CHAPTER 1 – Representation Theory of Groups - Algebraic Foundations

1.1 Basic definitions, Schur’s Lemma
1.2 Tensor products
1.3 Unitary representations
1.4 Characters of finite-dimensional representations

CHAPTER 2 – Representations of Finite Groups

2.1 Unitarity, complete reducibility, orthogonality relations
2.2 Character values as algebraic integers, degree of an irreducible representation divides the order of the group
2.3 Decomposition of finite-dimensional representations
2.4 Induced Representations, Frobenius reciprocity, and Frobenius character formula

CHAPTER 3 – Representations of $SL_2(\mathbb{F}_q)$

CHAPTER 4 – Representations of Finite Groups of Lie Type

CHAPTER 5 – Topological Groups, Representations, and Haar Measure

5.1 Topological spaces
5.2 Topological groups
5.3 General linear groups and matrix groups
5.4 Matrix Lie groups
5.5 Finite-dimensional representations of topological groups and matrix Lie groups
5.6 Groups of t.d. type
5.7 Haar measure on locally compact groups
5.8 Discrete series representations
5.9 Parabolic subgroups and representations of reductive groups

CHAPTER 6 – Representations of Compact Groups

6.1 Examples of compact groups
6.2 Finite-dimensional representations of compact groups
6.3 The Peter-Weyl Theorem
6.4 Weyl’s character formula
CHAPTER 1

Representation Theory of Groups - Algebraic Foundations

1.1. Basic definitions, Schur’s Lemma

We assume that the reader is familiar with the fundamental concepts of abstract group theory and linear algebra. A representation of a group G is a homomorphism from G to the group $GL(V)$ of invertible linear operators on V, where V is a nonzero complex vector space. We refer to V as the representation space of π. If V is finite-dimensional, we say that π is finite-dimensional, and the degree of π is the dimension of V. Otherwise, we say that π is infinite-dimensional. If π is one-dimensional, then $V \cong \mathbb{C}$ and we view π as a homomorphism from G to the multiplicative group of nonzero complex numbers. In the above definition, G is not necessarily finite. The notation (π, V) will often be used when referring to a representation.

Examples:

(1) If G is a group, we can define a one-dimensional representation of G by $\pi(g) = 1$, $g \in G$. This representation is called the trivial representation of G.

(2) Let $G = \mathbb{R}$ and $z \in \mathbb{C}$. The function $t \mapsto e^{zt}$ defines a one-dimensional representation of G.

If n is a positive integer and \mathbb{C} is the field of complex numbers, let $GL_n(\mathbb{C})$ denote the group of invertible $n \times n$ matrices with entries in \mathbb{C}. If (π, V) is a finite-dimensional representation of G, then, via a choice of ordered basis β for V, the operator $\pi(g) \in GL(V)$ is identified with the element $[\pi(g)]_\beta$ of $GL_n(\mathbb{C})$, where n is the degree of π. Hence we may view a finite-dimensional representation of G as a homomorphism from G to the group $GL_n(\mathbb{C})$.

Examples:

(1) The self-representation of $GL_n(\mathbb{C})$ is the n-dimensional representation defined by $\pi(g) = g$.

(2) The function $g \mapsto \det g$ is a one-dimensional representation of $GL_n(\mathbb{C})$.

(3) Let V be a space of functions from G to some complex vector space. Suppose that V has the property that whenever $f \in V$, the function $g_0 \mapsto f(g_0g)$ also belongs to V for all $g \in G$. Then we may define a representation (π, V) by $(\pi(g)f)(g_0) = f(g_0g)$, $f \in V$, g, $g_0 \in G$. For example, if G is a finite group, we may take V to be the space of all complex-valued functions on G. In this case, the resulting representation is called the right regular representation of G.

Let (π, V) be a representation of G. A subspace W of V is stable under the action of G, or G-invariant, if $\pi(g)w \in W$ for all $g \in G$ and $w \in W$. In this case, denoting the
restriction of $\pi(g)$ to W by $\pi|_{W}(g)$, $(\pi|_{W}, W)$ is a representation of G, and we call it a subrepresentation of π (or a subrepresentation of V).

If $W' \subset W$ are subrepresentations of π, then each $\pi|_{W}(g)$, $g \in G$, induces an invertible linear operator $\pi|_{W/W'}(g)$ on the quotient space W/W', and $(\pi|_{W/W'}, W/W')$ is a representation of G, called a subquotient of π. In the special case $W = V$, it is called a quotient of π.

A representation (π, V) of G is finitely-generated if there exist finitely many vectors $v_1, \ldots, v_m \in V$ such that $V = \text{Span}\{ \pi(g)v_j \mid 1 \leq j \leq m, \ g \in G \}$. A representation (π, V) of G is irreducible if $\{0\}$ and V are the only G-invariant subspaces of V. If π is not irreducible, we say that π is reducible.

Suppose that (π_j, V_j), $1 \leq j \leq \ell$, are representations of a group G. Recall that an element of the direct sum $V = V_1 \oplus \cdots \oplus V_\ell$ can be represented uniquely in the form $v_1 + v_2 + \cdots + v_\ell$, where $v_j \in V_j$. Set

$$\pi(g)(v_1 + \cdots + v_\ell) = \pi_1(g)v_1 + \cdots + \pi_\ell(g)v_\ell, \quad g \in G, \ v_j \in V_j, \ 1 \leq j \leq \ell.$$

This defines a representation of G, called the direct sum of the representations π_1, \ldots, π_ℓ, sometimes denoted by $\pi_1 \oplus \cdots \oplus \pi_\ell$. We may define infinite direct sums similarly. We say that a representation π is completely reducible (or semisimple) if π is (equivalent to) a direct sum of irreducible representations.

Lemma. Suppose that (π, V) is a representation of G.

1. If π is finitely-generated, then π has an irreducible quotient.
2. π has an irreducible subquotient.

Proof. For (1), consider all proper G-invariant subspaces W of V. This set is nonempty and closed under unions of chains (uses finitely-generated). By Zorn’s Lemma, there is a maximal such W. By maximality of W, $\pi|_{W}$ is irreducible.

Part (2) follows from part (1) since of v is a nonzero vector in V, part (1) says that if $W = \text{Span}\{ \pi(g)v \mid g \in G \}$, then $\pi|_{W}$ has an irreducible quotient. qed

Lemma. Let (π, V) be a finite-dimensional representation of G. Then there exists an irreducible subrepresentation of π.

Proof. If V is reducible, there exists a nonzero G-invariant proper subspace W_1 of V. If $\pi|_{W_1}$ is irreducible, the proof is complete. Otherwise, there exists a nonzero G-invariant subspace W_2 of W_1. Note that $\dim(W_2) < \dim(W_1) < \dim(V)$. Since $\dim(V) < \infty$, this process must eventually stop, that is there exist nonzero subspaces $W_k \subsetneq W_{k-1} \subsetneq \cdots \subsetneq W_1 \subsetneq V$, where $\pi|_{W_k}$ is irreducible. qed

Lemma. Let (π, V) be a representation of G. Assume that there exists an irreducible subrepresentation of π. The following are equivalent:
(1) \((\pi, V)\) is completely reducible.

(2) For every \(G\)-invariant subspace \(W \subset V\), there exists a \(G\)-invariant subspace \(W'\) such that \(W \oplus W' = V\).

Proof. Assume that \(\pi\) is completely reducible. Without loss of generality, \(\pi\) is reducible. Let \(W\) be a proper nonzero \(G\)-invariant subspace of \(V\). Consider the set of \(G\)-invariant subspaces \(U\) of \(V\) such that \(U \cap W = \{0\}\). This set is nonempty and closed under unions of chains, so Zorn’s Lemma implies existence of a maximal such \(U\). Suppose that \(W \oplus U \neq V\).

Since \(\pi\) is completely reducible, there exists some irreducible subrepresentation \(U'\) such that \(U' \not\subset W \oplus U\). By irreducibility of \(U'\), \(U' \cap (W \oplus U) = \{0\}\). This contradicts maximality of \(U\).

Suppose that (2) holds. Consider the partially ordered set of direct sums of families of irreducible subrepresentations: \(\sum_{\alpha} W_{\alpha} = \oplus_{\alpha} W_{\alpha}\). Zorn’s Lemma applies. Let \(W = \oplus_{\alpha} W_{\alpha}\) be the direct sum for a maximal family. By (2), there exists a subrepresentation \(U\) such that \(V = W \oplus U\). If \(U \neq \{0\}\), according to a lemma above, there exists an irreducible subquotient: \(U \supset U_1 \supset U_2\) such that \(\pi_{U_1/U_2}\) is irreducible. By (2), \(W \oplus U_2\) has a \(G\)-invariant complement \(U_3\): \(V = W \oplus U_2 \oplus U_3\). Now

\[U_3 \simeq V/(W \oplus U_2) = (W \oplus U)/(W \oplus U_2) \simeq U/U_2 \supset U_1/U_2.\]

Identifying \(\pi_{U_1/U_2}\) with an irreducible subrepresentation \(\pi|_{U_4}\) of \(\pi|_{U_3}\), we have \(W \oplus U_4\) contradicting maximality of the family \(W_{\alpha}\). qed

Lemma. Subrepresentations and quotient representations of completely reducible representations are completely reducible.

Proof. Let \((\pi, V)\) be a completely reducible representation of \(G\). Suppose that \(W\) is a proper nonzero \(G\)-invariant subspace of \(W\). Then, according to the above lemma, there exists a \(G\)-invariant subspace \(U\) of \(V\) such that \(V = W \oplus U\). It follows that the subrepresentation \(\pi|_W\) is equivalent to the quotient representation \(\pi_{V/U}\). Therefore it suffices to prove that any quotient representation of \(\pi\) is completely reducible.

Let \(\pi_{V/U}\) be an arbitrary quotient representation of \(\pi\). We know that \(\pi = \oplus_{\alpha \in I} \pi_{\alpha}\), where \(I\) is some indexing set, and each \(\pi_{\alpha}\) is irreducible. Let \(pr : V \rightarrow V/U\) be the canonical map. Then \(V/U = pr(V) = \oplus_{\alpha \in I} pr(V_{\alpha})\). Because \(pr(V_{\alpha})\) is isomorphic to a quotient of \(V_{\alpha}\) \((pr(V_{\alpha}) \simeq V_{\alpha}/\ker(pr|V_{\alpha}))\) and \(\pi_{\alpha}\) is irreducible, we have that \(pr(V_{\alpha})\) is either 0 or irreducible. Hence \(\pi_{V/U}\) is completely reducible. qed

Exercises:

(1) Show that the self-representation of \(GL_n(\mathbb{C})\) is irreducible.

(2) Verify that \(\pi : t \mapsto \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix}\) defines a representation of \(\mathbb{R}\), with space \(\mathbb{C}^2\), that is a two-dimensional representation of \(\mathbb{R}\). Show that there is exactly one one-dimensional
subrepresentation, hence π is not completely reducible. Prove that the restriction of π to the unique one-dimensional invariant subspace W is the trivial representation, and the quotient representation $\pi_{V/W}$ is the trivial representation.

If (π_1, V_1) and (π_2, V_2) are representations of a group G, a linear transformation $A : V_1 \to V_2$ intertwines π_1 and π_2 if $A\pi_1(g)v = \pi_2(g)Av$ for all $v \in V_1$ and $g \in G$. The notation $\text{Hom}_G(\pi_1, \pi_2)$ or $\text{Hom}_G(V_1, V_2)$ will be used to denote the set of linear transformations from V_1 to V_2 that intertwine π_1 and π_2. Two representations (π_1, V_1) and (π_2, V_2) of a group G are said to be equivalent (or isomorphic) whenever $\text{Hom}_G(\pi_1, \pi_2)$ contains an isomorphism, that is, whenever there exists an invertible linear transformation $A : V_1 \to V_2$ that intertwines π_1 and π_2. In this case, we write $\pi_1 \simeq \pi_2$. It is easy to check that the notion of equivalence of representations defines an equivalence relation on the set of representations of G. It follows from the definitions that if π_1 and π_2 are equivalent representations, then π_1 is irreducible if and only if π_2 is irreducible. More generally, π_1 is completely reducible if and only if π_2 is completely reducible.

Lemma. Suppose that (π_1, V_1) and (π_2, V_2) are finite-dimensional representations of G. Then the following are equivalent:

1. π_1 and π_2 are equivalent.
2. $\dim V_1 = \dim V_2$ and there exist ordered bases β_1 and β_2 of V_1 and V_2, respectively, such that $[\pi_1(g)]_{\beta_1} = [\pi_2(g)]_{\beta_2}$ for all $g \in G$.

Proof. Assume (1). Fix ordered bases γ_1 for V_1 and γ_2 for V_2. Via these bases, identifying any invertible operator in $\text{Hom}_G(\pi_1, \pi_2)$ as a matrix A in $\text{GL}_n(\mathbb{C})$, we have

$$[\pi_1(g)]_{\gamma_1} = A^{-1}[\pi_2(g)]_{\gamma_2}A, \quad \forall g \in G.$$

Let $\beta_2 = \gamma_1$. Because $A \in \text{GL}_n(\mathbb{C})$, there exists an ordered basis β_2 of V_2 such that A is the change of basis matrix from β_2 to γ_2. With these choices of β_1 and β_2, (2) holds.

Now assume that (2) holds. Let A be the unique linear transformation from V_1 to V_2 which maps the jth vector in β_1 to the jth vector in β_2. qed

A representation (π, V) of G has a (finite) composition series if there exist G-invariant subspaces V_j of V such that

$$\{0\} \subset V_1 \subset \cdots \subset V_r = V$$

each subquotient π_{V_{j+1}/V_j}, $1 \leq j \leq r - 1$, is irreducible. The subquotients π_{V_{j+1}/V_j} are called the composition factors of π.

Lemma. Let (π, V) be a finite-dimensional representation of G. Then π has a composition series. Up to reordering and equivalence, the composition factors of π are unique.

Proof left as an exercise.
Schur’s Lemma. Let \((\pi_1, V_1)\) and \((\pi_2, V_2)\) be irreducible representations of \(G\). Then any nonzero operator in \(\text{Hom}_G(\pi_1, \pi_2)\) is an isomorphism.

Proof. If \(\text{Hom}_G(\pi_1, \pi_2) = \{0\}\) there is nothing to prove, so assume that it is nonzero. Suppose that \(A \in \text{Hom}_G(\pi_1, \pi_2)\) is nonzero. Let \(g \in G\) and \(v_2 \in A(V_1)\). Writing \(v_2 = A(v_1)\), for some \(v_1 \in V_1\), we have \(\pi_2(g)v_2 = A(\pi(g)v_1) \in A(V_1)\). Hence \(A(V_1)\) is a nonzero \(G\)-invariant subspace of \(V_2\). By irreducibility of \(\pi_2\), we have \(A(V_1) = V_2\).

Next, let \(W\) be the kernel of \(A\). Let \(v_1 \in W\). Then \(A(\pi_1(g)v_1) = \pi_2(g)(A(v_1)) = \pi_1(g)0 = 0\) for all \(g \in G\). Hence \(W\) is a \(G\)-invariant proper subspace of \(V_1\). By irreducibility of \(\pi_1\), \(W = \{0\}\). qed

Corollary. Let \((\pi, V)\) be a finite-dimensional irreducible representation of \(G\). Then \(\text{Hom}_G(\pi, \pi)\) consists of scalar multiples of the identity operator, that is, \(\text{Hom}_G(\pi, \pi) \simeq \mathbb{C}\).

Proof. Let \(A \in \text{Hom}_G(\pi, \pi)\). Let \(\lambda \in \mathbb{C}\) be an eigenvalue of \(A\) (such an eigenvalue exists, since \(V\) is finite-dimensional and \(\mathbb{C}\) is algebraically closed). It is easy to see that \(A - \lambda I \in \text{Hom}_G(\pi, \pi)\). But \(A - \lambda I\) is not invertible. By the previous lemma, \(A = \lambda I\). qed

Corollary. If \(G\) is an abelian group, then every irreducible finite-dimensional representation of \(G\) is one-dimensional.

Proof left as an exercise.

Exercise: Prove that an irreducible representation of the cyclic group of order \(n > 1\), with generator \(g_0\), has the form \(g_0^k \mapsto e^{2\pi imk/n}\) for some \(m \in \{0, 1, \ldots, n - 1\}\). (Here \(i\) is a complex number such that \(i^2 = -1\) and \(\pi\) denotes the area of a circle of radius one).

Let \((\pi, V)\) be a representation of \(G\). A matrix coefficient of \(\pi\) is a function from \(G\) to \(\mathbb{C}\) of the form \(g \mapsto \lambda(\pi(g)v)\), for some fixed \(v \in V\) and \(\lambda\) in the dual space \(V^\vee\) of linear functionals on \(V\). Suppose that \(\pi\) is finite-dimensional. Choose an ordered basis \(\beta = \{v_1, \ldots, v_n\}\) of \(V\). Let \(\beta^\vee = \{\lambda_1, \ldots, \lambda_n\}\) be the basis of \(V^\vee\) which is dual to \(\beta\): \(\lambda_j(v_i) = \delta_{ij}, 1 \leq i, j \leq n\). Define a function \(a_{ij} : G \to \mathbb{C}\) by \([\pi(\lambda)v]_\beta = (a_{ij}(\lambda))_{1 \leq i, j \leq n}\). Then it follows from \(\pi(\lambda)v_i = \sum_{\ell=1}^n a_{i\ell}(\lambda)v_\ell\) that \(a_{ij}(\lambda) = \lambda_j(\pi(\lambda)v_i)\), so \(a_{ij}\) is a matrix coefficient of \(\pi\).

If \(g \in G\) and \(\lambda \in V^\vee\), define \(\pi^\vee(\lambda) = \lambda \in V^\vee\) by \((\pi^\vee(\lambda)v)(\nu) = \lambda(\pi(\nu^{-1})v), v \in V\). Then \((\pi^\vee, V^\vee)\) is a representation of \(G\), called the dual (or contragredient) of \(\pi\).

Exercises:

(1) Let \((\pi, V)\) be a finite-dimensional representation of \(G\). Choose \(\beta\) and \(\beta^\vee\) as above. Show that \([\pi^\vee(\lambda)]_{\beta^\vee} = [\pi(\lambda^{-1})]_{\beta}\), for all \(g \in G\). Here the superscript \(t\) denotes transpose.

(2) Prove that if \((\pi, V)\) is finite-dimensional then \(\pi\) is irreducible if and only if \(\pi^\vee\) is irreducible.
(3) Determine whether the self-representation of $GL_n(\mathbb{R})$ (restrict the self-representation of $GL_n(\mathbb{C})$ to the subgroup $GL_n(\mathbb{R})$) is equivalent to its dual.

(4) Prove that a finite-dimensional representation of a finite abelian group is the direct sum of one-dimensional representations.

1.2. Tensor products

Let (π_j, V_j) be a representation of a group G_j, $j = 1, 2$. Recall that $V_1 \otimes V_2$ is spanned by elementary tensors, elements of the form $v_1 \otimes v_2$, $v_1 \in V_1$, $v_2 \in V_2$. We can define a representation $\pi_1 \otimes \pi_2$ of the direct product $G_1 \times G_2$ by setting

$$(\pi_1 \otimes \pi_2)(g_1, g_2)(v_1 \otimes v_2) = \pi_1(g_1)v_1 \otimes \pi_2(g_2)v_2,$$

$g_j \in G_j$, $v_j \in V_j$, $j = 1, 2$,

and extending by linearity to all of $V_1 \otimes V_2$. The representation $\pi_1 \otimes \pi_2$ of $G_1 \times G_2$ is called the \textit{(external or outer) tensor product} of π_1 and π_2. Of course, when π_1 and π_2 are finite-dimensional, the degree of $\pi_1 \otimes \pi_2$ is equal to the product of the degrees of π_1 and π_2.

Lemma. Let (π_j, V_j) and G_j, $j = 1, 2$ be as above. Assume that each π_j is finite-dimensional. Then $\pi_1 \otimes \pi_2$ is an irreducible representation of $G_1 \times G_2$ if and only if π_1 and π_2 are both irreducible.

Proof. If π_1 or π_2 is reducible, it is easy to see that $\pi_1 \otimes \pi_2$ is also reducible.

Assume that π_1 is irreducible. Let $n = \dim V_2$. Let

$$\text{Hom}_{G_1}(\pi_1, \pi_1)^n = \text{Hom}_{G_1}(\pi_1, \pi_1) \oplus \cdots \oplus \text{Hom}_{G_1}(\pi_1, \pi_1),$$

and $\pi_1^n = \pi_1 \oplus \cdots \oplus \pi_1$, where each direct sum has n summands. Then $\text{Hom}_{G_1}(\pi_1, \pi_1)^n \simeq \text{Hom}_{G_1}(\pi_1, \pi_1^n)$, where the isomorphism is given by $A_1 \oplus \cdots \oplus A_n \mapsto B$, with $B(v) = A_1(v) \oplus \cdots \oplus A_n(v)$. By (the corollary to) Schur’s Lemma, $\text{Hom}_{G_1}(\pi_1, \pi_1) \simeq \mathbb{C}$. Irreducibility of π_1 guarantees that given any nonzero $v \in V_1$, $V_1 = \text{Span}\{ \pi_1(g_1)v \mid g_1 \in G_1 \}$, and this implies surjectivity.

Because $V_2 \simeq \mathbb{C}^n$ and $\mathbb{C} \simeq \text{Hom}_{G_1}(\pi_1, \pi_1)$, we have

$$(i) \quad V_2 \simeq \text{Hom}_{G_1}(\pi_1, \pi_1 \otimes 1^n),$$

where $\pi_1 \otimes 1^n$ is the representation of G_1 on $V_1 \otimes V_2$ defined by $(\pi_1 \otimes 1^n)(g_1)(v_1 \otimes v_2) = \pi_1(g_1)v_1 \otimes v_2$, $v_1 \in V_1$, $v_2 \in V_2$. (Note that this representation can be identified with the restriction of $\pi_1 \otimes \pi_2$ to the subgroup $G_1 \times \{1\}$ of $G_1 \times G_2$.

If m is a positive integer, then

$$(ii) \quad V_1 \otimes \text{Hom}_{G_1}(\pi_1, \pi_1^m) \to V_1^m$$

$v \otimes A \mapsto A(v)$
is an isomorphism.

Next, we can use (i) and (ii) to show that

\[\{ G_1 \text{- invariant subspaces of } V_1 \otimes V_2 \} \leftrightarrow \{ \mathbb{C} \text{- subspaces of } V_2 \} \]

\[V_1 \otimes W \leftarrow W \]

\[X \rightarrow \text{Hom}_{G_1}(\pi_1, X) \subset \text{Hom}_{G_1}(\pi_1, \pi_1 \otimes 1^n) = V_2 \]

As any \((G_1 \times G_2)\)-invariant subspace \(X\) of \(V_1 \otimes V_2\) is also a \(G_1\)-invariant subspace, we have \(X = V_1 \otimes W\) for some complex subspace \(W\) of \(V_2\). If \(X \neq \{0\}\) and \(\pi_2\) is irreducible, then

\[\text{Span}\{ (\pi_1 \otimes \pi_2)(1, g_2)X \mid g_2 \in G_2 \} = V_1 \otimes \text{Span}\{ \pi_2(g_2)W \mid g_2 \in G_2 \} = V_1 \otimes V_2. \]

But \(G_1 \times G_2\)-invariance of \(X\) then forces \(X = V_1 \otimes V_2\). It follows that if \(\pi_1\) and \(\pi_2\) are irreducible, then \(\pi_1 \otimes \pi_2\) is irreducible (as a representation of \(G_1 \times G_2\)). \(\text{qed}\)

Proposition. Let \((\pi, V)\) be an irreducible finite-dimensional representation of \(G_1 \times G_2\). Then there exist irreducible representations \(\pi_1\) and \(\pi_2\) of \(G_1\) and \(G_2\), respectively, such that \(\pi \simeq \pi_1 \otimes \pi_2\).

Proof. Note that \(\pi'_1(g_1)v = \pi((g_1, 1))v, g_1 \in G_1, v \in V\), and \(\pi'_2(g_2)v = \pi((1, g_2))v, g_2 \in G_2, v \in V\), define representations of \(G_1\) and \(G_2\), respectively. Choose a nonzero \(G_1\)-invariant subspace \(V_1\) such that \(\pi'_1|_{V_1}\) is an irreducible representation of \(G_1\). Let \(v_0\) be a nonzero vector in \(V_1\). Let

\[V_2 = \text{Span}\{ \pi'_2(g_2)v_0 \mid g_2 \in G_2 \}. \]

Then \(V_2\) is \(G_2\)-invariant and \(\pi_2 := \pi'_2|_{V_2}\) is a representation of \(G_2\), which might be reducible.

Define \(A : V_1 \otimes V_2 \rightarrow V\) as follows. Let \(v_1 \in V_1\) and \(v_2 \in V_2\). Then there exist complex numbers \(c_j\) and elements \(g_1^{(j)} \in G_1\) such that \(v_1 = \sum_{j=1}^m c_j \pi_1(g_1^{(j)})v_0\), as well as complex numbers \(b_\ell\) and elements \(g_2^{(\ell)} \in G_2\) such that \(v_2 = \sum_{\ell=1}^n b_\ell \pi_2(g_2^{(\ell)})\). Set

\[A(v_1 \otimes v_2) = \sum_{j=1}^m \sum_{\ell=1}^n c_j b_\ell \pi(g_1^{(j)}, g_2^{(\ell)})v_0. \]

Now \(\pi(g_1^{(j)}, g_2^{(\ell)})v_0 = \pi_1(g_1^{(j)})\pi_2(g_2^{(\ell)})v_0 = \pi_2(g_2^{(\ell)})\pi_1(g_1^{(j)})v_0\). Check that the map \(A\) is well-defined, extending to a linear transformation from \(V_1 \otimes V_2\) to \(V\). Also check that \(A \in \text{Hom}_{G_1 \times G_2}(V_1 \otimes V_2, V)\).

Because \(A(v_0 \otimes v_0) = v_0\), we know that \(A\) is nonzero. Combining \(G_1 \times G_2\)-invariance of \(A(V_1 \otimes V_2)\) with irreducibility of \(\pi\), we have \(A(V_1 \otimes V_2) = V\). If \(A\) also happens to be one-to-one, then we have \(\pi_1 \otimes \pi_2 \simeq \pi\).
Suppose that A is not one-to-one. Then $\text{Ker } A$ is a $G_1 \times G_2$-invariant subspace of $V_1 \otimes V_2$. In particular, $\text{Ker } A$ is a G_1-invariant subspace of $V_1 \otimes V_2$. Using irreducibility of π_1 and arguing as in the previous proof, we can conclude that $\text{Ker } A = V_1 \otimes W$ for some complex subspace W of V_2. We have an equivalence of the representations $(\pi_1 \otimes \pi_2)_{(V_1 \otimes V_2)/\text{Ker } A}$ and π of $G_1 \times G_2$. To finish the proof, we must show that the quotient representation $(\pi_1 \otimes \pi_2)_{V_1/(V_1 \otimes W)}$ is a tensor product. If $v_1 \in V_1$ and $v_2 \in V_2$, define

$$B(v_1 \otimes (v_1 + W)) = v_1 \otimes v_2 + V_1 \otimes W.$$

This extends by linearity to a map from $V_1 \otimes (V_2/W)$ to the quotient space $(V_1 \otimes V_2)/(V_1 \otimes W)$ and it is a simple matter to check that B is an isomorphism and $B \in \text{Hom}_{G_1 \times G_1}(\pi_1 \otimes (\pi_2)_{V_2/W}, (\pi_1 \otimes \pi_2)_{(V_1 \otimes V_2)/(V_1 \otimes W)})$. The details are left as an exercise. qed

If (π_1, V_1) and (π_2, V_2) are representations of a group G, then we may form the tensor product representation $\pi_1 \otimes \pi_2$ of $G \times G$ and restrict to the subgroup $\delta G = \{(g, g) \mid g \in G\}$ of $G \times G$. This restriction is then a representation of G, also written $\pi_1 \otimes \pi_2$. It is called the (inner) tensor product of π_1 and π_2. Using inner tensor products gives ways to generate new representations of a group G. However, it is important to note that even if π_1 and π_2 are both irreducible, the inner tensor product representation $\pi_1 \otimes \pi_2$ of G can be reducible.

Exercise: Let π_1 and π_2 be finite-dimensional irreducible representations of a group G. Prove that the trivial representation of G occurs as a subrepresentation of the (inner) tensor product representation $\pi_1 \otimes \pi_2$ of G if and only if π_2 is equivalent to the dual π_1^\vee of π.

1.3. Unitary representations

Suppose that (π, V) is a representation of G. If V is a finite-dimensional inner product space and there exists an inner product $\langle \cdot, \cdot \rangle$ on V such that

$$\langle \pi(g)v_1, \pi(g)v_2 \rangle = \langle v_1, v_2 \rangle, \quad \forall v_1, v_2 \in V, \ g \in G.$$

then we say that π is a unitary representation. If V is infinite-dimensional, we say that π is pre-unitary if such an inner product exists, and if V is complete with respect to the norm induced by the inner product (that is, V is a Hilbert space), then we say that π is unitary.

Now assume that π is finite-dimensional. Recall that if T is a linear operator on V, the adjoint T^* of T is defined by $\langle T(v), w \rangle = \langle v, T^*(w) \rangle$ for all $v, w \in V$. Note that π is unitary if and only if each operator $\pi(g)$ satisfies $\pi(g)^* = \pi(g)^{-1}, \ g \in G$.

Let n be a positive integer. Recall that if A is an $n \times n$ matrix with entries in \mathbb{C}, the adjoint A^* of A is just $A^* = {}^t \bar{A}$.

9
Lemma. If \((\pi, V)\) is a finite-dimensional unitary representation of \(G\) and \(\beta\) is an orthonormal basis of \(V\), then \([\pi(g)]_\beta \equiv [\pi(g)]^{-1}_\beta\).

Proof. Results from linear algebra show that if \(T\) is a linear operator on \(V\) and \(\beta\) is an orthonormal basis of \(V\), then \([T^*]_\beta = [T]_\beta^*\). Combining this with \(\pi(g)^* = \pi(g)^{-1}\), \(g \in G\), proves the lemma. \(\mathsf{qed}\)

Exercises:

(1) If \((\pi, V)\) is a representation, form a new vector space \(\bar{V}\) as follows. As a set, \(V = \bar{V}\), and \(\bar{V}\) has the same vector addition as \(V\). If \(c \in \mathbb{C}\) and \(v \in \bar{V}\), set \(c \cdot v = \bar{c}v\), where \(\bar{c}\) is the complex conjugate of \(c\) and \(\bar{c}v\) is the scalar multiplication in \(V\). If \(g \in G\), and
\(v \in \bar{V}\), \(\bar{\pi}(g)v = \pi(g)v\). Show that \((\bar{\pi}, \bar{V})\) is a representation of \(V\).

(2) Assume that \((\pi, V)\) is a finite-dimensional unitary representation. Prove that \(\pi^* \simeq \bar{\pi}\).

Lemma. Let \(W\) be a subspace of \(V\), where \((\pi, V)\) is a unitary representation of \(G\). Then \(W\) is \(G\)-invariant if and only if \(W^\perp\) is \(G\)-invariant.

Proof. \(W\) is \(G\)-invariant if and only if \(\pi(g)w \in W\) for all \(g \in G\) and \(w \in W\) if and only if
\(\langle \pi(g)w, w^\perp \rangle = 0\) for all \(w \in W\), \(w^\perp \in W^\perp\) and \(g \in G\) if and only if
\(\langle w, \pi(g^{-1})w^\perp \rangle = 0\) for all \(w \in W\), \(w^\perp \in W^\perp\) and \(g \in G\), if and only if \(W^\perp\) is \(G\)-invariant. \(\mathsf{qed}\)

Corollary. A finite-dimensional unitary representation is completely reducible.

Lemma. Suppose that \((\pi, V)\) is a finite-dimensional unitary representation of \(G\). Let \(W\) be a proper nonzero \(G\)-invariant subspace of \(V\), and let \(P_W\) be the orthogonal projection of \(V\) onto \(W\). Then \(P_W\) commutes with \(\pi(g)\) for all \(g \in G\).

Proof. Let \(w \in W\) and \(w^\perp \in W^\perp\). Then
\[P_W \pi(g)(w + w^\perp) = P_W \pi(g)w + P_W \pi(g)w^\perp = \pi(g)w + 0 = \pi(g)P_W (w + w^\perp).\]
\(\mathsf{qed}\)

Lemma. Let \((\pi, V)\) be a finite-dimensional unitary representation of \(G\). Then \(\pi\) is irreducible if and only if \(\text{Hom}_G(\pi, \pi) \simeq \mathbb{C}\) (every operator which commutes with all \(\pi(g)\)'s is a scalar multiple of the identity operator).

Proof. One direction is simply the corollary to Schur's Lemma (using irreducibility of \(\pi\)). For the other, if \(\pi\) is reducible, and \(W\) is a proper nonzero \(G\)-invariant subspace of \(V\), then \(P_W \in \text{Hom}_G(\pi, \pi)\) and \(P_W\) is not a scalar multiple of the identity operator. \(\mathsf{qed}\)

Suppose that \((\pi_1, V_1)\) and \((\pi_2, V_2)\) are representations of \(G\) and \(V_1\) and \(V_2\) are complex inner product spaces, with inner products \(\langle , \rangle_1\) and \(\langle , \rangle_2\), respectively. Then \(\pi_1\) and \(\pi_2\) are **unitarily equivalent** if there exists an invertible linear operator \(A : V_1 \to V_2\) such that
\[\langle Av, Aw \rangle_2 = \langle v, w \rangle_1\] for all \(v\) and \(w \in V_1\) and \(A \in \text{Hom}_G(\pi_1, \pi_2)\).
Lemma. Let (π_1, V_1) and (π_2, V_2) be finite-dimensional unitary representations of G. Then $\pi_1 \simeq \pi_2$ if and only if π_1 and π_2 are unitarily equivalent.

Proof. Assume that $\pi_1 \simeq \pi_2$. Let $A : V_1 \to V_2$ be an isomorphism such that $A \in \text{Hom}_G(\pi_1, \pi_2)$. Recall that the adjoint $A^* : V_2 \to V_1$ is defined by the condition $\langle A^* v_2, v_1 \rangle_1 = \langle v_2, Av_1 \rangle_2$ for all $v_1 \in V_1$ and $v_2 \in V_2$. By assumption, we have

(i) \[\pi_1(g) = A^{-1} \pi_2(g) A, \quad \forall \ g \in G. \]

Taking adjoints, we have $\pi_1(g)^* = A^* \pi_2(g)^* (A^*)^{-1}$ for all $g \in G$. Since π_j is unitary, we have $\pi_j(g)^* = \pi_j(g^{-1})$. Replacing g^{-1} by g, we have

(ii) \[\pi_1(g) = A^* \pi_2(g) (A^*)^{-1}, \quad \forall \ g \in G. \]

Expressing $\pi_2(g)$ in terms of $\pi_1(g)$ using (i), we can rewrite (ii) as

\[\pi_1(g) = A^* A \pi_1(g) A^{-1} (A^*)^{-1}, \quad \forall \ g \in G, \]

or

\[\pi_1(g)^{-1} A^* A \pi_1(g) = A^* A, \quad \forall \ g \in G. \]

Now $A^* A$ is positive definite (that is, self-adjoint and having positive (real) eigenvalues), and so has a unique positive definite square root, say B. Note that $\pi_1(g)^{-1} B \pi_1(g)$ is also a square root of $A^* A$ and it is positive definite, using $\pi_1(g)^* = \pi_1(g)^{-1}$. Hence $\pi_1(g)^{-1} B \pi_1(g) = B$ for all $g \in G$. Writing A in terms of the polar decomposition, we have $A = UB$, with B as above, and with U an isomorphism from $V_1 \to V_2$ such that $\langle Uv, Uw \rangle_2 = \langle v, w \rangle_1$ for all v and $w \in V_1$. Next, note that

\[\pi_2(g) = UB \pi_1(g) B^{-1} U^{-1} = U \pi_1(g) U^{-1}, \quad \forall \ g \in G. \]

Hence $U \in \text{Hom}_G(\pi_1, \pi_2)$, and π_1 and π_2 are unitarily equivalent. qed

1.4. Characters of finite-dimensional representations

Let (π, V) be a finite-dimensional representation of a group G. The function $g \mapsto \text{tr} \pi(g)$ from G to \mathbb{C} is called the character of π. We use the notation $\chi_\pi(g) = \text{tr} \pi(g)$. Note that we can use any ordered basis of V to compute $\chi_\pi(g)$, since the trace of an operator depends only on the operator itself. Note that if π were infinite-dimensional, the operator $\pi(g)$ would not have a trace.
Lemma. Let \((\pi, V)\) be a finite-dimensional representation of \(G\).

(1) If \(\pi' \simeq \pi\), then \(\chi_\pi = \chi_{\pi'}\).

(2) The function \(\chi_\pi\) is constant on conjugacy classes in \(G\).

(3) Let \(\pi^\vee\) be the representation dual to \(\pi\). Then \(\chi_\pi(g) = \chi_{\pi^\vee}(g^{-1}), \ g \in G\).

(4) If \(\pi\) is unitary, then \(\chi_\pi(g^{-1}) = \bar{\chi_\pi(g)}, \ g \in G\).

(5) Suppose that \((\pi, V)\) has a composition series \(\{0\} \subset V_1 \subset \cdots \subset V_r = V\), with composition factors \(\pi_{V_1}, \pi_{V_2/V_1}, \ldots, \pi_{V_r/V_{r-1}}\) (see page 5). Then \(\chi_\pi = \chi_{\pi_{V_1}} + \chi_{\pi_{V_2/V_1}} + \cdots + \chi_{\pi_{V_r/V_{r-1}}}\).

(6) The character \(\chi_{\pi_1 \times \cdots \times \pi_r}\) of a tensor product of finite-dimensional representations \(\pi_1, \ldots, \pi_r\) of \(G_1, \ldots, G_r\), respectively, is given by

\[
\chi_{\pi_1 \times \cdots \times \pi_r}(g_1, \ldots, g_r) = \chi_{\pi_1}(g_1)\chi_{\pi_2}(g_2)\cdots\chi_{\pi_r}(g_r), \quad g_1 \in G_1, \ldots, g_r \in G_r.
\]

Proof. By an earlier result, if \(\pi' \simeq \pi\), then \(\pi'\) and \(\pi\) have the same matrix realization (for some choice of bases). Part (1) follows immediately.

Note that

\[
\chi_{\pi}(g_1g_2^{-1}) = \text{tr}(\pi(g_1)\pi(g)) = \text{tr}(\pi(g)) = \chi_{\pi}(g), \quad g, g_1 \in G.
\]

Recall that if \(\beta\) is an ordered basis of \(V\) and \(\beta^\vee\) is the basis of \(V^\vee\) dual to \(\beta\), then \([\pi(g)]_{\beta} = \tau([\pi^\vee(g^{-1})]_{\beta^\vee}).\) This implies (3).

Suppose that \(\pi\) is unitary. Let \(\beta\) be an orthonormal basis of \(V\). Then \([\pi(g^{-1})]_{\beta} = [\pi(g)]_{\beta} = \tau([\pi(g)]_{\beta^\vee})\) implies part (4).

For (5), it is enough to do the case \(r = 2\). Let \(\beta\) be an ordered basis for \(V_1\). Extend \(\beta\) to an ordered basis \(\gamma\) for \(V_2 = V\). Let \(\gamma\) be the ordered basis for \(V_2/V_1\) which is the image of \(\gamma\) under the canonical map \(V \to V_2/V_1\). Then it is easy to check that \([\pi(g)]_{\gamma}\) is equal to

\[
\begin{pmatrix}
[\pi_{V_1}(g)]_{\beta} & * \\
0 & [\pi_{V_2/V_1}(g)]_{\gamma}
\end{pmatrix}.
\]

For (6), it is enough to do the case \(r = 2\). Let \(\beta = \{v_1, \ldots, v_n\}\) and \(\gamma = \{w_1, \ldots, w_m\}\) be ordered bases of \(V_1\) and \(V_2\), respectively. Then

\[
\{v_j \otimes w_\ell \mid 1 \leq j \leq n, 1 \leq \ell \leq m\}
\]

is an ordered basis of \(V_1 \otimes V_2\). Let \(a_{ij}(g_1)\) be the \(ij\)th entry of \([\pi_1(g_1)]_{\beta}\), \(g_1 \in G_1\), and let \(b_{ij}(g_2)\) be the \(ij\)th entry of \([\pi_2(g_2)]_{\gamma}\), \(g_2 \in G_2\). We have

\[
\pi_1(g_1)v_j = a_{ij}(g_1)v_1 + a_{2j}(g_1)v_2 + \cdots + a_{nj}(g_1)v_n, \quad g_1 \in G_1,
\]

\[
\pi_2(g_2)w_\ell = b_{1\ell}(g_2)w_1 + b_{2\ell}(g_2)w_2 + \cdots + b_{m\ell}(g_2)w_m, \quad g_2 \in G_2.
\]
Hence
\[\pi_1(g_1)v_j \otimes \pi_2(g_2)w_\ell = \sum_{t=1}^{n} \sum_{s=1}^{m} a_{tj}(g_1)b_{s\ell}(g_2)(v_t \otimes w_s), \]
and, as the coefficient of \(v_j \otimes w_\ell \) on the right side equals \(a_{jj}(g_1)b_{\ell\ell}(g_2) \), we have
\[\chi_{\pi_1 \otimes \pi_2}(g_1, g_2) = \sum_{j=1}^{n} \sum_{\ell=1}^{m} a_{jj}(g_1)b_{\ell\ell}(g_2) = \chi_{\pi_1}(g_1)\chi_{\pi_2}(g_2), \quad g_1 \in G_1, \ g_2 \in G_2. \]

Example: The converse to part (1) is false. Consider the Example (2) on page 4. We have \(\chi_{\pi}(t) = 2 \) for all \(t \in \mathbb{R} \). Now take \(\pi_0 \oplus \pi_0 \), where \(\pi_0 \) is the trivial representation of \(\mathbb{R} \). This clearly has the same character as \(\pi \), though \(\pi_0 \oplus \pi_0 \) is not equivalent to \(\pi \).

In many cases, for example, if \(G \) is finite, or compact, two irreducible finite-dimensional representations having the same character must be equivalent.