

we can see that JetXt

J−1 = e−tX for all t ∈ R implies JXtJ−1 = −X. The converse is
easy to see. Therefore the Lie algebra sp2n(F ) of Sp2n(F ) is given by

sp2n(F ) = {X ∈ Mn×n(F ) | JXtJ−1 = −X } = {X ∈ Mn×n(F ) | JXt + XJ = 0 }.
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The same type of approach can be used to find the Lie algebras of orthogonal and unitary
matrix Lie groups.

If V is a finite-dimensional complex vector space, EndC(V ) is a Lie algebra relative to
the bracket [X, Y ] = X ◦ Y − Y ◦X. This Lie algebra is denoted by gl(V ). A linear map
φ : g → gl(V ) is a Lie algebra homomorphism if

φ([X, Y ]) = φ(X) ◦ φ(Y )− φ(Y ) ◦ φ(X), X, Y ∈ g.

A finite-dimensional representation of g is a Lie algebra homomorphism from g to gl(V )
for some finite-dimensional complex vector space V .

Proposition. Let G be a matrix Lie group, and let (π, V ) be a continuous finite-dimensional

representation of G. Then there is a unique representation dπ of of the Lie algebra g of G

(acting on the space V ) such that

π(eX) = edπ(X), X ∈ g.

Furthermore dπ(X) = d
dtπ(etX) |t=0, X ∈ g, and π is irreducible if and only if dπ is

irreducible.

If the matrix Lie group G is simply connected, that is, the topological space G is sim-
ply connected, then any finite-dimensional representation of g lifts to a finite-dimensional
representation of G, and the representations of G and g are related as in the above propo-
sition.

5.6. Groups of t.d. type

A Hausdorff topological group is a t.d. group if G has a countable neighbourhood
basis at the identity consisting of compact open subgroups, and G/K is a countable set
for every open subgroup K of G. Some t.d. groups are matrix groups over p-adic fields.

Let p be a prime. Let x ∈ Q×. Then there exist unique integers m, n and r such that
m and n are nonzero and relatively prime, p does not divide m or n, and x = prm/n. Set
|x|p = p−r. This defines a function on Q×, which we extend to a function from Q to the
set of nonnegative real numbers by setting |0|p = 0. The function | · |p is called the p-adic
absolute value on Q. It is a valuation on Q - that is, it has the properties
(i) |x|p = 0 if and only if x = 0
(ii) |xy|p = |x|p|y|p
(iii) |x + y|p ≤ |x|p + |y|p.

The usual absolute value on the real numbers is another example of a valuation
on Q. The p-adic abolute value satisfies the ultrametric inequality, that is, |x + y|p ≤
max{|x|p, |y|p}. Note that the ultrametric inequality implies property (iii) above. A valu-
ation that satisfies the ultrametric inequality is called a nonarchimedean valuation.
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Note that the set { |x|p | x ∈ Q× } is a discrete subgroup of R×. Hence we say that
| · |p is a discrete valuation. The usual absolute value on Q is an example of an archimedean
valuation. Clearly it is not a discrete valuation. Two valuations on a field F are said to
be equivalent is one is a positive power of the other.

Theorem. (Ostrowski) A nontrivial valuation on Q is equivalent to the usual absolute

value or to | · |p for some prime p.

If F is a field and | · | is a valuation on F , the topology on F induced by | · | has as a
basis the sets of the form U(x, ε) = { y ∈ F | |x− y| < ε }, as x varies over F , and ε varies
over all positive real numbers. A field F ′ with valuation | · |′ is a completion of the field F

with valuation | · | if F ⊂ F ′, |x|′ = |x| for all x ∈ F , F ′ is complete with respect to | · |′

(every Cauchy sequence with respect to | · |′ has a limit in F ′) and F ′ is the closure of F

with respect to | · |. So F ′ is the smallest field containing F such that F ′ is complete with
respect to | · |′.

The real numbers is the completion of Q with respect to the usual absolute value on
Q.

The p-adic numbers Qp is the completion of Q with respect to | · |p. (We denote the
extension of | · |p to Qp by | · |p also). The p-adic integers Zp is the set {x ∈ Qp | |x|p ≤ 1 }.
Note that Zp is a subring of Qp (this follows from the ultrametric inequality and the
mulitiplicative property of | · |p), and Zp contains Z. The set pZp (the ideal of Qp generated
by the element p) is a maximal ideal of Zp and Zp/pZp is therefore a field.

Let x ∈ Q×. Write x = prm/n with r ∈ Z and m and n nonzero integers such that m

and n are relatively prime and not divisible by p. Because m and n are relatively prime and
not divisible by p, the equation nX ≡ m(mod p) has a unique solution ar ∈ { 1, . . . , p−1 }.
That is, there is a unique integer ar ∈ {1, . . . , p − 1 } such that p divides m − nar. Since
|n|p = 1, p divides m − nar is equivalent to |(m/n) − ar|p < 1, and also to |x − arp

r|p <

|x|p = p−r. Expressing x− arp
r in the form psm′/n′ with s > r and m′ and n′ relatively

prime integers, we repeat the above argument to produce an integer as ∈ {1, . . . , p − 1}
such that

|x− arp
r − asp

s|p < |x− arp
r|p = p−s.

If s > r + 1, set ar+1 = ar+2 = · · · as−1 = 0, to get

|x−
s∑

n=r

anpn|p < p−s.

Continuing in this manner, we see that there exists a sequence { an | n ≥ r } such that
an ∈ { 0, 1, . . . , p− 1 } and, given any integer M ≥ r,

|x−
M∑

n=r

anpn|p < p−M .
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It follows that
∑∞

n=r anpn converges in the p-adic topology to the rational number x.
On the other hand, it is quite easy to show that if an ∈ { 0, 1, . . . , p − 1} and r is

an integer, then
∑∞

n=r anpn converges to an element of Qp (though not necessarily to a
rational number).

Lemma. A nonzero element x of Qp is uniquely of the form
∑∞

n=r anpn, with an ∈
{ 0, 1, 2, . . . , p − 1}, for some integer r with ar 6= 0. Furthermore, |x|p = p−r. (Hence

x ∈ Zp if and only if r ≥ 0).

Lemma. Zp/pZp ' Z/pZ.

Proof. Let a ∈ Zp. According to the above lemma, a =
∑∞

n=r anpn for some sequence
{ an |n ≥ r }, where |a|p = p−r ≤ 1 implies that r ≥ 0. If r > 0, then a ∈ pZp. For
convenience, set a0 = 0 when |a|p < 1. If r = 0, then a0 ∈ { 1, . . . , p − 1 }. Define a map
from Zp to Z/pZ by a 7→ a0. This is a surjective ring homomorphism whose kernel is equal
to pZp. qed

A local field F is a (nondiscrete) field F which is locally compact and complete with
respect to a nontrivial valuation. The fields R, C, and Qp, p prime, are local fields. If | · |
is a nontrivial nonarchimedean valuation on a field F , then {x ∈ F | |x| < 1} is a maximal
ideal in the ring {x ∈ F | |x| ≤ 1 }, so the quotient is a field, called the residue class field
of F . The following lemma can be used to check that Qp is a local field.

Lemma. Let | · | be a nonarchimedean valuation on a field F . Then F is locally compact

with respect to | · | if and only if

(1) F is complete (with respect to | · |)
(2) | · | is discrete

(3) The residue class field of F is finite.

For every integer N , pNZp is a compact open (and closed) subgroup of Qp. It is not
hard to see that { pNZp | N ≥ 0 } forms a countable neighbourhood basis at the identity
element 0. From the above lemma, we have that Q×p ' 〈p〉×Z×p . Hence Qp/Zp is discrete.
It can be shown that any open subgroup of Qp is of the form pNZp for some integer
N . Thus Qp/K is discrete for every open subgroup K of Qp. So the group Qp is a t.d.
group. For more information on valuations, the p-adic numbers, and p-adic fields, see the
beginning of [M] (course notes for Mat 1197).

As discussed in the section 5.3, because Qp is locally compact, the topological group
GLn(Qp) is also locally compact. In fact GLn(Qp) is a t.d. group. If j is a positive integer,
let Kj be the set of g ∈ GLn(Qp) such that every entry of g− 1 belongs to pjZp. Then Kj

is a compact open subgroup, and {Kj | j ≥ 1 } forms a countable neighbourhood basis at
the identity element 1.
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Let K be an open subgroup of GLn(Qp). Then Kj ⊂ K for some j ≥ 1. Hence to
prove that G/K is countable, it suffices to prove that G/Kj is countable for every j. For
a discussion of the proof that G/Kj is countable, see [M].

Closed subgroups (and open subgroups) of t.d. groups are t.d. So any closed subgroup
of GLn(Qp) is a t.d. group. These groups are often called p-adic groups. We remark that
groups like GLn(Qp), SLn(Qp), Sp2n(Qp), etc., are the groups of Qp-rational points of
reductive linear algebraic groups that are defined over Qp. Such groups have another
topology, the Zariski topology (coming from the variety that is the algebraic group). The
structure of these groups is often studied via algebraic geometry, in contrast with the
structure of Lie groups, which is studied via differential geometry.

As with Lie groups, there is a notion of smoothness for representations. A (complex)
representation (π, V ) is smooth if for each v ∈ G, the subgroup { g ∈ G | π(g)v = v } is an
open subgroup of G. This definition is also valid if V is infinite-dimensional. This notion of
smoothness is very different from that for Lie groups - in fact, connected Lie groups don’t
have any proper open subgroups. Because of the abundance of compact open subgroups
in t.d. groups, and the fact that the general theory of representations of compact groups
is well understood (see Chapter 6), properties of representations of t.d. groups are often
studied via their restrictions to compact open subgroups.

Lemma. Suppose that (π, V ) is a smooth finite-dimensional representation of a compact

t.d. group G. Then there exists an open compact normal subgroup K of G and a repre-

sentation ρ of the finite group G/K such that ρ(gK)v = π(g)v for all g ∈ G and v ∈ K.

Proof. By smoothness of π and finite-dimensionality of π, there exists an open compact
subgroup K ′ of G such that π(k′)v = v for all k′ ∈ K ′ and v ∈ V . Choose a set { g1, . . . , gr }
of coset representatives for G/K ′. The subgroup K := ∩r

j=1kjK
′k−1

j is an open compact
normal subgroup of G and π(k)v = v for all k ∈ K and v ∈ V . It follows that there exists
a representation (ρ, V ) of the finite group G/K such that ρ(gK)v = π(g)v, v ∈ V , and
g ∈ G. qed

We remark that the subgroup K ′ (hence the representation ρ) in the above lemma
are not unique. Now suppose that (π, V ) is a smooth (not necessarily finite-dimensional)
representation of a (not necessarily compact) t.d. group G. Let K be a compact open
subgroup of G. The restriction πK = rK

G π of π to K is a (possibly infinite) direct sum of
irreducible smooth representations of K. As we will see in Chapter 6, irreducible unitary
representations of compact groups are finite-dimensional. Applying the above lemma, we
can see that each of the irreducible representations of K which occurs in πK is attached
to a representation of some finite group. One difficulty in studying the representations
of non-compact t.d. groups involves determining which compact open subgroups K and
which irreducible constituents of πK can be used to effectively study properties of π. For
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more information on representations of p-adic groups, see the notes [C] or the course notes
for Mat 1197 ([M])

5.7. Haar measure on locally compact groups

If X is a topological space, a σ-ring in X is a nonempty family of subsets of X having
the property that arbitrary unions of elements in the family belong to the family, and if
A and B belong to the family, then so does {x ∈ A | x /∈ B }. If X is a locally compact
topological space, the Borel ring in X is the smallest σ-ring in X that contains the open
sets. The elements of the Borel ring are called Borel sets. A function f : X → R is (Borel)
measurable if for every t > 0, the set {x ∈ X | |f(x)| < t } is a Borel set.

Let G be a locally compact topological group. A left Haar measure on G is a nonzero
regular measure µ` on the Borel σ-ring in G that is left G-invariant: µ`(gS) = µ`(S) for
measurable set S and g ∈ G. Regularity means that

µ`(S) = inf{µ`(U) | U ⊃ S, U open } and µ`(S) = sup{µ`(C) | C ⊂ S, C compact }.

Such a measure has the properties that any compact set has finite measure and any
nonempty open set has positive measure. Left invariance of µ` amounts to the property∫

G

f(g0g) dµ`(g) =
∫

G

f(g)dµ`(g), ∀ g0 ∈ G,

for any Haar integrable function f on G.

Theorem. ([Halmos], [HR], [L]) If G is a locally compact group, there is a left Haar

measure on G, and it is unique up to positive real multiples.

There is also a right Haar measure µr, unique up to positive constant multiples, on
G. Right and left Haar measures do not usually coincide.

Exercise. Let

G =
{(

x y
0 1

)
| x ∈ R×, y ∈ R

}
.

Show that |x|−2dx dy is a left Haar measure on G and |x|−1dx dy is a right Haar measure
on G.

The (locally compact topological) group G is called unimodular if each left Haar
measure is also a right Haar measure. Clearly, G is unimodular if G is abelian. Conjugation
by a fixed g0 ∈ G is a homemomorphism of G onto itself, so the measure S 7→ µ`(g0Sg−1

0 ) =
µ`(Sg−1

0 ) (S measurable) is also a left Haar measure. By uniqueness of left Haar measure,
there exists a constant δ(g0) > 0∫

G

f(g0gg−1
0 ) dµ`(g) = δ(g0)

∫
G

f(g) dµ`(g), f integrable

A quasicharacter of G is a continuous homomorphism from G to C×.
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Proposition.
(1) The function δ : G → R×+ is a quasicharacter

(2) δ(g)dµ`(g) is a right Haar measure.

Proof. The fact that conjugation is an action of G on itself implies that δ : G → R×+ is a
homomorphism. The proof of continuity is omitted. Note that

δ(g0)
∫

G

f(g) dµ`(g) =
∫

G

f(g0 · g−1
0 gg0) dµ`(g) =

∫
G

f(gg0) dµ`(g).

Replacing f by fδ and dividing both sides by δ(g0), we obtain∫
G

f(g)δ(g) dµ`(g) =
∫

G

f(gg0)δ(g) dµ`(g).

This shows that δ(g)dµ`(g) is right invariant. qed

In view of the above, we may write dµr(g) = δ(g)dµ`(g). The function δ is called
the modular quasicharacter of G. Clearly G is unimodular if and only if the modular
quasicharacter is trivial. If G is unimodular, we simply refer to Haar measure on G.

Exercises:
(1) Let dX denote Lebesgue measure on Mn×n(R). This is a Haar measure on Mn×n(R).

Show that |det(g)|−ndg is both a left and a right Haar measure on GLn(R). Hence
GLn(R) is unimodular.

(2) Let n1 and n2 be positive integers such that n1 + n2 = n. P = P(n1,n2) be the
standard parabolic subgroup of GLn(R) corresponding to the partition (n1, n2) (see
Chapter 4 for the definition of standard parabolic subgroup of a general linear group).

Let g =
(

g1 X
0 g2

)
∈ P , with gj ∈ GLnj

(R) and X ∈ Mn1×n2(R). Let dgj be

Haar measure on GLnj
(R), and let dX be Haar measure on Mn1×n2(R). SHow that

d`g = |det g1|−n2dg1 dg2 dX and drg = |det g2|−n1dg1 dg2 dX are left and right Haar
measures on P (respectively). Hence the modular quasicharacter of P is equal to
δ(g) = |det g1|n1 |det g2|−n2 .

(3) Show that the homeomorphism g 7→ g−1 turns µ` into a right Haar measure. Conclude
that if G is unimodular, then

∫
G

f(g) dµ`(g) =
∫

G
f(g−1)dµ`(g) for all measurable

functions f .

Proposition. If G is compact, then G is unimodular and µ`(G) < ∞.

Proof. Since δ is a continuous homomorphism and G is compact, δ(G) is a compact
subgroup of R×+. But {1} is the only compact subgroup of R×+. Haar measure on any
locally compact group has the property that any compact subset has finite measure. Hence
µ`(G) < ∞ whenever G is compact. qed

11



If G is compact, normalized Haar meaure on G is the unique Haar measure µ on G

such that µ(G) = 1. When working with compact groups, we will always work relative to
normalized Haar measure and we will write write

∫
G

f(g) dg for
∫

G
f(g) dµ(g).

5.8. Discrete series representations

Let G be a locally compact unimodular topological group. A unitary representation π

of G on a Hilbert space V (with inner product 〈·, ·〉) is continuous if for every v, w ∈ V , the
function g 7→ 〈π(g)v, w〉 is a continuous function on G. That is, matrix coefficients of π are
continuous functions on G. Note that such a representation may be infinite-dimensional.
(In particular, if G is a noncompact semisimple Lie group, then all nontrivial irreducible
continuous unitary representations of G are infinite-dimensional.)

Suppose that (π, V ) is an irreducible continuous unitary representation of G. Let Z

be the centre of G. A generalization of Schur’s Lemma to this setting shows that if z ∈ Z,
then there exists ω(z) ∈ C× such that π(z) = ω(z)I. Because π is a continuous unitary
representation, the function z 7→ ω(z) is a continuous linear character of the group Z. In
particular, |ω(z)| = 1 for all z ∈ Z. The representation π is said to be square-integrable
mod Z, or to be a discrete series representation, if there exist nonzero vectors v and w ∈ V

such that ∫
G/Z

|〈v, π(g)w〉|2 dg× < ∞,

where dg× is Haar measure on the locally compact group G/Z. Thus π is a discrete series
representation if some nonzero matrix coefficient of π is square-integrable modulo Z.

Fix an ω as above. Let Cc(G, ω) be the space of continuous functions from f G to
C that satisfy f(zg) = ω(z)f(g) for all g ∈ G and z ∈ Z, and are compactly supported
modulo Z (there exists a compact subset Cf of G such that the support of f lies inside
the set CfZ). Define an inner product on Cc(G, ω) by (f1, f2) =

∫
G/Z

f1(g)f2(g) dg×. Let
L2(G, ω) be the completion of Cc(G, ω) relative to the norm ‖f‖ = (f, f)1/2, f ∈ Cc(G, ω).
The group G acts by right translation on L2(G, ω), and this defines a continuous unitary
representation of G on the Hilbert space L2(G, ω).

Theorem. (Schur orthogonality relations). Let (π, V ) and (π′, V ′) be irreducible contin-

uous unitary representations of G such that ω = ω′.

(1) The following are equivalent:

(i) π is square-integrable mod Z.

(ii)
∫

G/Z
|〈v, π(g)w〉|2 dg× < ∞ for all v, w ∈ V .

(iii) π is equivalent to a subrepresentation of the right regular representation of G on

L2(G, ω).
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(2) If the conditions of (1) hold, then there exists a number d(π) > 0, called the formal

degree of π (depending only on the normalization of Haar measure on G/Z), such that∫
G/Z

〈v1, π(g)w1〉〈v2, π(g)w2〉 dg× = d(π)−1〈v1, v2〉〈w1, w2〉, ∀ v1, v2, w1, w2 ∈ V.

(3) If π is not equivalent to π′, then∫
G/Z

〈v, π(g)w〉〈v′, π′(g)w′〉 dg× = 0 ∀ v, w ∈ V, v′, w′ ∈ V ′.

5.9. Parabolic subgroups and representations of reductive groups

The description of the parabolic subgroups of general linear groups and special linear
groups over finite fields given in Chapter 4 is valid for general linear and special linear
groups over any field F - simply replace the matrix entries in the finite field by matrix
entries in the field F . General linear and special linear groups are examples of reductive
groups. We do not give the definition of parabolic subgroup for arbitrary reductive groups.

Suppose that G is the F -rational points of a connected reductive linear algebraic
group, where F = R, F = C, F is a p-adic field (for example, F = Qp), or F is a finite
field.

The “Philosophy of Cusp Forms” says that the collection of representations of a re-
ductive group G should be partitioned into disjoint subsets in such a way that each subset
is attached to an associativity class of parabolic subgroups of G. Two parabolic subgroups
P = M n N and P ′ = M ′ n N ′ of G are associate if and only if the Levi factors M

and M ′ are conjugate in G. The representations attached to the group G itself are called
cuspidal representations, and their matrix coefficients are called cusp forms. If P is a
proper parabolic subgroup of G, the representations attached to P are associated to (Weyl
group orbits of) cuspidal representations of a Levi factor M of P . (Note that M is itself
a reductive group). Furthermore, the representations of G associated to a given cuspidal
representation σ of M occur as subquotients of the induced representation IndG

P (σ⊗ δ
1/2
P ),

where δP is the modular quasicharacter of P (see § 5.7) and σ is extended to a represen-
tation of P = M n N by letting it be trivial on N .

The problem of understanding the representations of the group G can be approached
via the Philosophy of Cusp Forms, and is therefore divided into two parts. The first part
is to determine the cuspidal representations of the Levi subgroups M of G, and the second
part is to analyze representations parabolically induced from such cuspidal representations.

In certain contexts, a cuspidal representation is simply a discrete series representation
(see § 5.8 for the definition of discrete series representation). If G is a connected reductive
Lie group (for example G = SLn(R) or G = Sp2n(R), then there are two cases to consider.
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An element of a matrix Lie group is semisimple if it is semsimple as a matrix, that is, it
can be diagonalized over the field of complex numbers. A Cartan subgroup of G is a closed
subgroup that is a maximal abelian subgroup consisting of semisimple elements. In the
first case, G contains no Cartan subgroups that are compact modulo the centre of G (for
example, this is the case if G is semisimple and F = C, of if SLn(R) and n ≥ 3), and hence
G has no discrete series representations. In the second case, up to conjugacy G contains
one Cartan subgroup T that is compact modulo the centre of G, and the discrete series of
G are parametrized in a natural way by the so-called regular characters of T .

An irreducible unitary representation of G is tempered if it occurs in the decomposition
of the regular representation of G on the Hilbert space L2(G) of square-integrable functions
on G. If π is a tempered representation of G, then there exists a parabolic subgroup
P = M n N and a discrete series representation of M such that π occurs as a constituent
of the induced representation IndG

P (σ ⊗ δ
1/2
P ).

If G is a reductive p-adic group (that is, F is a p-adic field), a continuous complex-
valued function f on G is a supercusp form if the support of f is compact modulo the centre
of G and

∫
N

f(gn) dn = 0 for all g ∈ G and all unipotent radicals N of proper parabolic
subgroups of G. An irreducible smooth representation (where a smooth representation
is as defined in §5.6) of G is supercuspidal if the matrix coefficients of the representation
are supercusp forms. Given an irreducible smooth representation π of G, there exists a
parabolic subgroup P = M n N of G and a supercuspidal representation σ of M such
that π is a subquotient of IndG

P (σ⊗ δ
1/2
P ). Hence in this context, it is suitable to interpret

“cuspidal representation” as supercuspidal representation. (Recall that a similar result
was described in Chapter 4 in the case that F is a finite field).

If π is a supercuspidal representation of G, then there exists a quasicharacter ω of the
centre Z of G such that π(z) = ω(z)I, z ∈ Z. It is easy to see that if ω is unitary (that is,
|ω(z)| = 1 for all z ∈ Z), then π is a discrete series representation. A reductive p-adic group
has many supercuspidal representations and hence many discrete series representations.
However, there exist discrete series representations that are not supercuspidal.
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